
1

Languages and Compilers
(SProg og Oversættere)

Lexical analysis

2

Lexical analysis

a. Describe the role of the lexical analysis phase
b. Describe lexemes and tokens
c. Describe how a scanner can be implemented by hand
d. Describe how a scanner can be auto-generated
e. Describe regular expressions and finite automata and how

they relate to implementations of scanners

3

Syntax Analysis: Scanner

Scanner

Source Program

Abstract Syntax Tree

Error Reports

Parser

Stream of “Tokens”

Stream of Characters

Error Reports

Dataflow chart

4

1) Scan: Divide Input into Tokens

An example ac source program:
f b
i a
a = 5
b = a + 3.2
p b

floatdl
f

id
b

intdcl
i

scanner

id
a

id
a

assign
=

id
a

plus
+

...

... fnum
3.2

print
p

id
b

eot

Lexems are “words” in the input, for
example keywords, operators,
identifiers, literals, etc.
Tokens is a datastructure for lexems
and additional information

inum
5

assign
=

5

1) Scan: Divide Input into Tokens

An example ac source program:
f b
i a
a = 5
b = a + 3.2
p b

floatdl id
b

intdcl

scanner

id
a

id
a

assign

id
a

plus

...

... fnum
3.2

print id
b

eot

Lexems are “words” in the input, for
example keywords, operators,
identifiers, literals, etc.
Tokens is a datastructure for lexems
and additional information

inum
5

assign

Implement Scanner based on RE by hand

1) Express the “lexical” grammar as RE
(sometimes it is easier to start with a BNF or an EBNF
and do necessary transformations)

• For each variant make a switch on the first character by
peeking the input stream

• For each repetition (..)* make a while loop with the
condition to keep going as long as peeking the input still
yields an expected character

• Sometimes the “lexical” grammar is not reduced to one
single RE but a small set of REs – in this case a switch or if-
then-else case analysis is used to determine which rule is
being recognized, before following the first two steps

6

7

Developing a Scanner

• Express the “lexical” grammar in EBNF
Token ::= Identifier | Integer-Literal | Operator |

; | : | := | ~ | (|) | eot
Identifier ::= Letter (Letter | Digit)*

Integer-Literal ::= Digit Digit*
Operator ::= + | - | * | / | < | > | =

Separator ::= Comment | space | eol
Comment ::= ! Graphic* eol

Now perform substitution and left factorization...
Token ::= Letter (Letter | Digit)*

| Digit Digit*
| + | - | * | / | < | > | =

| ; | : (=|ε) | ~ | (|) | eot
Separator ::= ! Graphic* eol | space | eol

8

Developing a Scanner

private byte scanToken() {
switch (currentChar) {

case ‘a’: case ‘b’: ... case ‘z’:
case ‘A’: case ‘B’: ... case ‘Z’:

scan Letter (Letter | Digit)*
return Token.IDENTIFIER;

case ‘0’: ... case ‘9’:
scan Digit Digit*

return Token.INTLITERAL ;
case ‘+’: case ‘-’: ... : case ‘=’:

takeIt();
return Token.OPERATOR;

...etc...
}

Token ::= Letter (Letter | Digit)*
| Digit Digit*

| + | - | * | / | < | > | =

| ; | : (=|ε) | ~ | (|) | eot

9

Developing a Scanner

Let’s look at the identifier case in more detail

Thus developing a scanner is a mechanical task.

Token Specification

10

[0-9]+|[0-9]+.[0-9]+|[a-e,g-h,j-o,q-z]|f|p|i|=|\+|-

12

14

Generating Scanners

• Generation of scanners is based on
– Regular Expressions: to describe the tokens to be recognized
– Finite State Machines: an execution model to which RE’s are

“compiled”

A possible algorithm:
- Convert RE into NDFA-ε
- Convert NDFA-ε into NDFA
- Convert NDFA into DFA
- generate Java/C/... code

Implementing a DFA

15

Comment -> //(Not(Eol))*Eol

16

17

Implementing a Scanner as a DFA

Slightly different from previously shown implementation (but
similar in spirit):

• Not the goal to match entire input
=> when to stop matching?

– Token(if), Token(Ident i) vs. Token(Ident ifi)

Match longest possible token

Report error (and continue) when reaching error state.

• How to identify matched token class (not just true|false)

Final state determines matched token class

Performance considerations
• Performance of scanners is important for production

compilers, for example:
– 30,000 lines per minute (500 lines per second)
– 10,000 characters per second (for an average line of 20 characters)
– For a processor that executes 10,000,000 instructions per second,

1,000 instructions per input character
– Considering other tasks in compilers, 250 instructions per

character is more realistic
• Size of scanner sometimes matters

– Including keyword in scanner increases table size
• E.g. Pascal has 35 keywords, including them increases states from 37 to 165
• Uncompressed this increases table entries from 4699 to 20955

18

	Languages and Compilers�(SProg og Oversættere)
	Lexical analysis
	Syntax Analysis: Scanner
	1) Scan: Divide Input into Tokens
	1) Scan: Divide Input into Tokens
	Implement Scanner based on RE by hand
	Developing a Scanner
	Developing a Scanner
	Developing a Scanner
	Token Specification
	[0-9]+|[0-9]+.[0-9]+|[a-e,g-h,j-o,q-z]|f|p|i|=|\+|-
	Slide Number 12
	Slide Number 13
	Generating Scanners
	Implementing a DFA
	Slide Number 16
	Implementing a Scanner as a DFA
	Performance considerations

