
1

Languages and Compilers
(SProg og Oversættere)

Structure of the compiler

2

Structure of the compiler

a) Describe the phases of the compiler
b) Give an overall description of the purpose of each

phase and how the phases interface
c) Explain b) in more detail using the ac language
d) Single pass vs. multi pass compiler

i. Issues in language design
ii. Issues in code generation

3

The “Phases” of a Compiler

Syntax Analysis

Contextual Analysis

Code Generation

Source Program

Abstract Syntax Tree

Decorated Abstract Syntax Tree

Object Code

Error Reports

Error Reports

4

Different Phases of a Compiler

The different phases can be seen as different
transformation steps to transform source code into
object code.

The different phases correspond roughly to the different
parts of the language specification:

• Syntax analysis <-> Syntax
• Lexical analysis <-> Regular Expressions
• Parsing <-> Context Free Grammar

• Contextual analysis <-> Contextual constraints
• Scope checking <-> Scope rules (static semantics)
• Type checking <-> Type rules (static semantics)

• Code generation <-> Semantics (dynamic semantics)

An Informal Definition of the ac Language
• ac: adding calculator
• Types

– integer
– float: allows 5 fractional digits after the decimal point
– Automatic type conversion from integer to float

• Keywords
– f: float
– i: integer
– p: print

• Variables
– 23 names from lowercase Roman alphabet except the three reserved keywords f, i,

and p
• Monolithic scope, i.e. names are visible in the program when they are

declared
– Note more complex languages may have nested scopes

• e.g. in C we can write { int x; … { int x; … x =5; … } … x =x +1; …}
• Target of translation: dc (desk calculator)

– Reverse Polish notation (RPN)

5

Syntax Specification

6

7

TMT

PEEK

PEEK

MATCH
MATCH

MATCH
MATCH

ERROR

AL

XPR

TMT

PEEK

PEEK

MATCH
MATCH

MATCH
MATCH

ERROR

AL

XPR

8

Stmt id assign Val Expr

Stmt print id

9

10

2) Contextual Analysis -> Decorated AST

Contextual Analysis

Decorated Abstract Syntax Tree

Error Reports

Abstract Syntax Tree

Contextual analysis:
• Scope checking: verify that all applied occurrences of

identifiers are declared
• Type checking: verify that all operations in the program are

used according to their type rules.
Annotate AST:

• Applied identifier occurrences => declaration
• Expressions => Type

11

Type Checking
• Only two types in ac

– Integer
– Float

• Type hierarchy
– Float wider than integer
– Automatic widening (or casting)

• integer -> float
• All identifiers must be type-declared in a

program before they can be used
• This process walks the AST bottom-up from

its leaves toward its root.
12

13

14

Type Checking

15

16

3) Code Generation

• Assumes that program has been thoroughly
checked and is well formed (scope & type rules)

• Takes into account semantics of the source
language as well as the target language.

• Transforms source program into target code.

Code Generation

Decorated Abstract Syntax Tree

Object Code

17

An Example ac Program

• Example ac program:
– f b

i a
a = 5
b = a + 3.2
p b
$

• Corresponding dc
code
– 5

sa
la
3.2
+
sb
lb
p

18

Organization of a Compiler

19

20

Implementing Tree Traversal

• “Traditional” OO approach
• Visitor approach

– GOF
– Using static overloading
– Reflective
– (dynamic)
– (SableCC style)

• “Functional” approach
• Active patterns in Scala (or F#)
• (Aspect oriented approach)

21

Multi Pass Compiler

Compiler Driver

Syntactic Analyzer

calls
calls

Contextual Analyzer Code Generator

calls

Dependency diagram of a typical Multi Pass Compiler:

A multi pass compiler makes several passes over the program. The
output of a preceding phase is stored in a data structure and used by
subsequent phases.

input

Source Text

output

AST

input output

Decorated AST

input output

Object Code

22

Single Pass Compiler

Compiler Driver

Syntactic Analyzer

calls

calls

Contextual Analyzer Code Generator

calls

Dependency diagram of a typical Single Pass Compiler:

A single pass compiler makes a single pass over the source text,
parsing, analyzing and generating code all at once.

23

Compiler Design Issues

Single Pass Multi Pass

Speed

Memory

Modularity

Flexibility

“Global” optimization

Source Language

better worse

better for
large programs

(potentially) better
for small programs

worse better

betterworse

impossible possible

single pass compilers are not possible
for many programming languages

24

Language Issues

Example Pascal:
Pascal was explicitly designed to be easy to implement

with a single pass compiler:
– Every identifier must be declared before it is first use.

var n:integer;

procedure inc;
begin

n:=n+1
end

Undeclared Variable!

procedure inc;
begin

n:=n+1
end;

var n:integer;

?

25

Language Issues

Example Pascal:
– Every identifier must be declared before it is used.
– How to handle mutual recursion then?

procedure ping(x:integer)
begin

... pong(x-1); ...
end;

procedure pong(x:integer)
begin

... ping(x); ...
end;

26

Language Issues

Example Pascal:
– Every identifier must be declared before it is used.
– How to handle mutual recursion then?

forward procedure pong(x:integer)

procedure ping(x:integer)
begin

... pong(x-1); ...
end;

procedure pong(x:integer)
begin

... ping(x); ...
end;

OK!

27

Language Issues

Example Java:
– identifiers can be declared before they are used.
– thus a Java compiler need at least two passes

Class Example {

void inc() { n = n + 1; }

int n;

void use() { n = 0 ; inc(); }

}

28

Code Templates

visit [while E do C] =
JUMP h

l: visit [C]
h: visit[E]

JUMPIFTRUE l

C
E

While Command:
visit [while E do C] =

l: visit [E]
JUMPIFFALSE d

visit[C]
JUMP l

d:

E

C

Alternative While Command code template:

	Languages and Compilers�(SProg og Oversættere)
	Structure of the compiler
	The “Phases” of a Compiler
	Different Phases of a Compiler
	An Informal Definition of the ac Language
	Syntax Specification
	Slide Number 7
	Slide Number 8
	Slide Number 9
	2) Contextual Analysis -> Decorated AST
	Slide Number 11
	Type Checking
	Slide Number 13
	Slide Number 14
	Type Checking
	3) Code Generation
	Slide Number 17
	An Example ac Program
	Organization of a Compiler
	Implementing Tree Traversal
	Multi Pass Compiler
	Single Pass Compiler
	Compiler Design Issues
	Language Issues
	Language Issues
	Language Issues
	Language Issues
	Code Templates

