
1

Languages and Compilers
(SProg og Oversættere)

Parsing

2

Parsing

a. Describe the purpose of the parser
b. Discuss top down vs. bottom up parsing
c. Explain necessary conditions for construction of recursive

decent parsers
d. Discuss the construction of an RD parser from a grammar
e. Discuss bottom Up/LR parsing
f. Discuss the dangling else problem

3

Syntax Analysis

Scanner

Source Program

Abstract Syntax Tree

Error Reports

Parser

Stream of “Tokens”

Stream of Characters

Error Reports

Dataflow chart

4

Look-Ahead

Derivation

LL-Analyse (Top-Down)

Look-Ahead

Reduction

LR-Analyse (Bottom-Up)

Top-Down vs Bottom-Up parsing

5

Recursive Descent Parsing

Sentence ::= Subject Verb Object .
Subject ::= I | a Noun | the Noun
Object ::= me | a Noun | the Noun
Noun ::= cat | mat | rat
Verb ::= like | is | see | sees

Define a procedure parseN for each non-terminal N

private void parseSentence() ;
private void parseSubject();
private void parseObject();
private void parseNoun();
private void parseVerb();

6

Recursive Descent Parsing: Parsing Methods

private void parseSentence() {
parseSubject();
parseVerb();
parseObject();
accept(‘.’);

}

Sentence ::= Subject Verb Object .

7

Recursive Descent Parsing: Parsing Methods

private void parseSubject() {
if (currentTerminal matches ‘I’)

accept(‘I’);
else if (currentTerminal matches ‘a’) {

accept(‘a’);
parseNoun();

}
else if (currentTerminal matches ‘the’) {

accept(‘the’);
parseNoun();

}
else
report a syntax error

}

Subject ::= I | a Noun | the Noun

8

Formal definition of LL(1)

A grammar G is LL(1) iff
for each set of productions X ::= X1 | X2 | … | Xn :
1. starters[X1], starters[X2], …, starters[Xn] are all pairwise disjoint
2. If Xi =>* ε then starters[Xj]∩ follow[X]=Ø, for 1≤j≤ n.i≠j

If G is ε-free then 1 is sufficient

NOTE: starters[X1] is sometimes called first[X1]

starters[X] = {t in Terminals | X =>* t β }
Follow[X] = {t in Terminals | S =>+ α X t β }

9

LL 1 Grammars

parse X*

while (currentToken.kind is in starters[X]) {
parse X

}

parse X|Y

switch (currentToken.kind) {
cases in starters[X]:
parse X
break;

cases in starters[Y]:
parse Y
break;

default: report syntax error
}

Condition: starters[X] and
starters[Y] must be disjoint sets.

Condition: starters[X] must be
disjoint from the set of tokens that
can immediately follow X *

13

Bottom Up Parsing/ LR Parsing

• The main task of a bottom-up parser is to find the
leftmost node that has not yet been constructed but all of
whose children have been constructed.

• The sequence of children is called the handle.
• Creating a parent node N and connecting the children in

the handle to N is called reducing to N.

(1,6,2) is a handle

14

Bottom Up Parsers/ shift-reduce

• All bottom up parsers have similar algorithm:
– A loop with these parts:

• try to find the leftmost node of the parse tree which has not
yet been constructed, but all of whose children have been
constructed.

– This sequence of children is called a handle
– Shift is the action of moving the next token to the top

of the parse stack
• construct a new parse tree node.

– This is called reducing
• The difference between different algorithms is only in

the way they find a handle.

16

Shifting and reducing

Shift → ← the cat sees a rat .
Shift the → ← cat sees a rat .
Reduce the cat → ← sees a rat .
Shift the → ← Noun sees a rat .
Reduce the Noun → ← sees a rat .
Reduce → ← Subject sees a rat .
Shift Subject → ← sees a rat .
Reduce Subject sees → ← a rat .
Shift Subject → ← Verb a rat .
Shift Subject Verb → ← a rat .
Shift Subject Verb a → ← rat .
Reduce Subject Verb a rat → ←.
Shift Subject Verb → ← Noun.
Reduce Subject Verb a Noun → ←.
Shift Subject Verb → ← Object.
Shift Subject Verb Object → ←.
Shift Subject Verb Object . → ←
Reduce → ← Sentence
Finish Sentence → ←

Sentence ::= Subject Verb Object .
Subject ::= I | a Noun | the Noun
Object ::= me | a Noun | the Noun
Noun ::= cat | mat | rat
Verb ::= like | is | see | sees

17

The LR-parse algorithm

• A finite automaton
– With transitions and states

• A stack
– with objects (symbol, state)

• A parse table

19

Hierarchy

20

Dangling Else Problem

Example: (from Mini Triangle grammar)

single-Command
::= if Expression then single-Command
| if Expression then single-Command

else single-Command

if a then if b then c1 else c2

single-Command

single-Command

This parse tree?

21

Dangling Else Problem

Example: (from Mini Triangle grammar)

single-Command
::= if Expression then single-Command
| if Expression then single-Command

else single-Command

if a then if b then c1 else c2

single-Command

single-Command

or this one ?

22

Parser Conflict Resolution

Example: “dangling-else” problem (from Mini Triangle grammar)

single-Command
::= if Expression then single-Command
| if Expression then single-Command

else single-Command

sC ::= if E then sC • {… else …}
sC ::= if E then sC • else sC {…}

LR(1) items (in some state of the parser)
Shift-reduce

conflict!

Resolution rule: shift has priority over reduce.

Q: Does this resolution rule solve the conflict? What is its effect
on the parse tree?

23

Dangling Else Problem

Example: “dangling-else” problem (from Mini Triangle grammar)

single-Command
::= if Expression then single-Command
| if Expression then single-Command

else single-Command

sC ::= if E then sC endif
| if E then sC else sC endif

Rewrite Grammar:

	Languages and Compilers�(SProg og Oversættere)
	Parsing
	Syntax Analysis
	Top-Down vs Bottom-Up parsing
	Recursive Descent Parsing
	Recursive Descent Parsing: Parsing Methods
	Recursive Descent Parsing: Parsing Methods
	Formal definition of LL(1)
	LL 1 Grammars
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Bottom Up Parsing/ LR Parsing
	Bottom Up Parsers/ shift-reduce
	Slide Number 15
	Shifting and reducing
	The LR-parse algorithm
	Slide Number 18
	Hierarchy
	Dangling Else Problem
	Dangling Else Problem
	Parser Conflict Resolution
	Dangling Else Problem

