
1

Languages and Compilers
(SProg og Oversættere)

Heap allocation and Garbage Collection

2

Heap allocation and Garbage Collection

a. Why may we need heap allocation?
b. Explicit vs. implicit allocation and de-allocation
c. Garbage collection strategies (Types of GCs)
d. Reference count
e. Mark and sweep
f. Mark, sweep, compact
g. Copying Garbage Collection
h. Generational garbage collection

3

Terminology

• Roots: values that a program can manipulate directly (i.e. values
held in registers, on the program stack, and global variables.)

• Node/Cell/Object: an individually allocated piece of data in the
heap.

• Children Nodes: the list of pointers that a given node contains.
• Live Node: a node whose address is held in a root or is the child

of a live node.
• Garbage: nodes that are not live, but are not free either.
• Garbage collection: the task of recovering (freeing) garbage

nodes.
• Mutator: The program running alongside the garbage collection

system.

4

Heap Storage

• Memory allocation under explicit programmatic control
– C malloc, C++ / Pascal / Java / C# new operation.

• Memory allocation implicit in language constructs
– Lisp, Scheme, Haskell, SML, … most functional languages
– Autoboxing/unboxing in Java 1.5 and C#

• Deallocation under explicit programmatic control
– C, C++, Pascal

• Deallocation implicit
– Java, C#, Lisp, Scheme, Haskell, SML, …

5

Stacks and dynamic allocations are incompatible

Why can’t we just do dynamic allocation within the stack?

Programming Language design and Implementation -4th Edition
Copyright©Prentice Hall, 2000

6

How does things become garbage?

int *p, *q;
…
p = malloc(sizeof(int));
p = q;

for(int i=0;i<10000;i++){
SomeClass obj= new SomeClass(i);
System.out.println(obj);

}

Newly created space becomes garbage

Creates 10000 objects, which becomes
garbage just after the print

7

Where to put the heap?

ST

SB

HB

HT

Stack memory area

Heap memory area

Stack grows downward

Heap can expand upward

8

How to keep track of free memory?

Stack is LIFO allocation => ST moves up/down everything above ST
is in use/allocated. Below is free memory. This is easy! But …
Heap is not LIFO, how to manage free space in the “middle” of the
heap?

HB

HT
Allocated

ST

SB

Free

Free

Mixed:
Allocated
and
Free

reuse?

9

How to keep track of free memory?

How to manage free space in the “middle” of the heap?

HB

HT

=> keep track of free blocks in a data structure: the “free list”. For
example we could use a linked list pointing to free blocks.

Free Next

freelist

Free Next

Free Next

A freelist!
Good idea!

But where do we
find the memory to
store this data
structure?

10

Types of garbage collectors

• The “Classic” algorithms
– Reference counting
– Mark and sweep

• Copying garbage collection
• Generational garbage collection

Reference Counting

12

Mark-Sweep

• The first tracing garbage collection algorithm
• Garbage cells are allowed to build up until heap space is

exhausted (i.e. a user program requests a memory allocation, but
there is insufficient free space on the heap to satisfy the request.)

• At this point, the mark-sweep algorithm is invoked, and garbage
cells are returned to the free list.

• Performed in two phases:
– Mark: identifies all live cells by setting a mark bit. Live cells are cells

reachable from a root.
– Sweep: returns garbage cells to the free list.
– Compaction: we push live cells to one end of the heap

• We can add a compaction phase as shown in Fig. 12.17.

13

14

Copying Garbage Collection

• Like mark-compact, copying garbage collection does not
really "collect" garbage.

• Rather it moves all the live objects into one area and the
rest of the heap is known to be available.

• Copying collectors integrate the traversal and the copying
process, so that objects need only be traversed once.

• The work needed is proportional to the amount of live data
(all of which must be copied).

15

16

Generational Garbage Collection
• Attempts to address weaknesses of simple tracing

collectors such as mark-sweep and copying collectors:
– All active data must be marked or copied.
– For copying collectors, each page of the heap is touched every

two collection cycles, even though the user program is only
using half the heap, leading to poor cache behavior and page
faults.

– Long-lived objects are handled inefficiently.
• Generational garbage collection is based on the

generational hypothesis:
Most objects die young.

• As such, concentrate garbage collection efforts on
objects likely to be garbage: young objects.

	Languages and Compilers�(SProg og Oversættere)
	Heap allocation and Garbage Collection
	Terminology
	Heap Storage
	Stacks and dynamic allocations are incompatible
	How does things become garbage?
	Where to put the heap?
	How to keep track of free memory?
	How to keep track of free memory?
	Types of garbage collectors
	Reference Counting
	Mark-Sweep
	Slide Number 13
	Copying Garbage Collection
	Slide Number 15
	Generational Garbage Collection

