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Languages and Compilers
(SProg og Oversættere)

Semantic Analysis
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Semantic Analysis 

a. Describe the purpose of the Semantic analysis phase 
b. Discuss Identification and type checking
c. Discuss scopes/block structure and implication for 

implementation of identification tables/symbol tables 
d. Discuss type rules for various constructs
e. Discuss Implementation of semantic analysis



3

The “Phases” of a Compiler

Syntax Analysis

Contextual Analysis

Code Generation

Source Program

Abstract Syntax Tree

Decorated Abstract Syntax Tree

Object Code

Error Reports

Error Reports
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Contextual Constraints

Syntax rules alone are not enough to specify the format of 
well-formed programs. 

Example 1:
let const m~2;
in  m + x 

Example 2:
let const m~2 ;

var   n:Boolean
in begin

n := m<4;
n := n+1

end

Undefined! Scope Rules

Type error! Type Rules



5

Scope Rules

Scope rules regulate visibility of identifiers. They relate 
every applied occurrence of an identifier to a binding 
occurrence
Example 1
let const m~2;

var   r:Integer
in  

r := 10*m

Binding occurrence

Applied occurrence

Terminology:

Static binding vs. dynamic binding

Static scope/block structured scope vs. dynamic scope

Implicit vs. explicit binding

Example 2:
let const m~2
in  m + x

?



Example (from p. 88 in Transitions and Trees)
begin

var x:= 0;
var y:= 42

proc p is x:= x+3;
proc q is call p;

begin
var x:=9;
proc p is x := x+1;
call q;
y := x

end
end
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Assuming static scope for procedures and variables,
What is the value assigned to y ?

Assuming dynamic scope for procedures and variables,
What is the value assigned to y ?
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Different kinds of Block Structure... a picture

Monolithic Flat Nested
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Identification Table
For a typical programming language, i.e. statically scoped language 
and with nested block structure we can visualize the structure of all 
scopes within a program as a kind of tree.
Global
A

B

A1

A2

A3

Global

A B

A1 A2 A3
= “direction” of identifier lookup

Lookup path for an applied 
occurence in A3

At any one time (in analyzing the program) only a single 
path on the tree is accessible.
=> We don’t necessarily need to keep the whole “scope” 
tree in memory all the time.
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Identification Table: Example

Level Ident Attr
1 a (1)
1 b (2)Level Ident Attr

1 a (1)
1 b (2)
2 b (3)
2 c (4)

Level Ident Attr
1 a (1)
1 b (2)
2 d (5)
2 e (6)

Level Ident Attr
1 a (1)
1 b (2)
2 d (5)
2 e (6)
3 x (7)

let  var a: Integer;
var b: Boolean

in begin
...
let var b: Integer;

var c: Boolean
in begin

...
end
...
let var d: Boolean;

var e: Integer
in begin

let const x:3
in ...

end
end
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Type Checking: How Does It Work
Example:  Type of a variable (applied occurrence)

VarDecl

x

Ident type

SimpleVName

x

Ident
type

During Identification/SymbolTableFilling:
EnterSymbol(x,type)

During typeChecking:
RetreiveSymbol(x) -> type
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Attributes as pointers to Declaration AST’s
Program

LetCommand

Ident

VarDecl

x int

Ident

SequentialDecl

VarDecl

a bool

Ident

LetCommand

VarDecl

y int

IdentIdent
Id table

Level Ident Attr
1 x •
1 a •
2 y •

Ident
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Type Checking: How Does It Work
Example:  Type of a variable (applied occurrence)

VarDecl

x

Ident type

SimpleVName

x

Ident type
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Type Checking

For most statically typed programming languages, a 
bottom up algorithm over the AST:

• Types of expression AST  leaves are known 
immediately:
– literals => obvious
– variables => from the ID table
– named constants => from the ID table

• Types of internal nodes are inferred from the type of the 
children and the type rule for that kind of expression
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Type Rules

Type rules regulate the expected types of arguments and 
types of returned values for the operations of a language. 

Examples

Terminology:

Static typing vs. dynamic typing

Type rule of < : 
E1 < E2 is type correct and of type Boolean
if E1 and E2 are type correct and of type Integer

Type rule of while: 
while E do C is type correct
if E of type Boolean and C type correct
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Type Checking: How Does It Work

Example: the type of a binary operation expressions

4

BinOp

Operator

Type rule: 
If op is an operation of type T1xT2->R then 
E1 op E2 is type correct and of type R if E1 and E2
are type correct and have  type compatible with T1 and 
T2 respectively

<3

Int.Expr Int.Expr
int intxint->bool int

bool
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Type checking
Commands which contain expressions:

IfCommand

Expression Command Command
check that this
has type Boolean

typecheck typecheck

deduce that this command is correctly typed

WhileCommand  is similar.

Type rule of IfCommand: 
if E do C1 else C2 is type correct
if E of type Boolean and C1 and C2 are type correct
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Contextual Analysis
Identification and type checking are combined into a depth-first traversal
of the abstract syntax tree.

Ident Ident Ident Ident Ident CharLit Ident Ident Op IntLit

n Integer c Char c ‘&’ n n + 1

SimpleT SimpleT SimpleV SimpleV SimpleV

VarDec VarDec VnameExpr IntExpr

BinaryExpression

AssignCommand

CharExpr

AssignCommand

SequentialCommandSequentialDeclaration

LetCommand

Program
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Implementing Tree Traversal

• “Traditional” OO approach
• Visitor approach

– GOF
– Using static overloading
– Reflective
– (dynamic)
– (SableCC style)

• “Functional” approach
• Active patterns in Scala (or F#)
• (Aspect oriented approach)
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Implementing type checking from type rules

(conditional)
Γ |- Ε: TE, TE=bool, Γ |- S1: T1, Γ |− S2: T2 , T1=T2

Γ |- if E then S1 else S2: T1

public Object visitIfExpression (IfExpression com,Object arg) 
{

Type eType = (Type)com.E.visit(this,null);
if (! eType.equals(Type.boolT) )

report error: expression in if not boolean
Type c1Type = (Type)com.C1.visit(this,null);
Type c2Type = (Type)com.C2.visit(this,null);
if (! c1Type.equals(c2Type) )

report error: type mismatch in expression branches
return c1Type;

}
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Why contextual analysis can be hard

• Questions and answers involve non-local information
• Answers mostly depend on values, not syntax
• Answers may involve computations

Solution alternatives:
• Abstract syntax tree 

– specify non-local computations by walking the tree
• Identification tables (sometimes called symbol tables) 

– central store for facts + checking code
• Language design

– simplify language
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