
1

Languages and Compilers
(SProg og Oversættere)

Semantic Analysis

2

Semantic Analysis

a. Describe the purpose of the Semantic analysis phase
b. Discuss Identification and type checking
c. Discuss scopes/block structure and implication for

implementation of identification tables/symbol tables
d. Discuss type rules for various constructs
e. Discuss Implementation of semantic analysis

3

The “Phases” of a Compiler

Syntax Analysis

Contextual Analysis

Code Generation

Source Program

Abstract Syntax Tree

Decorated Abstract Syntax Tree

Object Code

Error Reports

Error Reports

4

Contextual Constraints

Syntax rules alone are not enough to specify the format of
well-formed programs.

Example 1:
let const m~2;
in m + x

Example 2:
let const m~2 ;

var n:Boolean
in begin

n := m<4;
n := n+1

end

Undefined! Scope Rules

Type error! Type Rules

5

Scope Rules

Scope rules regulate visibility of identifiers. They relate
every applied occurrence of an identifier to a binding
occurrence
Example 1
let const m~2;

var r:Integer
in

r := 10*m

Binding occurrence

Applied occurrence

Terminology:

Static binding vs. dynamic binding

Static scope/block structured scope vs. dynamic scope

Implicit vs. explicit binding

Example 2:
let const m~2
in m + x

?

Example (from p. 88 in Transitions and Trees)
begin

var x:= 0;
var y:= 42

proc p is x:= x+3;
proc q is call p;

begin
var x:=9;
proc p is x := x+1;
call q;
y := x

end
end

6

Assuming static scope for procedures and variables,
What is the value assigned to y ?

Assuming dynamic scope for procedures and variables,
What is the value assigned to y ?

7

Different kinds of Block Structure... a picture

Monolithic Flat Nested

8

Identification Table
For a typical programming language, i.e. statically scoped language
and with nested block structure we can visualize the structure of all
scopes within a program as a kind of tree.
Global
A

B

A1

A2

A3

Global

A B

A1 A2 A3
= “direction” of identifier lookup

Lookup path for an applied
occurence in A3

At any one time (in analyzing the program) only a single
path on the tree is accessible.
=> We don’t necessarily need to keep the whole “scope”
tree in memory all the time.

9

Identification Table: Example

Level Ident Attr
1 a (1)
1 b (2)Level Ident Attr

1 a (1)
1 b (2)
2 b (3)
2 c (4)

Level Ident Attr
1 a (1)
1 b (2)
2 d (5)
2 e (6)

Level Ident Attr
1 a (1)
1 b (2)
2 d (5)
2 e (6)
3 x (7)

let var a: Integer;
var b: Boolean

in begin
...
let var b: Integer;

var c: Boolean
in begin

...
end
...
let var d: Boolean;

var e: Integer
in begin

let const x:3
in ...

end
end

10

Type Checking: How Does It Work
Example: Type of a variable (applied occurrence)

VarDecl

x

Ident type

SimpleVName

x

Ident
type

During Identification/SymbolTableFilling:
EnterSymbol(x,type)

During typeChecking:
RetreiveSymbol(x) -> type

11

Attributes as pointers to Declaration AST’s
Program

LetCommand

Ident

VarDecl

x int

Ident

SequentialDecl

VarDecl

a bool

Ident

LetCommand

VarDecl

y int

IdentIdent
Id table

Level Ident Attr
1 x •
1 a •
2 y •

Ident

12

Type Checking: How Does It Work
Example: Type of a variable (applied occurrence)

VarDecl

x

Ident type

SimpleVName

x

Ident type

13

Type Checking

For most statically typed programming languages, a
bottom up algorithm over the AST:

• Types of expression AST leaves are known
immediately:
– literals => obvious
– variables => from the ID table
– named constants => from the ID table

• Types of internal nodes are inferred from the type of the
children and the type rule for that kind of expression

14

Type Rules

Type rules regulate the expected types of arguments and
types of returned values for the operations of a language.

Examples

Terminology:

Static typing vs. dynamic typing

Type rule of < :
E1 < E2 is type correct and of type Boolean
if E1 and E2 are type correct and of type Integer

Type rule of while:
while E do C is type correct
if E of type Boolean and C type correct

15

Type Checking: How Does It Work

Example: the type of a binary operation expressions

4

BinOp

Operator

Type rule:
If op is an operation of type T1xT2->R then
E1 op E2 is type correct and of type R if E1 and E2
are type correct and have type compatible with T1 and
T2 respectively

<3

Int.Expr Int.Expr
int intxint->bool int

bool

16

Type checking
Commands which contain expressions:

IfCommand

Expression Command Command
check that this
has type Boolean

typecheck typecheck

deduce that this command is correctly typed

WhileCommand is similar.

Type rule of IfCommand:
if E do C1 else C2 is type correct
if E of type Boolean and C1 and C2 are type correct

17

Contextual Analysis
Identification and type checking are combined into a depth-first traversal
of the abstract syntax tree.

Ident Ident Ident Ident Ident CharLit Ident Ident Op IntLit

n Integer c Char c ‘&’ n n + 1

SimpleT SimpleT SimpleV SimpleV SimpleV

VarDec VarDec VnameExpr IntExpr

BinaryExpression

AssignCommand

CharExpr

AssignCommand

SequentialCommandSequentialDeclaration

LetCommand

Program

18

Implementing Tree Traversal

• “Traditional” OO approach
• Visitor approach

– GOF
– Using static overloading
– Reflective
– (dynamic)
– (SableCC style)

• “Functional” approach
• Active patterns in Scala (or F#)
• (Aspect oriented approach)

19

Implementing type checking from type rules

(conditional)
Γ |- Ε: TE, TE=bool, Γ |- S1: T1, Γ |− S2: T2 , T1=T2

Γ |- if E then S1 else S2: T1

public Object visitIfExpression (IfExpression com,Object arg)
{

Type eType = (Type)com.E.visit(this,null);
if (! eType.equals(Type.boolT))

report error: expression in if not boolean
Type c1Type = (Type)com.C1.visit(this,null);
Type c2Type = (Type)com.C2.visit(this,null);
if (! c1Type.equals(c2Type))

report error: type mismatch in expression branches
return c1Type;

}

20

Why contextual analysis can be hard

• Questions and answers involve non-local information
• Answers mostly depend on values, not syntax
• Answers may involve computations

Solution alternatives:
• Abstract syntax tree

– specify non-local computations by walking the tree
• Identification tables (sometimes called symbol tables)

– central store for facts + checking code
• Language design

– simplify language

	Languages and Compilers�(SProg og Oversættere)
	Semantic Analysis
	The “Phases” of a Compiler
	Contextual Constraints
	Scope Rules
	Example (from p. 88 in Transitions and Trees)
	Different kinds of Block Structure... a picture
	Identification Table
	Identification Table: Example
	Type Checking: How Does It Work
	Attributes as pointers to Declaration AST’s
	Type Checking: How Does It Work
	Type Checking
	Type Rules
	Type Checking: How Does It Work
	Type checking
	Contextual Analysis
	Implementing Tree Traversal
	Implementing type checking from type rules
	Why contextual analysis can be hard

