
1

Languages and Compilers
(SProg og Oversættere)

Code Generation

2

Code Generation

a. Describe the purpose of the code generator
b. Discuss Intermediate representations
c. Describe issues in code generation
d. Code templates and implementations
e. Back patching
f. Implementation of functions/procedures/methods
g. Register Allocation and Code Scheduling
h. Optimizations

3

The “Phases” of a Compiler

Syntax Analysis

Contextual Analysis

Code Generation

Source Program

Abstract Syntax Tree

Decorated Abstract Syntax Tree

Object Code

Error Reports

Error Reports

4

The “Phases” of a Compiler

Analyze/Optimize

Analyze/optimize

Code Generation

Intermediate Code

Intermediate Code

Intermediate Code

Object Code

Error Reports

Error Reports

Intermediate Representations

• Abstract Syntax Tree
– Convenient for semantic analysis phases
– We can generate code directly from the AST, but...
– What about multiple target architectures?

• Intermediate Representation
– "Neutral" architecture
– Easy to translate to native code
– Can abstracts away complicated runtime issues

• Stack Frame Management
• Memory Management
• Register Allocation

5

6

7

Issues in Code Generation

• Code Selection:
Deciding which sequence of target machine instructions will be
used to implement each phrase in the source language.

• Storage Allocation
Deciding the storage address for each variable in the source
program. (static allocation, stack allocation etc.)

• Register Allocation (for register-based machines)
How to use registers efficiently to store intermediate results.

• Code Scheduling
The order in which the generated instructions are executed

Code Emmision

• Generating the actual instructions is usually called
emission
– a CodeGenVisitor emits instructions

• Example:
– MethodBodyVisitor.visit(Plus)

• visit(E1)
• visit(E2)
• emit("iadd\n")

8

+

E1 E2

Code Templates

9

visit [if E then C1 else C2] =
visit [E]
JUMPIFFALSE fl
visit [C1]
JUMP el

fl: visit [C2]
el:

C1

C2

E

fl:

el:

If

E C1 C2

10

Code Templates

visit [while E do C] =
JUMP h

l: visit [C]
h: visit[E]

JUMPIFTRUE l

C
E

While Command:
visit [while E do C] =

l: visit [E]
JUMPIFFALSE d

visit[C]
JUMP l

d:

E

C

Alternative While Command code template:

E C

11

Backpatching Example
public Object WhileCommand (

WhileCommand com,Object arg) {
short j = nextInstrAddr;
emit(Instruction.JUMPop, 0,

Instruction.CBr,0);
short g = nextInstrAddr;
com.C.visit(this,arg);
short h = nextInstrAddr;
code[j].d = h;
com.E.visit(this,arg);
emit(Instruction.JUMPIFop, 1,

Instruction.CBr,g);
return null;

}

execute [while E do C] =
JUMP h

g: execute [C]
h: evaluate[E]

JUMPIF(1) g

dummy address

backpatch

12

Code Template: Global Procedure

elaborate [proc I () ~ C] =
JUMP g

e: execute [C]
RETURN(0) 0

g:

C

execute [I ()] =
CALL(SB) e

13

Register Allocation

• A compiler generating code for a register
machine needs to pay attentention to register
allocation as this is a limited ressource

• In routine protocol
– Allocate arg1 in R1, arg2 in R2 .. Result in R0
– But what if there are more args than regs?

• In evaluation of expressions
– On MIPS all calculations take place in regs
– Reduce traffic between memory and regs

14

Code scheduling

• Modern computers are pipelined
– Instructions are processed in stages
– Instructions take different time to execute
– If result from previous instruction is needed

but not yet ready then we have a stalled
pipeline

– Delayed load
• Load from memory takes 2, 10 or 100 cycles

– Also FP instructions takes time
15

Reg allocation and Code Scheluling

• Reg allocations algorithms try to minimize
the number of regs used

• May conflict with pipeline architecture
– Using more regs than strictly necessary may

avoid pipeline stalls
• Solution

– Integrated register allocator and code
scheduler

16

	Languages and Compilers�(SProg og Oversættere)
	Code Generation
	The “Phases” of a Compiler
	The “Phases” of a Compiler
	Intermediate Representations
	Slide Number 6
	Issues in Code Generation
	Code Emmision
	Code Templates
	Code Templates
	Backpatching Example
	Code Template: Global Procedure
	Slide Number 13
	Register Allocation
	Code scheduling
	Reg allocation and Code Scheluling
	Slide Number 17
	Slide Number 18

