
1

Languages and Compilers
(SProg og Oversættere)

Language Design
and Control structures

2

Language Design and control structures

a. Language Design Criteria
b. Relate language design criterial to the following consepts
c. Evaluation of expressions
d. Explicit vs. implicit sequence control
e. Loop constructs
f. Subprogram
g. Parameter mechanisms

Concepts of Programming Languages, Eleventh Edition, Global Edition
Robert W. Sebesta

Copyright ©2017 by
Pearson Education, Ltd.

All rights reserved.

Table 1.1 Language evaluation criteria and the
characteristics that affect them

4

Sequence control

• Implicit and explicit sequence control
– Expressions

• Precedence rules
• Associativity
• Operand evaluation order

– Statements
• Sequence
• Conditionals
• Loop constructs
• unstructured vs. structured sequence control

– Subprograms
• Parameter mechanisms

5

Expression Evaluation

• Determined by
– operator evaluation order
– operand evaluation order

• Operators:
– Most operators are either infix or prefix (some

languages have postfix)
– Order of evaluation determined by operator

precedence and associativity

6

Example

• What is the result for:
3 + 4 * 5 + 6

• Possible answers:
– 41 = ((3 + 4) * 5) + 6
– 47 = 3 + (4 * (5 + 6))
– 29 = (3 + (4 * 5)) + 6 = 3 + ((4 * 5) + 6)
– 77 = (3 + 4) * (5 + 6)

• In most language, 3 + 4 * 5 + 6 = 29
• … but it depends on the precedence of operators

7

An Ambiguous Expression Grammar

How to parse 3+4*5?

<expr> → <expr> <op> <expr> | const
<op> → + | *

<expr>

<expr> <expr>

<expr> <expr>

<op><op>

<op>

const const const+ *

<expr>

<expr> <expr>

<expr> <expr><op>

const const const+ *

<op>

8

Expressing Precedence in grammar

• We can use the parse tree to indicate precedence levels
of the operators

<expr> → <expr> + <term> | <term>
<term> → <term> * const | const

<expr>

<expr> <term>

<term> <term>

const const

const*

+

In LALR parsers we can specify
Precedence which translates into
Solving shift-reduce conflicts

Note in LL(1) parsers we have to use
Left recursion elimination

Expr → Term Expr1 .
Expr1 →+ Term Expr1
| .
Term → const Term1 .
Term1 →* const Term1
| .

9

Operand Evaluation Order

• Example:
A := 5;
f(x) = {A := x+x; return x};
B := A + f(A);

• What is the value of B?
• 10 or 15?

10

Solution to Operand Evaluation Order
• Disallow all side-effects in expressions but allow in

statements
– Problem: not applicable in languages with nesting of

expressions and statements
• Fix order of evaluation

– SML does this – left to right
– Problem: makes some compiler optimizations hard or

impossible
• Leave it to the programmer to be sure the order doesn’t

matter
– Problem: error prone

– Fortress: Parallel evaluation unless specified to be sequential

11

Control of Statement Execution

• Sequential
• Conditional Selection
• Looping Construct
• Must have all three to provide full power of a

Computing Machine

12

Conditional Selection
• Single-way

– IF … THEN …
– Controlled by boolean expression

• Two-way
– IF … THEN … ELSE
– Controlled by boolean expression
– IF … THEN … usually treated as degenerate form of
IF … THEN … ELSE

– IF…THEN together with IF..THEN…ELSE require
disambiguating associativity

• Multi-way
– SWITCH
– Typically controlled by scalar type
– Each selection has own block of statements it executes

13

For-loops

• Controlled by loop variable of scalar type with
bounds and increment size

• Scope of loop variable?
– Extent beyond loop?
– Within loop?

• When are loop parameters calculated?
– Once at start
– At beginning of each pass

14

Logic-Test Iterators

• While-loops
– Test performed before entry to loop

• repeat…until and do…while
– Test performed at end of loop
– Loop always executed at least once

• Design Issues:
1. Pretest or posttest?
2. Should this be a special case of the counting loop statement

(or a separate statement)?

15

Gotos
• Requires notion of program point
• Transfers execution to given program point
• Basic construct in machine language
• Implements loops

16

Exceptions: Structured Exit

• Terminate part of computation
– Jump out of construct
– Pass data as part of jump
– Return to most recent site set up to handle exception
– Unnecessary activation records may be deallocated

• May need to free heap space, other resources
• Two main language constructs

– Declaration to establish exception handler
– Statement or expression to raise or throw exception

Often used for unusual or exceptional condition, but not necessarily.

17

Subprograms
1. A subprogram has a single entry point

2. The caller is (normally) suspended during execution
of the called subprogram

3. Control (normally) returns to the caller when the
called subprogram’s execution terminates

Functions or Procedures?

• Procedures provide user-defined statements
• Abstractions over statements

• Functions provide user-defined operators
• Abstractions over expressions

• Methods used for both functions and procedures

18

Subprogram Parameters

• Formal parameters: names (and types) of arguments to
the subprogram used in defining the subprogram body

• Actual parameters: arguments supplied for formal
parameters when subprogram is called

• Actual/Formal Parameter Correspondence:
– attributes of variables are used to exchange information

• Name – Call-by-name
• Memory Location – Call-by reference
• Value

– Call-by-value (one way from actual to formal parameter)
– Call-by-value-result (two ways between actual and formal

parameter)
– Call-by-result (one way from formal to actual parameter)

19

Tennent’s Language Design principles

Example of missing correspondence
In Pascal:

procedure inc(var i : integer);
begin

i := i + 1
end;

var x : integer;
begin

x := 1;
inc(x);
writeln(x);

end

No corresponding declaration

However C has correspondence

void inc(int *i) {
*i = *i + 1;

}

int x = 1;
inc(&x);
printf("%d", x);

int x = 1;
{

int *i = &x;
*i = *i + 1;

}
printf("%d", x);

20

	Languages and Compilers�(SProg og Oversættere)
	Language Design and control structures
	Table 1.1 Language evaluation criteria and the characteristics that affect them
	Sequence control
	Expression Evaluation
	Example
	An Ambiguous Expression Grammar
	Expressing Precedence in grammar
	Operand Evaluation Order
	Solution to Operand Evaluation Order
	Control of Statement Execution
	Conditional Selection
	For-loops
	Logic-Test Iterators
	Gotos
	Exceptions: Structured Exit
	Subprograms
	Subprogram Parameters
	Tennent’s Language Design principles
	Example of missing correspondence

