
1

Languages and Compilers
(SProg og Oversættere)

Run-time organization

2

Run-time organization

a. Data representation (direct vs. indirect)
b. Data representation for composit datatypes
c. Storage allocation strategies: static vs. stack dynamic
d. Activation records (sometimes called frames)
e. Recursion and stack allocation
f. Routines and Parameter passing

3

Data Representation

Important issues in data representation:
• constant-size representation: The representation of all values

of a given type should occupy the same amount of space.
• direct versus indirect representation

x bit pattern x bit pattern•
handle

Direct representation
of a value x

Indirect representation
of a value x

4

Indirect Representation

small x
bit pattern

•

Q: What reasons could there be for choosing indirect representations?

To make the representation “constant size” even if representation
requires different amounts of memory for different values.

big x
bit pattern

•

Both are represented
by pointers

=>Same size

5

Data Representation: Records

Records occur in some form or other in most programming languages:
Ada, Pascal, Triangle (here they are actually called records)
C, C++, C# (here they are called structs).
The usual representation of a record type is just the concatenation of
individual representations of each of its component types.

r.I1

r.I2

r.In

value of type T1

value of type T2

value of type Tn

6

Arrays

An array is a composite data type, an array value consists of multiple
values of the same type. Arrays are in some sense like records,
except that their elements all have the same type.

The elements of arrays are typically indexed using an integer value
(In some languages such as for example Pascal, also other “ordinal”
types can be used for indexing arrays).

Two kinds of arrays (with different runtime representation schemas):
• static arrays: their size (number of elements) is known at

compile time.
• dynamic arrays: their size can not be known at compile time

because the number of elements may vary at run-time.
Q: Which are the “cheapest” arrays? Why?

7

Static Arrays

Example:
type Name = array 6 of Char;
var me: Name;
var names: array 2 of Name

‘K’
‘r’
‘i’
‘s’
‘ ’
‘ ’

me[0]
me[1]
me[2]
me[3]
me[4]
me[5]

‘J’
‘o’
‘h’
‘n’
‘ ’
‘ ’

names[0][0]
names[0][1]
names[0][2]
names[0][3]
names[0][4]
names[0][5]

Name

‘S’
‘o’
‘p’
‘h’
‘i’
‘a’

names[1][0]
names[1][1]
names[1][2]
names[1][3]
names[1][4]
names[1][5]

Name

8

Dynamic Arrays

char[] buffer;

buffer = new char[7];

Java Arrays

‘C’
‘o’

buffer[0]

buffer[1]

‘m’ buffer[2]

buffer[3]‘p’

A possible representation for Java arrays

7
•

buffer[4]‘i’
buffer[5]‘l’
buffer[6]‘e’

buffer.length
buffer.origin

9

Runtime Organization for OO Languages

Objects are a lot like records, and instance variables are a lot like fields.
=> The representation of objects is similar to that of a record.

Methods are a lot like procedures.
=> Implementation of methods is similar to routines.

But… there are differences:

Objects have methods as well as instance variables, records only
have fields (except in C#).

The methods have to somehow know what object they are associated
with (so that methods can access the object’s instance variables)

10

Example

Representation of a simple Java object (no inheritance)

Point class
Point
move
area
dist

constructor(1)
method(2)
method(3)
method(4)

Point p = new Point(2,3);
Point q = new Point(0,0);

p

q

class
x
y

2
3

class
x
y

0
0

new allocates an object in
the heap

Where to put data?
Now we have looked at how program structures are

implemented in a computer memory

Next we look at where to put them

We will cover 3 methods:
1) static allocation,
2) stack allocation, and
3) heap allocation.

11

Static Allocation

Originally, all data were global. Correspondingly, all
memory allocation was static.
During compilation, data was simply placed at a fixed
memory address for the entire execution of a program.
This is called static allocation.

Examples are all assembly languages, Cobol, and
Fortran.

Note: code is usually allocated statically

12

13

Stack Storage Allocation

void Y() {
int d;
... e;
... ; }

void Z() {
int f;
...; Y(); ... }

int main(){
int[3] a;

bool b;
char c;

...; Y(); ...; Z(); }

Example: When do the variables in this program “exist”

as long as the
program is

running

when procedure
Y is active

when procedure
Z is active

Now we will look at allocation of local variables

14

Stack Storage Allocation

Start of program End of program time

call depth

global

Y Z1

2 Y

Z

1) Procedure activation behaves like a stack (LIFO).
2) The local variables “live” as long as the procedure they are
declared in.
1+2 => Allocation of locals on the “call stack” is a good model.

A “picture” of our program running:

Recursion

int fact (int n) {
if (n>1) return n* fact (n-1);
else return 1;

}

15

16

Recursion: General Idea
Why the stack allocation model works for recursion:
Like other function/procedure calls, lifetimes of local variables and
parameters for recursive calls behave like a stack.

fac(3)

fac(2)

fac(1)

fac(4) fac(4)

fac(3)

fac(2)

fac(4)
fac(4)

fac(3) fac(3)

fac(2)

fac(2)

fac(1)

fac(3)

fac(2)

fac(4)

fac(3)?

?
fac(4)

Nested functions/procedures

int p (int a) {
int q (int b) { if (b <0) q (-b) else return a+b; }
return q (-10);

}

Methods cannot nest in C, Java, but in languages like Pascal, ML
and Python they can. How to keep track of static block structure
as above?

A static link points to the frame of the method that statically
encloses the current method. (Fig. 12.6)

An alternative to using static links to access frames of enclosing
methods is the use of a display. Here, we maintain a set of
registers which comprise the display. (see Fig. 12,7)

17

18

19

Routine Protocol Examples

Example 1: A possible routine protocol for a stack machine
- Passing of arguments:

pass arguments on the top of the stack.
- Passing of return value:

leave the return value on the stack top, in place of the
arguments.

Note: this protocol puts no boundary on the number of arguments
and the size of the arguments.

Most micro-processors, have registers as well as a stack. Such
“mixed” machines also often use a protocol like this one.

20

Routine Protocol Examples

The routine protocol depends on the machine architecture (e.g. stack
machine versus register machine).

Example 2: A possible routine protocol for a RM
- Passing of arguments:

first argument in R1, second argument in R2, etc.
- Passing of return value:

return the result (if any) in R0
Note: this example is simplistic:

- What if more arguments than registers?
- What if the representation of an argument is larger than can be
stored in a register.

For RM protocols, the protocol usually also specifies who (caller or
callee) is responsible for saving contents of registers.

	Languages and Compilers�(SProg og Oversættere)
	Run-time organization
	Data Representation
	Indirect Representation
	Data Representation: Records
	Arrays
	Static Arrays
	Dynamic Arrays
	Runtime Organization for OO Languages
	Example
	Where to put data?
	 Static Allocation
	Stack Storage Allocation
	Stack Storage Allocation
	Recursion
	Recursion: General Idea
	Nested functions/procedures
	Slide Number 18
	Routine Protocol Examples
	Routine Protocol Examples

