
Individual Exercises - Lecture 1
The following exercises you may prefer to do on your own, e.g. just after you have read the

literature, and discuss the outcome with your group:

1. Do Sebesta Review Questions 1 to 29 on page 54 and 55.

1. Why is it useful for a programmer to have the ability to learn new languages, even

though he or she may have a good knowledge of a number of programming

languages?

Some languages are better suited for certain domains (Domain specific language)

C would be more suited for operative systems, where python would be more suited

for machine learning.

Learning a language from a different paradigm (object oriented, functional,

imperative) can give a deeper understanding of concepts that are available in most

languages. For example learning a functional language like Haskell can improve your

ability to utilize the functional programming features of Python.

2. Why is it essential to choose an appropriate programming language for a specific

software solution?

The main advantage is increasing programmer productivity. As various languages are

suited for different domains, a specific software solution should be written in a

language, which suits that solution best.

For example, writing safety critical applications for a bank, you might want to choose

a language with a lot of compile time checks, to decrease risk of errors in the

product.

3. Which programming language for scientific applications was the first to be used

successfully?

Fortran

4. Which is the first successful high-level programming language for business?

COBOL

5. In which programming language were most of the AI applications developed prior to

1990?

LISP

6. Which is the most popular markup language for Web development?

HTML

7. Why is a list of programming language evaluation criteria for the development of

software controversial?

It is difficult to get people to agree on the ranking of criteria.

8. How does the overall simplicity of a programming language affect its readability? A

language with a large number of basic constructs is more difficult to read/learn than

one with a smaller number.

9. Why is the VAX instruction design orthogonal? By operating on registers and memory.

VAX has only a small set of basic constructs, which then must work with each other in

various ways to achieve more complex functionality.

10. Why does too much orthogonality cause problems?

Too many possible combinations can lead to an increase in complexity.

11. Explain how “writability” is used as a measure of how easily a language can be used

to create programs.

For example a simple “Hello World!”-program in Java requires writing a class with

public, static, void, main, i.e. learning both classes, access modifiers, static keywords,

void return value and the main construct to simply print to the console. Printing to the

console in java is also rather cumbersome requiring access to

System.out.println(“Hello World!”);. Compare this to python, where one simply writes

print(“Hello world!”).

12. Why is too much orthogonality a detriment to “writability”?

Errors in programs can go undetected when nearly any combination of primitives

is legal. E.g if operators have more uses in a single context, one could think an

expression has one outcome, however the outcome might be another. 13. Give an

example of expressivity in a language.

A simple example is compound assignments:

i += 5 (as opposed to i = i + 5)

Another common example is for each loops (for example seen in Python, C#,

Kotlin, etc.).:

fruits = ["apple", "banana", "cherry"]

for x in fruits:

print(x)

This is arguably more expressive than having to maintain an index variable and

access items directly through list indexing

14. What is type checking?

Assertions put in place to ensure that the types of the variables in an expression are

compatible.

For example, a typechecker may warn you that 5 + “some text” is an invalid operation

because the addition operator does not support mixing integers and strings. Some

languages like Haskell include comprehensive type checking at compile time, which

significantly decreases the risk of runtime errors. This, however, at the cost of

writability.

15. Give an example of how the failure to type check, at either compile time or run time,

can lead to countless program errors.

If the typechecker fails to typecheck an assignment of incompatible types e.g. int i =

“hello world”, a type is treated as a different type, which leads to countless errors.

16. How is the total cost of a programming language calculated?

The total cost of a programming language is the cost of learning, writing, compiling,

executing and maintaining the code.

17. What is portability of a language?

Portability is the ability to run programs on multiple different

machines/architectures. Portability is most strongly influenced by the degree of

standardization of the language. Some languages are not standardized at all, making

programs in these languages very difficult to move from one implementation to another.

18. What is the use of the well-definedness criterion?

The completeness and precision of the language’s official defining document. 19.

How does the execution of a machine code program on a von Neumann architecture

computer occur?

The execution of a machine code program on a von Neumann architecture computer

occurs in a process called the fetch-execute cycle.

20. What two programming language deficiencies were discovered as a result of the

research in software development in the 1970s?

Incompleteness of type checking and inadequacy of control statements requiring the

extensive use of gotos, which decreases readability and maintainability significantly. 21.

What are the three fundamental features of an object-oriented programming language?

Encapsulation, inheritance and polymorphism.

22. What language was the first to support the three fundamental features of

object-oriented programming?

Smalltalk

23. What is an example of two language design criteria that are in direct conflict with

each other?

Two criteria that conflict are reliability and cost of execution. For example, the Java

language definition demands that all references to array elements be checked to

ensure that the index or indices are in their legal ranges. This step adds a great deal

to the cost of execution of Java programs that contain large numbers of references to

array elements. C does not require index range checking, so C programs execute

faster than semantically equivalent Java programs, at the expense of providing fewer

correctness guarantees. The designers of Java traded execution efficiency for

reliability.

24. What are the three general methods of implementing a programming language?

Compilation, pure-interpretation, hybrid-interpretation.

25. Which produces faster program execution, a compiler or a pure interpreter?

Compiler.

26. What role does the symbol table play in a compiler?

The symbol table serves as a database for the compilation process. The primary

contents of the symbol table are the type and attribute information of each

user-defined name in the program. This information is placed in the symbol table by

the lexical and syntax analyzers and is used by the semantic analyzer and the code

generator.

27. What does a linker do?

The process of collecting system programs and linking them to user programs is

called linking and loading, or sometimes just linking. It is accomplished by a systems

program called a linker. In addition to systems programs, user programs must often

be linked to previously compiled user programs that reside in libraries. So the linker

not only links a given program to system programs, but also it may link it to other user

programs.

28. Why is the von Neumann bottleneck important?

The speed of the connection between a computer’s memory and its processor often

determines the speed of the computer, because instructions often can be executed

faster than they can be moved to the processor for execution. This connection is

called the von Neumann bottleneck

29. What are the advantages in implementing a language with a pure interpreter? It

may be more platform independent/portable, as the programs can run anywhere

that the interpreter can run (no need to write a compiler that targets several

different architectures).

2. Use Table 1.1 on page 31 in Sebesta’s book to evaluate the C programming language

Simplicity: Few types, but several operators used for more tasks. i.e & and *

Orthogonality: Low. For example arrays cannot be returned from a function, but can be

passed as arguments.

Data types: Only primitives. Very few

Syntax design: Originally, C was considered high level in its syntax. Since then, however,

higher level languages have been developed, and C is now often no longer considered

high level.

Support for abstractions: Low. No classes or generics.

Expressivity: low. Sorting, Strings, collections etc. require extensive

programming. Type checking: Strict type checking at compile time.

Exception handling: None, usually error codes in the form of ints are used Restricted

aliasing: Yes, int, ‘double’ etc. cannot be used as Identifiers. 3. Use Table 1.1 on page 31 in

Sebesta’s book to evaluate the C# programming language

Simplicity: C# has many constructs like Java, but then also constructs like structs and

gotos. For this reason C# cannot be considered a simple language

Orthogonality: C# has relatively high orthogonality (The ability to combine primitive

constructs of the language). For example ‘x += y’ is a shorthand for addition of the

form x = x + y, but when used in the context of event publishers, it means adding a

listener function ‘y’ to the event publisher ‘x’.

Data types: Contains both primitive and non-primitive types like classes

Syntax design: Uses similar syntax to contemporary languages like C and Java in

order to increase familiarity.

Support for abstraction: Yes, classes

Expressivity: Highly expressive (e.g compound statements, lists,

strings) Type checking: Strict type checking at compile time and

runtime.

Exception handling: Yes (try, catch, finally)

Restricted aliasing: Yes, int, double etc. cannot be used as identifiers.

4. Do Fisher et al. exercise 3 on page 26 (exercise 5 page 55 in GE)

C compilers are almost always written in C. This raises something of a “chicken and egg”

problem—how was the first C compiler for a particular system created? If you need to create

the first compiler for language X on system Y, one approach is to create a cross-compiler. A

cross-compiler runs on system Z but generates code for system Y.

Explain how, starting with a compiler for language X that runs on systemZ, you might use

cross-compilation to create a compiler for language X, written in X, that runs on system Y and

generates code for system Y. What extra problems arise if system Y is “bare”—that is, has no

operating system or compilers for any language? (Recall that Unix R is written in C and thus

must be compiled before its facilities can be used.)

It can be difficult to wrap your head around this exercise. The key thing to learn here is that

a compiler is just a program. The compiler itself is written in a programming language and

the compiler code itself can be compiled. Furthermore the text of the exercise is a bit

ambiguous as it does not make sense to talk about a compiler written in X running on

system Y. We can talk about a compiler from X to Y written in X that we compile to a

compiler from X to Y written in Y (or running on Y assuming that Y is machine language)

We are given a compiler(1) from X -> Z running on system Z (and more precisely written in Z).

To start off, create a compiler(2) from X -> Y written in X.

Next, compile the new compiler(2) using the given X -> Z compiler(1) that runs on

Z. Now you have a compiler(3) from X -> Y that runs on system Z.

Finally you can compile (2) using (3), which gives you a compiler(4) from X->Y running on

Y.

5. Do Fisher et al. exercise 7 on page 28 (exercise 10 on page 57 in GE)

Most C compilers (including the GCC compilers) allow a user to examine the machine

instructions generated for a given source program. Run the following program through such a

C compiler and examine the instructions generated for the for loop. Next, recompile the

program, enabling optimization, and reexamine the instructions generated for the for loop.

What improvements have been made? Assuming that the program spends all of its time in the

for loop, estimate the speedup obtained. Write a suitable main C function that allocates and

initializes a million-element array to pass to proc. Execute and time the unoptimized

and optimized versions of the program and evaluate the accuracy of your

estimate.

O0 optimization
.file "proc.c"

.text

.globl _proc

.def _proc; .scl 2; .type 32; .endef

_proc:

LFB14:

.cfi_startproc

pushl %ebp

.cfi_def_cfa_offset 8

.cfi_offset 5, -8

movl %esp, %ebp

.cfi_def_cfa_register 5

subl $16, %esp

movl $0, -4(%ebp)

movl $0, -8(%ebp)

jmp L2

L3:

movl -8(%ebp), %eax

leal 0(,%eax,4), %edx

movl 8(%ebp), %eax

addl %edx, %eax

movl (%eax), %eax

addl %eax, -4(%ebp)

addl $1, -8(%ebp)

L2:

cmpl $999999, -8(%ebp)

jle L3

movl -4(%ebp), %eax

leave

.cfi_restore 5

.cfi_def_cfa 4, 4

ret

.cfi_endproc

LFE14:

.def ___main; .scl 2; .type 32; .endef

.globl _main

.def _main; .scl 2; .type 32; .endef

_main:

LFB15:

.cfi_startproc

pushl %ebp

.cfi_def_cfa_offset 8

.cfi_offset 5, -8

movl %esp, %ebp

.cfi_def_cfa_register 5

andl $-16, %esp

movl $4000032, %eax

call ___chkstk_ms

subl %eax, %esp

call ___main

movl $0, 4000028(%esp)

jmp L6

L7:

movl 4000028(%esp), %eax

movl $2, 28(%esp,%eax,4)

addl $1, 4000028(%esp)

L6:

cmpl $999999, 4000028(%esp)

jle L7

leal 28(%esp), %eax

movl %eax, (%esp)

call _proc

movl $0, %eax

leave

.cfi_restore 5

.cfi_def_cfa 4, 4

ret

.cfi_endproc

LFE15:

.ident "GCC: (MinGW.org GCC-6.3.0-1) 6.3.0"

O3 optimization
.file "proc.c"

.text

.p2align 4,,15

.globl _proc

.def _proc; .scl 2; .type 32; .endef

_proc:

LFB24:

.cfi_startproc

movl 4(%esp), %edx

xorl %eax, %eax

leal 4000000(%edx), %ecx

.p2align 4,,10

L2:

addl (%edx), %eax

addl $4, %edx

cmpl %edx, %ecx

jne L2

rep ret

.cfi_endproc

LFE24:

.def ___main; .scl 2; .type 32; .endef

.section .text.startup,"x"

.p2align 4,,15

.globl _main

.def _main; .scl 2; .type 32; .endef

_main:

LFB25:

.cfi_startproc

pushl %ebp

.cfi_def_cfa_offset 8

.cfi_offset 5, -8

movl %esp, %ebp

.cfi_def_cfa_register 5

andl $-16, %esp

call ___main

xorl %eax, %eax

leave

.cfi_restore 5

.cfi_def_cfa 4, 4

ret

.cfi_endproc

LFE25:

.ident "GCC: (MinGW.org GCC-6.3.0-1) 6.3.0"

*Note that compilation time varies depending on the environment.

** O0 only optimizes compilation time and O3 has a range of optimization flags to be set,

which includes executional optimization. Check the flags on

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

The compiler optimization -O3 speeds up the execution ~17%.

Group Exercises - Lecture 1
The following exercises are best done as group discussions:

1. Review your individual list of programming languages and make a new list of all the

computer languages that group members know.

Check your lists from lecture 0.

2. Categorize the above languages according to generations (1st to 5th (or 6th))

3. Categorize the above languages according to paradigm (imperative, object oriented, declarative,
special)

1. Imperative: C, Fortran, Pascal, Ada (Also a little OOP)

2. Object Oriented: C++, Java, C#

3. Declarative: Haskel, SQL, Prolog, SML, LISP

4. Create a new list of language features group members would like in a new language. Are

any of these features in conflict with each other? How would you prioritize the features?

Consider features like classes, typing, types, procedures, functions, lambda etc.

Should it have a for loop? If so, how should it look?

Example of a feature:

ForForloop which executes like a nested for-loop

for(int i = 0, int j = 0; i < 100, j < 3; i++, j++) { /* code */ }
5. Do Sebesta exercise 1, 2, and 3 page 55.

1. Do you believe our capacity for abstract thought is influenced by our language skills?

Support your opinion.

Does an OOP language allow you to think in different abstractions than an

imperative language?

2. What are some features of specific programming languages you know whose

rationales are a mystery to you?

Maybe you don’t see the rationale behind having both structs and classes, when

classes can just as easily be used for the same purpose as structs?

3. What arguments can you make for the idea of a single language for all programming

domains?

Having a single language for all domains would reduce fragmentation, but at the cost

of excessive bloat. The language would be very big and complex. Many programming

languages have features from multiple domains (mainly OOP and functional

programming features).

6. Do Sebesta exercise 4, 7, 10 and 17 page 56.

4. What arguments can you make against the idea of a single language for

all programming domains?

Languages can be optimized for a specific domain, both in terms of performance, but also

writability, readability, simplicity etc.

7. Java uses a right brace to mark the end of all compound statements. What are the

arguments for and against this design?

Pros: Easier to see where a statement ends and multiple statements can be on a

line. Cons: More code to write for the programmer without any added functionality.

10. What are the arguments for writing efficient programs even though hardware is

relatively inexpensive?

Lower energy consumption and computation is never free. Additionally, it is sometimes

difficult to assess if the hardware in the environment is indeed inexpensive and available

with high performance.

17. Some programming languages—for example, Pascal—have used the semicolon to

separate statements, while Java uses it to terminate statements. Which of these, in your

opinion, is most natural and least likely to result in syntax errors? Support your answer.

To explain the difference further: in pascal, the last statement before an END does not

require a tailing semicolon(because it is not followed by further statements), but all

previous ones do. In java every statement must be terminated by a semicolon.

7. Do Sebesta exercise 18 page 56.

18. Many contemporary languages allow two kinds of comments: one in which

delimiters are used on both ends (multiple-line comments), and one in which a delimiter

marks only the beginning of the comment (one-line comments). Discuss the advantages

and disadvantages of each of these with respect to our criteria.

One-line: less typing for single line comments but more work to comment out multiple

lines

Multiple-line: less typing to comment out multiple lines but more typing for one.

Multiline comments can also serve to increase writability, since it allows to quickly

comment out sections of code for debugging purposes.

8. Do Fisher et al. Exercise 5 and 6 on page 27-28 (exercise 7 and 14 on page 56 resp. 58

in GE)

5. To allow the creation of camera-ready documents, languages like TeX and LaTeX have

been created. These languages can be thought of as varieties of programming languages

whose output controls a printer or display. Source language commands control details like

spacing, font choice, point size, and special symbols. Using the syntax-directed compiler

structure of Figure 1.4, suggest the kind of processing that might occur in each compiler

phase if TeX or LaTeX input was being translated.

An alternative to “programming” documents is to use a sophisticated editor such as that

provided in Microsoft Word or Adobe FrameMaker to interactively enter and edit the

document. (Editing operations allow the choice of fonts, selection of point size, inclusion

of special symbols, and so on.) This approach to document preparation is called WYSI
WYG—what you see is what you get—because the exact form of the document is always

visible.

What are the relative advantages and disadvantages of the two ap- proaches? Do

analogues exist for ordinary programming languages?

WYSIWYG editors provide an easy interface that most people can use, while LaTeX

makes it easier to automate creation of documents so they can be made from

templates (Class files).

6. Although compilers are designed to translate a particular language, they often allow

calls to subprograms that are coded in some other language (typically, Fortran, C, or

assembler). Why are such “foreign calls” allowed? In what ways do they complicate

compilation?

FFI allows a programming language to interact with another language, which makes it

possible to use foreign libraries and services. This can be useful if the “host”

programming language is too slow (like Python) or if it does not provide this functionality

at all. Compilation is complicated, since now the compiler has to interleave the output of

the two languages to create the result.

9. Do Fisher et al. Exercise 8 on page 28 (exercise 11 on page 57 in GE) 8. C is sometimes

called the universal assembly language in light of its ability to be very efficiently

implemented on a wide variety of computer architectures. In light of this

characterization, some compiler writers have chosen to generate C code as their output

instead of a particular machine language. What are the advantages to this approach to

compilation? Are there any disadvantages?

Advantages: Easy portability. C can be compiled to fast assembly code with existing C

compilers. Now the compiler writes do not have to replicate all of the optimizations

already built into the C compiler.

Disadvantages: It might be difficult to translate some high-level abstractions to C. You

lose low level control, and you might not be able to fully optimize the performance of the

new features that are in your language.

Individual Exercises - Lecture 2
1. Do Sebesta Review Questions 49 on page 128 and 50 on page 129 49. How does

the typing system of PHP and JavaScript differ from that of Java? JavaScipt and
PHP use dynamic type binding, while Java uses static type binding. Dynamic type
binding is more flexible, but disallows type checking at compile time.

50. What array structure is included in C# but not in C, C++, or Java? C# includes
both jagged arrays (also in C, C++, C# and Java) and rectangular arrays.
Rectangular arrays have a rectangular shape and entries are accessed using
multiple indexes, i.e. [x, y], as opposed to [x][y] for jagged arrays.

2. Do Sebesta Programming Exercises 1,2 and 3 on page 131
1. To understand the value of records in a programming language, write a small
program in a C-based language that uses an array of structs that store student
information, including name, age, GPA as a float, and grade level as a string (e.g.,
“freshmen,” etc.). Also, write the same program in the same language without using
structs.
Without structs, you would use an extra dimension in the array for the properties. See
an example of this in the code snippet (C#) below.

class Program

{

static void Main(string[] args)

{

/*

* Struct version

*/

// Easy initialization

Student s1 = new Student("Walter", 50, 4.0f, "Senior");

Student s2 = new Student("Jesse", 25, 1.0f, "Freshmen");

Student[] students = new Student[2];

students[0] = s1;

students[1] = s2;

for (var i = 0; i < students.Length; i++)

{

// Easy and readable field access

Console.WriteLine(students[i].Name);

}
/*

* Array representation

*/

object[,] arrStudents = new object[2, 4];

arrStudents[0, 0] = "Walter";

arrStudents[0, 1] = 50;

arrStudents[0, 2] = 4.0f;

arrStudents[0, 3] = "Senior";

arrStudents[1, 0] = "Jesse";

arrStudents[1, 1] = 25;

arrStudents[1, 2] = 1.0f;

arrStudents[1, 3] = "Freshmen";

for (var i = 0; i < arrStudents.GetLength(0); i++)

{

// Difficult to read field access

Console.WriteLine(arrStudents[i,0]);

}

}

}

public struct Student

{

public Student(string name, int age, float gpa, string gradeLevel)

{

Name = name;

Age = age;

GPA = gpa;

GradeLevel = gradeLevel;

}

public string Name;

public int Age;

public float GPA;

public string GradeLevel;

}
2. To understand the value of recursion in a programming language, write a program
that implements quicksort, first using recursion and then without recursion. As you
can see below, the recursive version of QuickSort is significantly more readable. You
can see the implementations in several different languages her:
https://www.geeksforgeeks.org/quick-sort/

// Java program for implementation of recursive QuickSort

import java.util.*;

class QuickSort {

/* This function takes last element as pivot,

places the pivot element at its correct

position in sorted array, and places all

smaller (smaller than pivot) to left of

pivot and all greater elements to right

of pivot */

static int partition(int arr[], int low, int high) {

int pivot = arr[high];

int i = (low - 1); // index of smaller element

for (int j = low; j <= high - 1; j++) {

// If current element is smaller than or

// equal to pivot

if (arr[j] <= pivot) {

i++;

// swap arr[i] and arr[j]

int temp = arr[i];

arr[i] = arr[j];

arr[j] = temp;

}

}

// swap arr[i+1] and arr[high] (or pivot)

int temp = arr[i + 1];

arr[i + 1] = arr[high];

arr[high] = temp;

return i + 1;

}
/* The main function that implements QuickSort()

arr[] --> Array to be sorted,

low --> Starting index,

high --> Ending index */

static void qSort(int arr[], int low, int high) {

if (low < high) {

/* pi is partitioning index, arr[pi] is

now at right place */

int pi = partition(arr, low, high);

// Recursively sort elements before

// partition and after partition

qSort(arr, low, pi - 1);

qSort(arr, pi + 1, high);

}

}

// Driver code

public static void main(String args[])

{

int n = 5;

int arr[] = { 4, 2, 6, 9, 2 };

qSort(arr, 0, n - 1);

for (int i = 0; i < n; i++) {

System.out.print(arr[i] + " ");

}

}

}

Iterative version can be found on the next page.
// Java program for implementation of iterative QuickSort

import java.util.*;

class QuickSort {

/* This function takes last element as pivot,

places the pivot element at its correct

position in sorted array, and places all

smaller (smaller than pivot) to left of

pivot and all greater elements to right

of pivot */

static int partition(int arr[], int low, int high) {

int pivot = arr[high];

// index of smaller element

int i = (low - 1);

for (int j = low; j <= high - 1; j++) {

// If current element is smaller than or

// equal to pivot

if (arr[j] <= pivot) {

i++;

// swap arr[i] and arr[j]

int temp = arr[i];

arr[i] = arr[j];

arr[j] = temp;

}

}

// swap arr[i+1] and arr[high] (or pivot)

int temp = arr[i + 1];

arr[i + 1] = arr[high];

arr[high] = temp;

return i + 1;

}

/* A[] --> Array to be sorted,

l --> Starting index,

h --> Ending index */

static void quickSortIterative(int arr[], int l, int h) {

// Create an auxiliary stack

int[] stack = new int[h - l + 1];

// initialize top of stack

int top = -1;
// push initial values of l and h to stack

stack[++top] = l;

stack[++top] = h;

// Keep popping from stack while is not empty

while (top >= 0) {

// Pop h and l

h = stack[top--];

l = stack[top--];

// Set pivot element at its correct position

// in sorted array

int p = partition(arr, l, h);

// If there are elements on left side of pivot,

// then push left side to stack

if (p - 1 > l) {

stack[++top] = l;

stack[++top] = p - 1;

}

// If there are elements on right side of pivot,

// then push right side to stack

if (p + 1 < h) {

stack[++top] = p + 1;

stack[++top] = h;

}

}

}

// Driver code

public static void main(String args[])

{

int arr[] = { 4, 3, 5, 2, 1, 3, 2, 3 };

int n = 8;

// Function calling

quickSortIterative(arr, 0, n - 1);

for (int i = 0; i < n; i++) {

System.out.print(arr[i] + " ");

}

}

}
3. To understand the value of counting loops, write a program that implements matrix
multiplication using counting loop constructs. Then write the same program using
only logical loops—for example, while loops.
While splits definition, check, and increment into three lines, a for loop uses
one. Counting loops increases readability of the code.

// Matrix multiplication not using counting loops

public static double[][] multiplyMatricesWhileLoops(double[][] M1,

double[][] M2){

double[][] result = new double[M1.length][M2[0].length];

int row = 0;

while(row < result.length){

int col = 0;

while(col < result[row].length){

double cell = 0;

int i = 0;

while(i < M2.length){

cell += M1[row][i] * M2[i][col];

i++;

}

result[row][col] = cell;

col++;

}

row++;

}

return result;

}

// Matrix multiplication using counting loops

public static double[][] multiplyMatricesCountingLoop(double[][] M1,

double[][] M2) {

double[][] result = new double[M1.length][M2[0].length];

for (int row = 0; row < result.length; row++) {

for (int col = 0; col < result[row].length; col++) {

double cell = 0;

for (int i = 0; i < M2.length; i++) {

cell += M1[row][i] * M2[i][col];

}

result[row][col] = cell;

}

}

return result;

}
3. (Optional) Exercise 4 from Lecture 1: Do Fisher et al. exercise 3 on page 26 (exercise

5 page 55 in GE) poses some interesting questions about bootstrapping and viewing
compilers as pieces of software in general. For this purpose the notion of T-diagrams,
also sometimes called tombstone diagrams, has been invented. Read the above
references and use T-diagrams to solve the exercise. Draw your T-diagrams using
TDiagram Editor for the Flaci toolkit.

Since I want a compiler from X to Y running on system Y we start by creating
this compiler.

I assume that I already have a compiler from X to Z that runs on system

Z.

I can use these two pieces to get a compiler from X to Y running on system Z.

This is my cross compiler.

In combination with the new cross compiler and system Z i can now create a

compiler from X to Y running on Y.

I then transfer the compiler from X to Y to system Y.
I now have a compiler for language X that runs on system Y and generates

code for system Y.

4. Do Fisher et al. exercise 4 on page 27

4. Cross-compilation assumes that a compiler for language X exists on some machine. When

the first compiler for a new language is created, this assumption does not hold. In this

situation, a bootstrapping approach can be taken. First, a subset of language X is chosen

that is sufficient to implement a simple compiler. Next, a simple compiler for the X subset is

written in any available language. This compiler must be correct, but it should not be any

more elaborate than is necessary, since it will soon be discarded. Next, the subset compiler

for X is rewritten in the X subset and then compiled using the subset compiler previously

created. Finally, the X subset, and its compiler, can be enhanced until a complete compiler for

X, written in X, is available.

Assume you are bootstrapping C++ or Java (or some comparable language). Outline a

suitable subset language. What language features must be in the language? What other

features are desirable?

Required: I/O (File / Memory), Branches (control structure), Iteration, Dynamic

Memory

Deseriable: Subroutines, Strings, Boolean

5. Familiarize yourself with the companion web site to Crafting a Compiler

http://www.cs.wustl.edu/~cytron/cacweb/e.g. read the FAQ and follow the

instructions Installing Eclipse.

For this a virtual machine will be provided with the necessary tools pre installed.

Group Exercises - Lecture 2
1. Do Sebesta exercise 6, 7, 14, 16, 17, 18, 21, 22, 24 on page 129-130 6. Make an

educated guess as to the most common syntax error in Lisp programs. Too many,
too few, or incorrectly positioned parentheses.

7. Lisp began as a pure functional language but gradually acquired more and more
imperative features. Why?
To increase performance, but some problems are also hard to express using a pure
functional programming language.

14. What are the arguments both for and against the idea of a typeless language?
For: More freedom to create abstractions and less typing. If everything is well thought
out errors should not occur.
Against: Increased amounts of bugs that are difficult to find, since in reality most
programs are not perfectly written.

16. What is your opinion of the argument that languages that are too complex are
too dangerous to use, and we should therefore keep all languages small and simple?
Complexity makes it easier to introduce subtle bugs without knowing. Users might
only use parts of the language, while other users use different parts of the language.
This might lead to each sub-group not understanding each other's language subset.
Last, as languages die the programs written in it might not, this could introduce
legacy code that is very hard for developers to debug and maintain.

17. Do you think language design by committee is a good idea? Support
your opinion.
A committee can help create a standard accepted by multiple parties (e.g. C++

committee has multiple companies), but also makes the process slower. However, if
the members of the committee do not have shared goals, the resulting language
might contain different features with the same functionality and be very complex.
Open-question: is open-source language design the same as design by committee
(Python PEP, Rust RFC, etc)?

18. Languages continually evolve. What sort of restrictions do you think are
appropriate for changes in programming languages? Compare your answers with the
evolution of Fortran.
Backwards compatibility might be very important. Or at least a very good compiler,
compiling the old code to working new code. It may, however, be difficult to do while
keeping the semantics of the program.
Fortran is well known for having a high level of backwards compatibility.
21. In recent years data structures have evolved in scripting languages to replace
traditional arrays. Explain the chronological sequence of these developments.

It all started as direct memory management with just a block of memory. Then we got
static size arrays and linked lists. By now most programming languages contain
some kind of arrays.

22. Explain two reasons why pure interpretation is an acceptable implementation
method for several recent scripting languages.
One situation in which pure interpretation is acceptable for scripting languages is
when the amount of computation is small, for which the processing time will be
negligible. Another situation is when the amount of computation is relatively
small and it is done in an interactive environment, where the processor is often
idle because of the slow speed of human interactions.

24. Give a brief general description of a markup-programming hybrid language. A
markup-programming hybrid language is a markup language in which some of the
elements can specify programming actions, such as control flow and computation.
The concept of literate programming is close, here a markdown language embeds
blocks of code written in one or more programming languages (R, Emacs Org-mode,

Jupyter Notebook).

Individual Exercises - Lecture 3
1. Do Fisher et al. exercise 3,4,6 page 54-55 (exercise 3,8,9 page 82-84 in GE)

3. Extend the ac scanner (Figure 2.5) in the following ways:

(a) floatdcl can be represented as either f or float, allowing a more
Java-like syntax for declarations.
Alter the f case with the following line:
case f:

if(s.peek == ‘l’) consume(“loat”))

(Consume(‘loat’) automatically calls s.advance() and asserts that the following
characters match the given string “loat”. Consume calls LexicalError() if s.advance()
does not correspond to ‘l’ ‘o’ ‘a’ ‘t’)

(b) An intdcl can be represented as either i or int
Add to case i:

if(s.peek == ‘i’) consume(“nt”))
(c) A num may be entered in exponential (scientific) form. That is, an ac num may
be suffixed with an optionally signed exponent (1.0e10, 123e-22 or

0.31415926535e1).

function ScanDigits() returns token

tok.val = " "

while s.peek() ∈ {0, 1 9} do

tok.val = tok.val + s.advance()

if s.peek() == "." or s.peek() == "e"

tok.type = fnum

if s.peek() == "."

tok.val = tok.val + s.advance()

while s.peek() ∈ {0, 1 9} do

tok.val = tok.val + s.advance()

if s.peek() == "e"

tok.val = tok.val + s.advance()

if s.peek() == "-"

tok.val = tok.val + s.advance()

while s.peek() ∈ {0, 1 9} do

tok.val = tok.val + s.advance()

else

tok.type = inum

return (tok)

end

4. Write a recursive descent parser for each of the non-terminals in figure

2.1
Procedure Prog()

call Dcls()

call Stmts()

call MATCH(ts, $)

end

Procedure Dcls()

if ts.peek() = floatdcl or ts.peek() = intdcl

then

call Dcl()

call Dcls()

else

if ts.peek() = $ OR ts.peek() = id OR ts.peek() = print

then

/* Do nothing*/

else

call ERROR()

end

Procedure Dcl()

if ts.peek() = floatdcl

then

call MATCH(ts, floatdcl)

call MATCH(ts, id)

else

if ts.peek() = intdcl

then

call MATCH(ts, intdcl)

call MATCH(ts, id)

else

call ERROR()

end

Procedure Stmts()

if ts.peek() = id or ts.peek() = print

then

call Stmt()

call Stmts()

else

if ts.peek() = $
then

/* Do nothing*/

else

call ERROR()

end

Procedure Stmt()

if ts.peek() = id

then

call MATCH(ts, id)

Call MATCH(ts, assign)

Call Val()

Call Expr()

else

if ts.peek() = print

then

call MATCH(ts, print)

call MATCH(ts, id)

else

call ERROR()

end

Procedure Expr()

if ts.peek() = plus

then

call MATCH(ts, plus)

call Val()

call Expr()

else

if ts.peek() = minus

then

call MATCH(ts, minus)

call Val()

call Expr()

end

Procedure Val()

if ts.peek() = id

then

call MATCH(ts, id)

else
if ts.peek() = inum

then

call MATCH(ts, inum)

else

if ts.peek() = fnum

then

call MATCH(ts, fnum)

else

call ERROR()

end

6. Variables are considered uninitialized after they are declared in some
programming languages. In ac a variable must be given a value in an assignment
statement before it can be correctly used in an expression or print statement.
Suggest how to extend ac’s semantic analysis (Section 2.7) to detect variables
that are used before they are properly initialized.

Extend the symbol table, such that it contains information whether a variable has
been initialized or not. In this way it is possible to distinguish between declared
and initialized.

2. Based on the grammar in Figure 2.1 construct the parse tree for each of the
following:
a) i x x = 100 x = x + 30 p x

b) i x x = x + y p x

c) i x i y x = x - y p y

3. For each of the programs in exercise 2:
a) Construct the AST
i x x = 100 x = x + 30 p x

i x x = x + y p x

i x i y x = x - y p y

b) According to the definition of ac, is the input semantically correct? If not, what
changes to the ac language would render the program semantically correct For “i x
x = x + y p x” y is not declared before it is used. The ac language requires an
identifier to be declared prior to use.
For “i x i y x = x - y p y” y and x is not initialized before use. The ac language
requires an identifier to be initialized prior use.

c) With ac changes in place that make the program semantically correct, show the
code that would be generated from these programs

i x x = 100 x = x + 30 p x

Code Source Comments

100
sx

0 k

x = 100 Push 100 on stack Pop stack, storing
the

popped value in reg x
Reset precision to integer

lx

30
+

x = x + 30 Push value of reg x on stack
Push 30 on stack
Pop 2 elements from

sx stack and push the sum
Store top stack value in x

lx

p

si

p x Push value of the x register
Print the top-of-stack
value
Pop the stack by storing
into the i register

i x i y x = 30 y = 30 x = x + y p x

Code Source Comments

30
Sy

0k

y = 30 Push 30 on stack Pop stack, storing the
popped value in reg y
Reset precision to integer

30
sx

0 k

x = 30 Push 30 to stack Pop and store top of
stack in reg x
Set precision to Integer

Lx
x = x +y Push value of reg x on

stack
Ly

Push value of reg y on
stack

+
Pop 2 elements from
stack and push the sum

sx
Store top stack value in x

0k
Reset precision to
integer

Lx
p x Push value of reg x

P
Print the top-of-stack
value

si
Pop the stack by storing

into the i register

i x i y x = 30 y = 30 x = x - y p y

Code Source Comments

30
sx

0 k

x = 30 Push 30 to stack Pop and store top of
stack in reg x
Set precision to Integer

30 y = 30 Push 30 to stack

sy

0 k

Pop and store top of
stack to reg y
Set precision to integer

lx

ly

-

sx

x = x -y Push value of reg x to stack
Push value of reg y to
stack
Pop two elements from
stack and push
difference
Pop stack and store in
reg x

ly

p

p y Push value of reg y to the stack
Pop and print

4. (optional but recommended) Follow the studio associated with Crafting a Compiler
Chapter 2: A Simple Compiler
http://www.cs.wustl.edu/~cytron/cacweb/Chapters/2/studio.shtml You can find
the source zip file in the General_Course_Material directory
https://www.moodle.aau.dk/pluginfile.php/154451/mod_folder/content/0/Studio_
Code.zip?forcedownload=1
For this a virtual machine will be provided with the necessary tools pre installed.

Group Exercises - Lecture 3
The following exercises are best done as group discussions:

1. Do Fisher et al. Exercise 1,2,8,9,10,12 page 54-55 (exercise 4,5,6,10,12,13 on page
82-84 in GE)

1. The CFG shown in Figure 2.1 defines the syntax of ac programs. Explain how this
grammar enables you to answer the following questions.
(a) Can an ac program contain only declarations (and no statements)? Yes, Using
Rule 7, the nonterminal Stmts can derive to the null string. (Fisher,page 33, figure
2.1)
(b) Can a print statement precede all assignment statements?
Yes, The rules for Stmts impose no constraints on the ordering of a sequence of
instances of the Stmt.

2. Sometimes it is necessary to modify the syntax of a programming lan- guage. This
is done by changing the CFG that the language uses. What changes would have to
be made to ac’s CFG (Figure 2.1) to implement the following changes? (a) All ac
programs must contain at least one statement.

Prog -> Dcls Stmt Stmts $
(b) All integer declarations must precede all float declarations

Prog -> IntDcls FloatDcls Stmts $

FloatDcls-> floatdcl id FloatDcls

| λ

IntDcls -> intdcl id IntDcls

| λ

(c) The first statement in any ac program must be an assignment statement.

Prog -> Dcls Assignment Stmts $

| Dcls $

Assignment -> id assign Val Expr

Stmt -> Assignment | print id

8. The grammar for ac shown in Figure 2.1 requires all declarations to precede all

executable statements. In this exercise, the ac language is extended so that

declarations and executable statements can be interspersed. However, an identifier

cannot be mentioned in an executable statement until it has been declared.

(a) Modify the CFG in Figure 2.1 to accommodate this language extension.

Checking that a variable is declared before use cannot be enforced in the CFG. This

is part of the semantic analysis and should be done using the symbol table. We can,

however, change the CFG to allow for Dcls and Stmt to be interspersed.

Prog -> Lines $
Lines -> Dcl Lines

| Stmt Lines
| λ

Dcl -> floatdcl id
| intdcl id

Stmt -> id assign Val Expr
| print id

Expr -> plus Val Expr
| minus Val Expr
| λ

Val -> id
| inum
| fnum

(b) Discuss any revisions you would consider in the AST design for ac.
Link ‘id’ nodes to their corresponding declaration node

(c) Discuss how semantic analysis is affected by the changes you envision for the

CFG and the AST.

Since Dcls and Stmts can be interspersed i now not only have to check if the variable

is declared, but also when it was declared. This can for example be done using a

symbol table with a column for when a given variable was declared or assigned.

9. The abstract tree design for ac uses a single node to represent a print operation

(see Figure 2.9). Consider an alternative design in which the print operation always

has a single id child that represents the variable to be printed. What are the design

and implementation issues associated with the two approaches? The existing design

is based on the definition of a print command in ac, which only allows specification of

a single name for which the corresponding value is to be printed. The implementation

that follows is simple because all of the information regarding a print statement

resides in a single abstract syntax tree (AST) node. The alternate approach

suggested in this exercise would more easily accommodate a language change that

allowed a list of names or constant values as part of a single print statement. The

implementation would be more complicated because traversal of a list of items to

print would be required, even if there was only a single item on that list.

10. The code in Figure 2.10 examines an AST node to determine its effect on the

symbol table. Explain why the order in which nodes are visited does or does not

matter with regard to symbol-table construction.

Since the result of a call to LookupSymbol does not depend on the order in which

symbols are entered into the symbol table, the order in which declaration nodes are

processed does affect the lookup process.

If a symbol is declared twice, the error message in EnterSymbol will be triggered

regardless of the order in which the declarations are processed, although the

error message may be attached to the first declaration of a symbol with more than

one declaration if declarations are processed out of order.

12. The last fragment of code generated in Figure 2.15 pops the dc stack and

stores the resulting value in register i.

(a) Why was register i chosen to receive the result?

Register i is used because i is a keyword, which can never be used for a variable

(b) Which other registers could have been chosen without causing any problems for

code that might be generated subsequently?

Register f or p could be chosen, as they are keywords

2. (Optional) Do the group exercise part of the studio associated with Crafting a

Compiler Chapter 2: A Simple Compiler

For this a virtual machine will be provided with the necessary tools pre installed.

3. (Optional) Extend the ac grammar to allow parentheses in expressions i.e. (4-3) +

(2-1). How would this affect the ac compiler?

Prog → Dcls Stmts $

Dcls → Dcl Dcls

| λ

Dcl → floatdcl id

| intdcl id

Stmts → Stmt Stmts

| λ

Stmt → id assign Val Expr

| id assign ‘(‘ Val Expr ‘)’ Expr

| print id

Expr → plus Val Expr

| plus ‘(‘ Val Expr ‘)’ Expr

| minus Val Expr

| minus ‘(‘ Val Expr ‘)’ Expr

| λ

Val → id

| inum
| fnum

The compiler would apply precedence according to the parenthesis

Individual Exercises-Lecture 4
1. Browse the language specifications listed above

○ Java: The Java Language Specification, Third Edition - TOC

http://docs.oracle.com/javase/specs/

○ C#:

http://www.ecma-international.org/publications/standards/Ecma-334.htm

○ JavaScript (ECMAScript):

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pd

f ○ Standard ML:

http://www.lfcs.inf.ed.ac.uk/reports/88/ECS-LFCS-88-62/ECS-LFCS-88-62.pdf

2. (Optional) Do Sebesta Review questions 1, 2, 3, 4, 6, 7, 25 on pages 180-181

1. Define lexeme and token.

A lexeme is a sequence of characters in the source program that matches the pattern

for a token and is identified by the lexical analyzer as an instance of that token.

2. How are programming languages formally defined?

Programming languages are formally defined using a context free grammar (CFG) in

combination with structural and operational semantics.

3. In which form is the programming language syntax commonly described? The syntax

of programming languages is described using a context free grammar either in

Backus-Naur-Form (BNF) or some variant of Extended-Backus-Naur-Form (EBNF).

4. What is a metalanguage? A language used to describe another language, for example

Backus-Naur-Form.

5. What is a derivation in the context of grammar? A derivation is the process of

replacing a non-terminal token with one of that nonterminal’s definitions.

6. What is an ambiguous grammar? A grammar is ambiguous, if there exists an

input from which two (or more) different parse trees can be derived.

7. What is a left-recursive grammar? Non-terminals appear recursively on the left

side (ex: Expr -> Expr + id). This makes LL(1) parsers impossible.

25. What is the problem with using a software pure interpreter for operational

semantics? The detailed characteristics of the particular computer would make actions

difficult to understand. Such a semantic definition would be machine-dependent.

3. Do Sebesta Problem Set 2a, 2b on page 181 – check your result against the definition

2a: Write a EBNF for a Java class definition header statement

http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html

ClassDeclaration :== NormalClassDeclaration | EnumDeclaration

NormalClassDeclaration:== ClassModifiersopt class Identifier

TypeParametersopt Superopt Interfacesopt ClassBody

2b: Write a EBNF for a Java method call statement

http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.12

MethodInvocation :== MethodName (ArgumentListopt)

| Primary . NonWildTypeArgumentsopt Identifier (ArgumentListopt

) | super . NonWildTypeArgumentsopt Identifier (ArgumentListopt) |

ClassName . super . NonWildTypeArgumentsopt Identifier (

ArgumentListopt)

| TypeName . NonWildTypeArguments Identifier (ArgumentListopt)

Primary = on objects and “this”

Super = super class method

ClassName = static methods

TypeName = interface

4. Do Sebesta Problem Set 4 on page 181

4. Rewrite the BNF of Example 3.4 to add the ++ and -- unary operators of Java

Old:

<assign> = <id> "=" <expr>

<id> = A | B | C

<expr> = <expr> "+" <term>

| <term>

<term> = <term> "*" <factor>

| <factor>

<factor> = "("<expr>")"

| <id>
New: Added ++ and -- unary operators

<assign> = <id> "=" <expr>

<id> = A | B | C

<expr> = <expr> "+" <term>

| <term>

<term> = <term> "*" <factor>

| <factor>

<factor> = "("<expr>")"

| <id>

| <id> ++

| <id> --

| ++ <id>

| -- <id>

5. Go through the following material

○ Skim the paper “Status Report: Specifying JavaScript with ML”

○ Skim the Web article A brief history of ECMAScript versions ○

Also browse the website http://www.jscert.org/index.html

Group Exercises - Lecture 4
1. Discuss the outcome of the individual exercises

Did you all agree on the results?

2. Do Sebesta exercise 3 on page 183
3. Rewrite the BNF of Example 3.4 to to give + precedence over * and force + to be right
associative

Precedence: switch + and * in grammar
Make + right associative: Switch the order of factor and term
Result:

<assign> = <id> "=" <expr>

<id> = A | B | C

<expr> = <expr> "*" <term>

| <term>

<term> = <factor> "+" <term>

| <factor>

<factor> = "(" <expr> ")" (factor could be renamed)

| <id>

3. Do Sebesta exercise 6a on page 183
6a. Using the grammar in Example 3.2, show a parse tree and a leftmost derivation
for each of the following statements:

(a) A = A * (B + (C * A))

4. Do Sebesta exercise 8 on page 184

The international edition the book uses * instead of +, x, y, z instead of a, b, c
Use string : a + b + c which has two parse trees a + (b + c) vs. (a + b) c

5. Discuss why the specification of ECMAScript version 4 was abandoned

They could not agree on which features to include, so they decided to split the feature
set into multiple versions (ES6, 7 8 and so on). ES4 was supposed to be a radical
addition to JavaScript, but they just split it into multiple versions. This made it easier to
agree on which features to use in ES5.

See examples for ES5 here: https://www.w3schools.com/js/js_es5.asp

6. Discuss why the specification of ECMAScript version 5 is now being formalized and
mechanized

Most browsers (major vendors) have supported ES5 since 2012-2013. Most browsers
support ES6 (2016-2017). The amount of support warrants a formalization of ES5.

Individual Exercises - Lecture 5
1. Follow the studio associated with Crafting a Compiler Chapter 4

http://www.cs.wustl.edu/~cytron/cacweb/Chapters/4/studio.shtml

For this a virtual machine is provided on moodle with the necessary tools pre

installed.

2. For each of the grammars below, describe the language associated with the grammar and

determine if the grammar is ambiguous. If the grammar is ambiguous show two parse

trees for the same string, otherwise explain why the grammar is not ambiguous (exercise

1 on page 168 in GE) – you may want to do this exercise by hand first and then try out

the KfG tool in the AtoCC toolset: http://www.atocc.de/

○ a)

■ S -> A B

■ A -> A A | a

■ B -> B B | b

Ambiguous. Example string: aaab

○ b)

■ S -> A B

■ A -> A a | a

■ B -> B b | b

Not ambiguous
○ c)

■ S -> A B

■ A -> A a | A b | a

■ B -> B a | B b | b

Ambiguous. Example string: aabb

○ d)
■ S -> A B

■ A -> A a

■ B -> B b

D: Not ambiguous, but can never reach sentential form anyway, since no derivation

contains only terminals.

3. Do Fischer et al exercise 3 on page 138 and exercise 10 on page 5 (exercises 5 and 13

on pages 169-171 in GE)

The algorithm takes a CFG in EBNF and transforms it to BNF standard form. First we

expand Sign to be N1, which either derives Sign or nothing (lambda), since it was

originally optional. Next we expand Digs periode to be Digs periode or nothing

(lambda), to achieve optionality. Digs is expanded to understand repetition ({ }) by

adding a new non-terminal token, which can derive digits

recursively. Result:

First(Prog) = {floatdcl, intdcl, id, print, $}

Follow(Prog) = {}

First(dcls) = {floatdcl, intdcl}

Follow(dcls) = {id, print, $}

First(dcl) = {floatdcl, intdcl)

Follow(dcl) = {floatdcl, intdcl, id, print, $}
First(stmts) = {id, print}

Follow(stmts) = {$}

First(stmt) = {id, print}

Follow(stmt) = {id, print, $}

First(ExprTail) = {plus, minus}

Follow(ExprTail) = {id, print, $}

First(Val) = {id, num}

Follow(Val) = {plus, minus, print, id, $}

4. (optional) Try the ACLA (Ambiguity Checking with Language Approximations) on

the grammars from exercise 2 (exercise 1 on page 168 in GE). You can find the

ACLA tool on http://services2.brics.dk/java/grammar/demo.html Did your

answers agree with the answers from the tool?

5. (optional) You may also try Context Free grammar Tool on
http://smlweb.cpsc.ucalgary.ca/start.html or its newest version on
http://mdaines.github.io/grammophone/
This is a good exercise for getting better at writing unambiguous grammars as
well as getting a better understanding of when a grammar is LL(1), LR(0) etc.

6. (optional) Browse the Grammar Zoo web site http://slebok.github.io/zoo/
Look up your favorite language

7. (optional) Browse the Syntax across languages web site:
http://rigaux.org/language-study/syntax-across-languages/
As an example, have a look at how many different ways a float can be declared!

8. (optional) Do Sebesta Review questions 1,2,4,5,8,10,24 on page 216-217

1. What are the reasons why using BNF is advantageous over using an
informal syntax description?
It is very difficult (or even impossible?) to create an unambiguous description of a
programming language using sentences in english. BNF allows us to specify
grammar that can only be interpreted one way. A formal definition (fx in BNF) can
help unify language definition across multiple compiler implementations..

2. How does a lexical analyzer serve as the front end of a syntax analyzer? The
lexical analyser performs analysis at the lowest level of program structure, i.e. the
individual tokens / lexemes.
4. How can you construct a lexical analyzer with a state diagram? The lexical
analyzer can be constructed and modelled as a finite automata. The tokens of a
programming language are a regular language, and a lexical analyser is a finite
automaton.

5. Describe briefly the three approaches to building a lexical analyzer. 1. Write a
formal description of the token patterns in a descriptive language related to regular
expressions and then generate the lexical analyser from this. There exist many tools

for this (the original being “Lex”).
2. Design a state transition diagram that describes the token patterns of the language
and write a program that implements the diagram.
3. Design a state transition diagram that describes the token patterns of the language
and hand-construct a table-driven implementation of the state diagram.

8. What are the two distinct goals of syntax analysis?
1. Check whether a given program is syntactically correct, and if not give proper
error messages.
2. Produce a complete parse tree that can be used for translation.

10. Describe the recursive-descent parser.
A recursive-descent parser is a simple type of parser, that has a subprogram of each
nonterminal in its associated grammar. Recursive-descent parsers do, however, have
limitations, for example that it cannot handle left recursion in the grammar, due to the
nature of recursive-descent parsers. They always expand from the left, which
will obviously lead to stack overflow.

24. Why is a bottom-up parser often called a shift-reduce algorithm? Bottom-up
parsers are often called shift-reduce algorithms because shift and reduce are the
two most common actions they specify.

Group Exercises - Lecture 5
1. Discuss the outcome of the individual exercises

Did you all agree on the answers?

2. Do Fischer et al exercise 1, 7, 8, 9, 13 on pages 138- 141 (exercises 4, 8, 10, 11, and 15
on pages 169-174 in GE)
1. While ambiguity is avoided in programming languages, (some) humor can be
derived from ambiguity in natural languages. For each of the following English
sentences, explain why it is ambiguous. First try to determine multiple grammar
diagrams for the sentence. If only one such diagram exists, explain why the meaning
of the words makes the sentence ambiguous.

(a) I saw an elephant in my pajamas.
(b) I cannot recommend this student too highly.
(c) I saw her duck.
(d) Students avoid boring professors.
(e) Milk drinkers turn to powder.

(a) Was I wearing the pyjamas or was it the elephant?
(b) Irony or not?
(c) Is duck a verb or a noun?
(d) Is boring an adjective or a verb?

(e) Do milk drinkers turn INTO powder or turn to powder as an alternative?
7. A grammar for infix expressions follows

(a) Show the leftmost derivation of the following string.
num plus num times num plus num $

(b) Show the rightmost derivation of the following string.
num times num plus num times num $
(c) Describe how this grammar structures expressions, in terms of the precedence
and left- or right- associativity of operators.

Multiplication has precedence over addition (because it is located lower in the parse

tree) Addition is right associative (because addition expands right in the parse tree)

Multiplication is left associative (because multiplication expands left in the parse tree)

(a) Not ambiguous
(b) It is ambiguous, proven by the following sentence “num (plus (num (plus num” which

can be derived in two different ways yielding two different parse trees.

First(S) = {a, b, c, d}
Follow(S) = {e}

First(B) = {b, c, d}
Follow(B) = {e}

First(C) = {c, d}
Follow(C) = {e}

Individual Exercises - Lecture 6
1. (optional - but recommended) Follow the studio associated with Crafting a Compiler
Chapter 3 http://www.cs.wustl.edu/~cytron/cacweb/Chapters/3/studio.shtml A virtual

machine is available on Moodle with the necessary tools pre installed.

2. Do Fischer et al exercise 1, 2, 9, 22 on pages 106-112 (exercise 3, 4, 14, 23 on
pages 134-141 in GE)

1. Assume the following text is presented to a C scanner:

What token sequence is produced? For which tokens must extra information be returned in
addition to the token code?

ID(main), LPAREN, RPAREN, LBRACE

CONST, FLOATDCL, ID(payment), ASSIGN, FLOATNUM(384.00), SEMICOLON

FLOATDCL, ID(bal), SEMICOLON

INTDCL, ID(month) ASSIGN INTNUM(0) SEMICOLON

Etc…

2. How many lexical errors (if any) appear in the following C program? How should
each error be handled by the scanner?
main(){

if(1<2.)a=1.0else a=1.0e-n;
subr(‘aa’,”aaaaa (newline in string not allowed without \)

aaaaa”);
/* That’s all (*/ missing)

}
The blue letters will cause errors. The first one needs a decimal after the decimal
point. The scanner could then give an error message saying that this is the case. The
second one needs space between 0 and e, otherwise the scanner cannot create a
token from it. This is a bit harder since C actually supports scientific numbers like

1.5321E10, so the error message might suggest either creating a scientific
number. C also does not allow multiple characters in a single quote string.
It cannot suggest that it would expect a space followed by else, since if statements

in C do not require an else clause. The scanner will also have problems with the last
comment, since it is not closed. The error message for this could be quite difficult,
since an unclosed multiline comment simply in effect erases the rest of the file. Now
the parser must see it while creating the function, since it is no longer closed in curly
brackets.

9. Most compilers can produce a source listing of the program being compiled. This
listing is usually just a copy of the source file, perhaps embellished with line numbers
and page breaks. Assume you are to produce a prettyprinted listing.

(a) How would you modify a Lex scanner specification to produce a prettyprinted
listing (that is, a listing with text properly indented, if-else pairs aligned, and so on)?
The lex scanner should keep track of and add information about each token’s line
and its number of indentation.

(b) How are compiler diagnostics and line numbering complicated when
a prettyprinted listing is produced?
One token could represent text from multiple lines.

22. Write Lex regular expressions (using character classes if you wish)
that match the following sets of strings:

(a) The set of all unprintable ASCII characters (those before the blank and the
very last character)
[^ -~]+
Explanation: In the ASCII table the printable characters start with white space and
ends with tilde. Using the ^ says, that we want anything that is not in this range, i.e.
all the non-printable characters.
(b) The string ["""] (that is, a left bracket, three double quotes, and a right bracket)
\[\”\”\”\]
(c) The string x^12,345 (your solution should be far less than 12,345 characters in
length)
X{12345}
This accepts exactly 12345 X’s in a row.

3. Write a regular expression definition for unsigned integer literals excluding those that
contain unnecessary leading zeroes. Thus 0, 1, 123, 10000 are included, but 00,
0123 and 0010000 are excluded.
([1-9][0-9]*)|0
Either we have 0 or we have one non-zero number followed by zero or more
numbers from 0 to 9.

4. You have scanned an integer literal into a character buffer (e.g. using yytext). You now

want to convert the string representation to a numeric (int) form. However, the string may
represent a value too large for the int form. Explain how to convert a string

representation of an integer literal into numeric form with full overflow checking.

You could read the string into a char buffer, each entry representing one digit of the
number. Then loop through the digits of the buffer from left to right, adding them to a
variable as such:

char[] digit_buffer = ... // *Read input number here*

int number = 0;

for (digit in digit_buffer)

number = number * 10 + digit

if (number > int32.MAX_VALUE)

throw OverFlowException()

As we are working in a base 10 number system, we multiply by 10 for each digit
added.

This solution assumes that the language of the scanner supports large enough ints or
has its own overflow detection system.

To avoid depending on overflow checking in the scanner language, you can define a
string containing the largest allowed number and then compare it to the input string
one digit at a time:

const char[] largest_allowed_number = new char[]{2, 1, 4, 7, ...}

char[] digit_buffer = ... # *Read input number here*

We have an overflow if there are more digits than allowed

if (digit_buffer.length > largest_allowed_number.length)

throw OverFlowException()

If the numbers have the same length we must check the digits

individually left to right

if (digit_buffer.length == largest_allowed_number.length)

for (i in range(digit_buffer.length))

if (digit_buffer[i] > largest_allowed_number[i])

throw OverFlowException();

if (digit_buffer[i] < largest_allowed_number[i])

break;
5. (optional) Modify the studio associated with Crafting a Compiler Chapter 3 to produce

a lexer for the ac language from Lecture 3 using the lexical grammar for ac in figure
2.3 on page 36 in (64 in GE edition) of Fischer et. al. Take a look at the Yylex source

file in the autogen package and compare the code with the hand written
ScannerCode class from Studio 2
You can use the virtual machine available on Moodle for this exercise.

Group Exercises - Lecture 6
The following exercises are best done as group discussions:

1. Discuss the outcome of the individual exercises
Did you all agree on the exercise?

2. Do Fischer et al exercises 4, 6, 7, 8 on pages 106-112 (exercises 5, 6, 7, 9, 12, 13 on
pages 134-141 in GE)

4. Write DFAs that recognize the tokens defined by the following regular expressions:
Note that in the following DFAs there are implicit transitions (ie. not shown on the
figure) from each state to an error state, whenever an illegal input is read. (a)
(a | (bc)*d)+

3. (b)
((0 | 1)*(2 | 3)+) | 0011

(c)
(a Not(a))*aaa

6. Write a regular expression that defines a C-like comment delimited by /* and */.
Individual *’s and /’s may appear in the comment body, but the pair */ may not.
(\/*)(.|\n)*?(*\/)
We start with a /* with both characters having to be escaped with backslash. This
may be followed by any number of characters and lastly followed by a */ (again
escaped). The ? makes it stop the first time, it finds a */ in the end.

7. Define a token class AlmostReserved to be those identifiers that are not reserved
words but that would be if a single character were changed. Why is it useful to know
that an identifier is “almost” a reserved word? How would you generalize a scanner to
recognize AlmostReserved tokens as well as ordinary reserved words and
identifiers?
AlmostReserved tokens could be used to identify possible syntax errors caused by
misspelling reserved keywords. This can be used to provide a warning for possible
(off-by-one) syntax errors, and make it easy for the compiler to provide a “did you
mean x?” error message to the user.

The grammar used to drive the parser must be rewritten to treat the token classes

AlmostReserved and Identifier as interchangeable until an error is recognized. If the
parsing error occurred in a state that would accept a reserved word and the input
token was AlmostReserved, then the value of the token would be checked to see if it
was a variant of the expected reserved word. If so, the reserved word could be
assumed to be the intended input token and parsing could be restarted from the state
it was in before the error.

AlmostReserved tokens would have to be recognized by using an extension of one of
the reserved word lookup techniques described at the end of Section 3.7.1 on page
79. Because of the large number of identifiers that are one character change
removed from reserved words, it would cause a huge increase in the number of
states in the scanner tables to recognize them by generating regular expressions to
recognize each of the possibilities.
8. When a compiler is first designed and implemented, it is wise to concentrate on
correctness and simplicity of design. After the compiler is fully implemented and
tested, you may need to increase compilation speed. How would you determine
whether the scanner component of a compiler is a significant performance
bottleneck? If it is, what might you do to improve performance (without affecting
compiler correctness)?
To test the performance one could test the entire compiler with a profiler that checks
how much time is spent in each function. This would reveal if some scanner functions
were slow. Alternatively one could collect start time and end time for each compiler
phase to reveal if one phase (for example the parsing phase) is much slower than the
others.

To improve the scanning speed one could use a scanner generator like Flex or
GLA, which are designed to generate very fast scanners.

If your scanner is hand-coded, avoid reading single characters, which can be very
expensive. Instead bulk load into buffers, perhaps even double buffers. Performance
can also be increased by copying as few characters as possible from the input
buffers to the tokens. For example only copy the values, if they are needed for later
analysis, for example literal values.

4. (optional) Read the Lab associated with Crafting a Compiler Chapter 3
http://www.cs.wustl.edu/~cytron/cacweb/Chapters/3/lab.shtml and take a look
at the “official” solution in the file FischerLab356solutions.zip in the General
Course material directory
https://www.moodle.aau.dk/pluginfile.php/154451/mod_folder/content/0/Fis
cherLab356solutions.zip?forcedownload=1 (You may of course Follow the Lab
without looking at the solution, but be warned that this is a tough one) For this a

virtual machine will be provided with the necessary tools pre installed.

Individual Exercises - Lecture 7
1. (optional - recommended) Follow the studio associated with Crafting a Compiler

Chapter 5
http://www.cs.wustl.edu/~cytron/cacweb/Chapters/5/studio.shtml
For this a virtual machine with the necessary tools pre installed is available on
moodle.

2. Do Fischer et al exercise 1, 2 (d,e optional), 5, 6 (optional) on pages 173-178

1. For each of the following grammars, determine whether the grammar is LL(1)

The algorithm says that for each non-terminal the predict set for its productions must be
disjoint, where the predict set is defined as:

a)
First we create the predict set for A.
Predict(A -> a) = {a}
Predict(A -> λ) = {b, c}
This rule is valid for an LL(1) parser, since both productions are disjoint.

Predict(B -> b) = {b}
Predict(B -> λ) = {c}
This rule is valid for an LL(1) parser, since both productions are disjoint.

http://www.cs.wustl.edu/~cytron/cacweb/Chapters/5/studio.shtml
http://www.cs.wustl.edu/~cytron/cacweb/Chapters/5/studio.shtml

b)
Predict(A -> a) = {a}
Predict(A -> B) = {b}
Predict(A -> λ) = {b}
Since Predict(A -> B) == Predict(A -> λ), i.e not disjoint, this rule is not valid for an
LL(1) parser, since it cannot distinguish the two options.
The grammar is also ambiguous.

c)

Predict(A -> a) = {a}
Predict(A -> λ) = {a, b}
Since a ∈ Predict(A -> a) and a ∈ Predict(A -> λ) this rule, and therefore the entire
grammar, is not valid for an LL(1) parser.
This grammar is also ambiguous.

d)

Predict(S -> a S e) = {a}
Predict(S -> B) = {b, c, d}
No conflicts

Predict(B -> b B e) = {b}
Predict(B -> C) = {c ,d}
No conflicts

Predict(C -> c C e) = {c}
Predict(C -> d) = {d}
No conflicts
2. Consider the following grammar, which is already suitable for LL(1) parsing:

(a) Construct first and follow sets for each nonterminal in the grammar
First(Value) = {num, Iparen}
First(Expr) = {plus, prod}
First(Values) = {num, lparen}

Follow(Value) = {$, num, lparen, rparen}
Follow(Expr) = {rparen}
Follow(Values) = {rparen}

(b) Construct Predict sets for the grammar
Predict(Value -> num) = {num}
Predict(Value -> lparen Expr rparen) = {lparen}

Predict(Expr -> plus Value Value) = {plus}
Predict(Expr -> prod Values) = {prod}

Predict(Values -> Value Values) = {num, lparen}
Predict(Values -> λ) = {rparen}

C) Construct recursive-descent parser based on the grammar
Here is a pseudo code version of a recursive-descent parser. In the comments of the
code you can see why we peek for the tokens, that we do. We use the mechanical
approach of first checking the predict set for each production to tell which one should
be used. It is done in the order in which they appear in the grammar. For lambda
productions the follow-set is checked.

Procedure Start()
 call Value()
 call Match(ts, $)

end

Procedure Value()
 // Predict(Value -> num) = {num}
if ts.peek() = num
then

call Match(ts, num)
 // Predict(Value -> lapren Expr rparen) = {lparen}
else if ts.peek() = lparen
then

 call Match(ts, lparen)
 call Expr()
 call Match(ts, rparen)

 else
call ERROR()

end

D) (OPTIONAL) Add code into the parser to compute sums and products as
indicated
You could change the Value() and Expr() to return a number, and change Values() to
return the list of numbers that are read.
Inside the Expr() function you could then add or multiply the numbers returned from
Value()/Values() calls based on whether the token you read is a ‘plus’ or ‘prod’.

Procedure Expr()
 // Predict(Expr -> plus Value value) = {plus}
if ts.peek() = plus
then

call Match(ts, plus)
Value()
Value()

 // Predict(Expr -> prod Values) = {prod}
else if ts.peek() = prod
then

call Match(ts, prod)
call Values()

else

 call ERROR()
end

Procedure Values()
 // Predict(Values -> Value Values) = {num, lparen}
if ts.peek() ∈ {num, lparen}
then

call Value()
call Values()

else

 // Follow(Values) = {rparen}, due to lambda production
if ts.peek() ∈ {rparen}
then

/* Do nothing for lambda-production */
else

 call ERROR()
end

E) (OPTIONAL) Build an LL(1) parse table on the grammar
A parse table tells us which rule to use depending on which rule we are inside and
which token we get as the next one. You can use the predict sets to construct this
table.
There is very good example of an LL(1) parser using a parse table here:
http://www.cs.ecu.edu/karl/5220/spr16/Notes/Top-down/LL1.html

5. Transform the following grammar into LL(1) form using the techniques presented
in Section 5.5:

Grammars are not LL(1) because of prediction conflicts. Two common causes of
prediction conflicts are left recursion and common prefixes. This grammar contains
both. Productions 1, 4 and 15 are left recursive; they will need to be rewritten. More
subtly, productions 8 and 9 share a common prefix, id. This is because Bound can
generate an initial id. Hence productions 8 and 9 will need revision.

Method EliminateLeftRecursion in Figure 5.15 on page 157 transforms left-recursive
productions into an equivalent LL(1) form. The idea is that a left-recursive production
may be used zero or more times before another non- left-recursive production is
used. The net effect is to generate the result of the non-left-recursive production
followed by zero or more occurrences of the left-recursive production’s ”tail.” Thus for
productions 1 and 2, a Decl must be produced by production 2 followed by zero or
more ”tails” of production 1 “; Decl”. So production 1 is rewritten to first generate Decl
followed by a new non-terminal, DeclListTail. DeclListTail generates zero or more
occurrences of “; Decl”. The rewritten productions are:

DeclList → Decl DeclListTail
DeclListTail → ; Decl DeclListTail

 | λ

http://www.cs.ecu.edu/karl/5220/spr16/Notes/Top-down/LL1.html

Similar transformations are applied to productions 4 and 5, and 15 and 16, yielding:

IdList → id IdListTail
IdListTail → , id IdListTail
 | λ

ScalarTypeList → ScalarType ScalarTypeListTail
ScalarTypeListTail → , ScalarType ScalarTypeListTail
 | λ

To solve the prediction conflict between productions 8 and 9, we split production 9
into two alternatives: a bound that begins with an identifier and a bound that begins
with an integer. Then the two productions that begin with id are combined into one,
with a BoundSuffix that generates the two valid bound suffixes. We have

ScalarType → id BoundSuffix
 | Sign intconstant .. Bound
BoundSuffix → .. Bound
BoundSuffix → λ

6. (Optional) Run your solution to Exercise 5 through any LL(1) parser generator to
verify that it is actually LL(1). How do you know that your solution generates the
same language as the original grammar?
Try using this online checker:
https://www.cs.princeton.edu/courses/archive/spring20/cos320/LL1/

This will check if the grammar is LL(1) and also generate a transition table.

The question of whether two CFGs describe the same language is very difficult. In
fact, this class of problems is undecidable.

3. (Optional - but recommended for hands-on experience) Familiarize yourself with

JavaCC, Coco/R and ANTLR by browsing their web pages
The virtual machine provided on Moodle has these tools available, along with a set of
guides that walks you through a small example language for each tool.

https://www.cs.princeton.edu/courses/archive/spring20/cos320/LL1/

Group Exercises - Lecture 7
1. Discuss the outcome of the individual exercises

Did you all agree on the answers?

2. Do Fischer et al exercises 9 and 10 on pages 173-178 (exercises 9 and 12 on pages
205-210 in GE)

9. Recall that an LL(k) grammar allows k tokens of lookahead. Construct an LL(2)
parser for the following grammar:

Procedure Stmt()
 if ts.peek(2) == [id, ';']
 call match(ts, id)
 call match(ts, ';')
 // end of program
 else if ts.peek(2) == [id, '(']

 call match(ts, id)
 call match(ts, '(')
 IdList()
 call match(')')
 call match(';')

 else
 call error()

Procedure IdList()
 if ts.peek(2) == [id, ',']

 call match(ts, id)
 call match(ts, ',')

 IdList()
 else

 call match(ts, id)

10. Show the two distinct parse trees that can be constructed for

if expr then if expr then other else other

using the grammar given in Figure 5.17. For each parse tree, explain the
correspondence of then and else.

In the first tree the else clause is bound to the first if clause. In the second tree, the
else clause is bound to the inner if clause.

3. Discuss pros. and cons. of writing a recursive descent parser by hand and using a
tool
Pros (of writing by hand):

- You can add features, that would otherwise not be traditional feature of a
parser

- See: Python indentation tokens for scopes etc.
- Or prettification of tokens to make them more readable

- You get a better understanding of the inner workings of the parser
Cons:

- If the language is big with many constructs and tokens, it can take a long time
and leaves plenty of room for error to write it by hand.

- Constructing a parser is a very mechanical process, so if you understand the
inner workings, there is no reason to repeatedly implement one.

- Changes to the syntax of the language is more difficult with a hand crafted
parser, whereas a parser generated would simply generate a new one from
the modified grammar.

4. Discuss pros. and cons. of JavaCC, Coco/R and ANTLR

Try out the tools inside the virtual machine provided on moodle! On the Desktop you
will find pdf guides that walk you through a simple example for each tool.

Other than the implementation experience itself, other pros include the fact that the
generated parsers often include a lot of optimisations which make them very fast.

5. (optional - but recommended) Follow the Lab associated with Crafting a Compiler

Chapter 5 http://www.cs.wustl.edu/~cytron/cacweb/Chapters/5/lab.shtml
You can use the virtual machine provided on Moodle.

http://www.cs.wustl.edu/~cytron/cacweb/Chapters/5/lab.shtml

Individual Exercises - Lecture 8
1. (optional - but recommended) Follow the studio associated with Crafting a Compiler

Chapter 6 http://www.cs.wustl.edu/~cytron/cacweb/Chapters/6/studio.shtml
For this a virtual machine will be provided with the necessary tools pre installed.

2. Use CUP to do Fischer et al exercises 40, 41, 42, 43 on pages 224-233 (exercise 40,
42, 44, 43 on pages 263-264 in GE)
The virtual machine available on Moodle has CUP and SableCC installed, along with
a pdf guide that details how to use them!

If you want to run CUP directly on your own machine:
Download Cup -> Extract Jar file to desktop -> create grammar.cup file on desktop
(optional - download intellij highlighting plugin for cup files)
Recreate grammar from exercises in grammar.cup file
Run in cmd :
cd Desktop
java -jar java-cup-11b.jar grammar.cup
See output for answer to exercises

Example grammar: http://www2.cs.tum.edu/projects/cup/docs.php#intro
40. Recall the dangling else problem introduced in Chapter 5. A grammar
for a simplified language that allows conditional statements follows:

(a) Explain why the grammar is or is not LALR(1).

First we create a grammar.cup file with the following contents:

terminal IF, THEN, ELSE, E, OTHER;

terminal Integer NUMBER;

non terminal program, stmt;

program ::= stmt;

stmt ::= IF E THEN stmt ELSE stmt

| IF E THEN stmt

| OTHER;

http://www.cs.wustl.edu/~cytron/cacweb/Chapters/6/studio.shtml
http://www2.cs.tum.edu/projects/cup/docs.php#intro

Then we run the JavaCup parser generator with this input. The output warns us that
there was a shift reduce conflict, but that it was automatically resolved by favoring
shift:

From this we can conclude that the grammar is not LALR(1).

41. Consider the following grammar

(a) Explain why the grammar is or is not LALR(1)
First we create a grammar.cup file to represent the grammar:

terminal IF, THEN, ELSE, E, OTHER;

non terminal program, stmt, matched, unmatched;

program ::= stmt;

stmt ::= matched | unmatched;

matched ::= IF E THEN matched ELSE matched

| OTHER;

unmatched ::= IF E THEN matched ELSE unmatched

| IF E THEN unmatched;

Then we run the CUP parser generator with this grammar:

This does not yield any errors, warnings or conflicts, which means that we have
successfully generated a LALR(1) parser for this grammar, thereby proving that the
language is LALR(1).

(b) Is the language of this grammar the same as the language of the grammar in
Exercise 40? Why or why not?
Recall that the problem of determining whether two given grammars generate the
same language is undecidable! This means that the tool cannot have an algorithm
that answers this question for all pairs of grammars. It should, however, be noted that
in special cases it is possible to determine if two grammars describe the same
language.
For this specific example, we can reason that these two grammars do not generate
the same language:
Looking at the grammar from exercise 41 we see that using any of the ‘Unmatched’
production rules causes infinite recursion. This means that the grammar in exercise
41 cannot produce the string “IF e THEN other” while the grammar from exercise 40
can.

42. Repeat Exercise 41, adding the production Unmatched→other to the grammar.

(a) Explain why the grammar is or is not LALR(1)
Adding the new production to the grammar we now get an error. CUP is telling us
that we get a reduce reduce conflict, because of the terminal ‘OTHER’, meaning
the grammar is no longer LALR(1)

(b) Is the language of this grammar the same as the language of the grammar in
Exercise 40? Why or why not?
Again, the tool cannot help us determine the equality of the languages described by
the grammars. Looking at the grammars, it intuitively seems like they are generating
the same strings.

43. Consider the following grammar:

(a) Explain why the grammar is or is not LALR(1)
Creating the grammar.cup file:

terminal IF, THEN, ELSE, E, OTHER;

non terminal program, stmt, matched, unmatched;

program ::= stmt;

stmt ::= matched | unmatched;

matched ::= IF E THEN matched ELSE matched

| OTHER;

unmatched ::= IF E THEN matched ELSE unmatched

| IF E THEN stmt;

Running cup on it we get a successfully generated parser:

...meaning the grammar is LALR(1).

(b) Is the language of this grammar the same as the language of the grammar in
Exercise 40? Why or why not?
Again, the tool cannot help us determine the equality of the languages described by
the grammars. Looking at the grammars, it intuitively seems like they are generating
the same strings.

3. Familiarize yourself with SableCC by browsing their web pages
Visit here: https://sablecc.org
A virtual machine with SableCC installed can be found on moodle along with a guide
for running it.

4. Use SableCC to do Fischer et al exercises 40, 41, 42, 43 on pages 224-233
(exercise 40, 42, 44, 43 on pages 263-264)
The virtual machine available on Moodle has CUP and SableCC installed, along with
a pdf guide that details how to use them!

https://sablecc.org

40. Recall the dangling else problem introduced in Chapter 5. A grammar
for a simplified language that allows conditional statements follows:

Explain why the grammar is or is not LALR(1).

We create the following SableCC grammar:

Helpers

tab = 9;

Tokens

e = 'exp';

other = 'other';

if = 'if';

then = 'then';

else = 'else';

blank = ' ' | tab;

Ignored Tokens

blank, eol;

Productions

start = stmt;

stmt = {one} if e then [fst]:stmt else [snd]:stmt

| {two} if e then stmt

| {three} other;

When trying to generate a parser with SableCC we get:

Meaning we have shift/reduce conflict and the grammar is not LALR(1).

41. Consider the following grammar

(a) Explain why the grammar is or is not LALR(1)
We use a slightly modified version of the previous grammar:

...

Productions

start = stmt;

stmt = {one} matched

| {two} unmatched;

matched = {one} if e then [first]:matched else [second]:matched

| {two} other;

unmatched = {one} if e then matched else unmatched

| {two} if e then unmatched;

and run SableCC on it:

No errors, we now have a LALR(1) parser based on the grammar.

(b) Is the language of this grammar the same as the language of the grammar in
Exercise 40? Why or why not?
See the answer to the Cup version of this exercise (found earlier in this document).

42. Repeat Exercise 41, adding the production Unmatched→other to the grammar.

(a) Explain why the grammar is or is not LALR(1)
Again using the same grammar file but adding the ‘other’ rule and then running
SableCC on it we get:

A reduce reduce conflict, meaning not LALR(1)

(b) Is the language of this grammar the same as the language of the grammar in
Exercise 40? Why or why not?
Same answer as the Cup version of this exercise (found earlier in this document).

43. Consider the following grammar:

(a) Explain why the grammar is or is not LALR(1)
Again we modify the previous grammar slightly by replacing ‘unmatched’ with stmt in
the last rule. We run SableCC on it and get:

The grammar is LALR(1)

(b) Is the language of this grammar the same as the language of the grammar in
Exercise 40? Why or why not?
Same answer as the Cup version of this exercise (found earlier in this document).

5. Use The Context Free Grammar Checker on http://smlweb.cpsc.ucalgary.ca/ or its
newest version on http://mdaines.github.io/grammophone/ to do Fischer et al
exercises 40, 41, 42, 43 on pages 224-233 (exercise 40, 42, 44, 43 on pages
263-264)

40. Recall the dangling else problem introduced in Chapter 5. A grammar
for a simplified language that allows conditional statements follows:

Explain why the grammar is or is not LALR(1).
First enter the grammar into the online grammar checker on
http://smlweb.cpsc.ucalgary.ca/ :

S -> Stmt.

Stmt -> if e then Stmt else Stmt

| if e then Stmt

| other.

Next click vital statistics. This brings up a screen saying that the grammar is not
LL(1). To see if the grammar is LALR(1) click on ‘generate LALR(1) automaton’. Here
we see that a shift/reduce conflict is encountered (dangling else), and for this reason
the grammar is not LALR(1).

41. Consider the following grammar

(a) Explain why the grammar is or is not LALR(1)
We enter the grammar into the grammar checker:

S -> Matched

| Unmatched.

Matched -> if e then Matched else Matched

| other.

Unmatched -> if e then Matched else Unmatched

| if e then Unmatched.

This shows a screen stating that the grammar is not LL(1), but clicking on ‘generate
LALR(1) automaton’ we see that it is in fact able to generate a LALR(1) parse table
for this grammar.

http://smlweb.cpsc.ucalgary.ca/
http://mdaines.github.io/grammophone/
http://smlweb.cpsc.ucalgary.ca/

(b) Is the language of this grammar the same as the language of the grammar in
Exercise 40? Why or why not?
Same answer as the Cup version of this exercise (found earlier in this document).

42. Repeat Exercise 41, adding the production Unmatched→other to the grammar.

(a) Explain why the grammar is or is not LALR(1)
Add the ‘other’ rule to the previous grammar.
Clicking on generate LALR(1) automaton we now get a warning that we have a
reduce/reduce conflict, meaning the grammar is no longer LALR(1).

(b) Is the language of this grammar the same as the language of the grammar in
Exercise 40? Why or why not?
See answer for exercise 42.b from the CUP tool.

43. Consider the following grammar:

(a) Explain why the grammar is or is not LALR(1)
We enter the grammar into the online grammar checker:

S -> Smt.

Stmt -> Matched

| Unmatched.

Matched -> if e then Matched else Matched

| other.

Unmatched -> if e then Matched else Unmatched

| if e then Stmt.

Clicking on ‘generate LALR(1)’ we get a parse table and a message showing that the
grammar is LALR(1).
(b) Is the language of this grammar the same as the language of the grammar in
Exercise 40? Why or why not?
Same answer as the Cup version of this exercise (found earlier in this document).

Group Exercises - Lecture 08
1. Discuss the outcome of the individual exercises

Did you all agree on the answers?

2. Discuss pro. And cons. of LR parsing (e.g. as compared to LL parsing)
Have a look at this map. An LR(k) parser can parse all languages from the LL parser
class, while this is not the case the other way around. The LR parsers can, however,
be more difficult to implement, so if the language is within for example the LL(1)
realm, it may be a good idea to create an LL(1) parser.

3. Discuss the pros. and cons. of CUP vs SableCC
Looking back at the exercises: It was a lot easier to formulate the simple grammars in
Cup. A lot of small details were required to correctly specify the grammars in
SableCC. For example a nonterminal appearing twice on the rhs of a rule requires
both occurrences to be named:

stmt = if e then stmt else stmt // Will not compile due stmt occuring twice
vs.

stmt = if e then [one]:stmt else [two]:stmt // Will compile

Generally the learning curve seems to be steeper for SableCC compared to Cup.
The added complexity does however have some benefits. The previous example
allows us to access subnodes by their name instead of their position.

4. Follow the Lab associated with Crafting a Compiler Chapter 6
http://www.cs.wustl.edu/~cytron/cacweb/Chapters/6/lab.shtml
Find them inside Eclipse in the virtual machine provided on moodle..

http://www.cs.wustl.edu/~cytron/cacweb/Chapters/6/lab.shtml
http://www.cs.wustl.edu/~cytron/cacweb/Chapters/5/lab.shtml

Individual Exercises - Lecture 9
1. (optional - but recommended) Follow the studio associated with Crafting a Compiler

Chapter 7
http://www.cs.wustl.edu/~cytron/cacweb/Chapters/7/studio.shtml
A virtual machine is available on Moodle with the studio/lab exercises loaded inside
Eclipse.

2. (optional - by recommended) Do the exercises associated with the Tutorial on the
Visitor Pattern
Can be found here: https://www.cse.wustl.edu/~cytron/cacweb/Tutorial/Visitor/

3. Do Fischer et al exercise 10, 12, 22 on pages 272-278 (exercise 11, 15, 22 on pages
304-310 in GE)

10. Consider extending the grammar in Figure 7.14 to include binary subtraction and
unary negation, so that the expression "minus y minus x times 3"
has the effect of negating y prior to subtraction of the product of x and 3.

(a) Following the steps outlined in Section 7.4, modify the grammar to include these
new operators. Your grammar should grant negation strongest precedence, at a level
equivalent to deref. Binary subtraction can appear at the same level as binary
addition.

Alter the modification:
9 E → E plus T
10 | E minus T
11 | T
12 T → id
13
15
16

| num
| minus num
| minus id

(b) Modify the chapter’s AST design to include subtraction and negation by including
a minus operator node.

http://www.cs.wustl.edu/~cytron/cacweb/Chapters/7/studio.shtml
https://www.cse.wustl.edu/~cytron/cacweb/Tutorial/Visitor/

For negation you could introduce a negativeNum node : num(5) -> negativeNum(5),

Or you could keep the current num node and allow for negative numbers: num(-5).

(c) Install the appropriate semantic actions into the parser.

To Eresult add:

| Ee1 minus Te2

Result <- MakeFamily(minus, e1, e2)

// This create a MinusNode with children e1 and e2

To Tresult add:

| minus numval

Result <- MakeNode(-val)

12. The grammar below generates nested lists of numbers. The semantic actions are
intended to count the number of elements just inside each parenthesized list. For
each list found by Rule 2 (Marker 44), the number of elements found just inside the
list.
For example, the input

((1 2 3) (1 2 3 4 5 6))
Should print 3, 6 and 2

(a) The grammar uses a global variable count to determine the number of elements
in a list. What is wrong with that approach?
Relying on a single global variable for counting is a problem because it cannot
handle nested lists, since it overwrites the current element count when entering a
new list.

(b) Change the semantic actions so that the appropriate values are synthesized by
the rules to allow counting without a global variable.
Instead of using a global variable, use synthesized attributes. Remember, a
synthesized attribute is a value associated with some node in the tree, where the
value is calculated from the children of said node. See Fischer figure 7.3 in section
7.2.1 (p. 240).

Start → listavg $

Listresult → lparen Operandsops rparen
 Print(ops);
 | numval

Operandscount → Operandsprevious List
 count ← previous + 1;

 | List

 count ← 1

22. In addition to the NeedsBooleanPredicate type discussed in Section 7.7.3,
Figure 7.24 references the following types: NeedCompatibleTypes and
NeedsLeftChildType.

(a) Which node types inherit from those types?
NeedCompatibleType probably requires all children to have the same type, and
NeedComptaibleType could be inherited by operation nodes such as +, -, / etc.
For example addition nodes may allow addition of a float and an integer.

NeedsLeftChildType probably requires that the children has the same type as the
leftmost child. This might be inherited by assignment nodes, since most languages
require the right hand side to be of the same type (or at least castable to the same
type), as the left hand side of the assignment.

(b) Describe the actions that should be performed by the visitor at Markers 42 and 43
on behalf of the NeedCompatibleTypes and NeedsLeftChildType types.
NeedCompatibleType
Find the set of types for all immediate children of the node and check the list of
compatible types for that node type. For example, addition operations might allow
adding doubles and floats, but not doubles and integers.

NeedsLeftChildType
Declare local variable Type = LeftMostChild.getType()
Check all the other children have the same (or convertible) types.

Group Exercises - Lecture 9
1. Discuss the outcome of the individual exercises

Did you all agree on the answers?

2. Do Fischer et al exercise 20, 19, 21 on page 272-278 (exercise 14, 19 20 on pages
304-310 in GE) (you may use the language you are defining in your project when
designing ast nodes in exercise 19)

20. In contrast to the approach discussed in Section 7.7.2, Figure 7.25 shows the
partial results of a design in which each phase contributes code to each node type.

(a) What are the advantages and disadvantages of the approach used in Figure
7.25?
This approach might be more manageable initially when the amount of phases is low.
Inside each node class you can easily follow what happens to that node type during
the different compiler phases.

A problem with this approach is that many modern compilers have up to a couple of
hundred phases(mostly optimization steps). If the node classes themselves
contained the methods for all phases, they would very quickly get very bloated.
Consider software design principles such as the ‘Single responsibility principle’. If you
use the approach in 7.25, each Node class will end up being responsible for many
different steps of the compiler. If you change a phase, or add a new one, you now
have to go through all the node classes to implement this change.

(b) How does the visitor pattern discussed in Section 7.7.2 address the
disadvantages?
A separate class for each phase is created. This class then contains visitor methods
for all types of nodes. This makes modifying and adding of phases much simpler. If
we modify a phase, we only have to modify the visitor for that phase. If we add a
phase, we simply add a new visitor and then dispatch it to the root.

19. Based on the discussion of Section 7.4 and using the pseudocode in Figure 7.13
as a guide, design a set of AST classes and methods to support AST construction in
a real programming language.

Below is an example for an if statement very similar to the one in Java / C# / C. In the
first code snippet the AST node for the if statement can be seen. In the second code
snippet a visitor method for creating the AST node when visiting the non-terminal
ifstmt node in the parse tree. The ListNode inherits from an abstract node class.

Other node classes could be created in a similar fashion. Usually an abstract class
with methods like getChildren() and accept(visitor) is created as a foundation. This
class can then be extended like in this case by a ListNode, but often BinaryNodes
and LeafNodes are also included, since their behaviour when visited is slightly
different. The IfStmtNode below is of type listnode, since it has more than 2 children.

Node class for if statements

Visitor method for IfStmt inside the ASTBuilderVisitor<Node>(which extends the BaseVisitor)

public class IfStmtNode extends ListNode {
 public IfStmtNode(ArrayList<Node> children) {
 super(children);
 }

 public Node getLogicalExprNode(){
 return super.getChildren().get(0);
 }

 public Node getIfBlock(){
 return super.getChildren().get(1);
 }

 public Node getElseBlock(){
 // No else block present
 if(super.getChildren().size() < 3){
 return null;
 } else {
 return super.getChildren().get(2);
 }

 }

 // The generics here allows different visitors to have different

 // return types. For example the ASTBuilder visitor will probably

 // return objects of the type Node(to return a new modified tree),

 // while a pretty printer visitor might return strings.

 // Don’t fret if you don’t get this 100% right now

 public <T> T accept(ASTBaseVisitor<? extends T> astBaseVisitor) {
 return astBaseVisitor.visit(this);
 }

}

@Override

public Node visitIfstmt(ifStmtParseTreeNode node) {
 ArrayList<Node> children = new ArrayList<>();
 Node logicalExpr = visit(node.logical_expr());

 // Block of code inside if stmt
 Node ifBlock = visit(node.blck);

 children.add(logicalExpr);

 children.add(ifBlock);

 if(node.elseblck != null){
 Node elseBlocK = visit(node.elseblck);

 children.add(elseBlocK);

 }

 return new IfStmtNode(node, children);
}

21. In contrast with the approaches discussed in Sections 7.7.2 and 7.7.3, consider
the idea sketched in Figure 7.26.

(a) What are the advantages and disadvantages of the approach used in Figure
7.26?
The advantage is that it is easy to understand/implement and can give a good
overview of the node types visited by the specific visitor.
The disadvantage is that it is essentially a lot of duplicated code and it can quickly
become very big with 50+ node types. Also one node type can easily be forgotten in
the switch case.
(b) How does the visitor pattern discussed in Sections 7.7.2 and 7.7.3 address the
disadvantages?
Instead of switching on the type, each node has an accept function that takes the
visitor and makes the visitor visit “this” (i.e. the node itself and it’s children), which
would invoke a visit method specific to that type. This eliminates the large switch
statement, but still contains a lot of duplicated code (you have to have an accept()
method in every node class).

The reflective visitor pattern eliminates the need for the accept() method through the
dispatch() method. It looks through the available node classes and finds the “closest
match”.

3. (optional - but recommended) Follow the Lab associated with Crafting a Compiler

Chapter 7
http://www.cs.wustl.edu/~cytron/cacweb/Chapters/7/lab.shtml
For this a virtual machine will be provided with the necessary tools pre installed.

http://www.cs.wustl.edu/~cytron/cacweb/Chapters/7/lab.shtml

Individual Exercises - Lecture 10
1. (optional - but recommended) Follow the studio associated with Crafting a Compiler

Chapter 8 http://www.cs.wustl.edu/~cytron/cacweb/Chapters/8/studio.shtml
For this a virtual machine will be provided with the necessary tools pre installed.

2. Do Fischer et al exercise 14 and 16 on pages 336-341 (exercise 15 and 17 on pages
370-373 in GE)
14. Consider the following C program:

The identifier x is declared in the method’s outer scope. Another declaration occurs
within the nested scope that assigns y. In C, the nested declaration of x could be
regarded as a declaration of some other name, provided that the inner scope’s
reference to is appropriately renamed x. Design a set of AST visitor methods that

(a) Renames and moves nested variable declarations to the method’s outermost
scope
You could assign a unique name to every scope.
Then, for every variable declaration node you visit, prefix the variable name with the
scope name. For example int x = 1; inside scope4 becomes int scope4_x = 1;

Save this alias in a dictionary structure. Then move the declaration node to the
outermost method scope.
When your visitor exits out of a scope, remove all aliases that were created inside the
scope.
For every id node you visit, replace it by the most recent alias for that variable name.
Example :

Int func() { // scope1

int x, y; // becomes scope1_x and scope1_y;

x = 10; // scope1_x;

{ // scope 2

x *= 2; // scope1_x

int x; // scope2_x;

x = 20; // scope2_x

y = x; // scope1_y and scope2_x

}

return(x * y); // scope1_x, scope1_y

http://www.cs.wustl.edu/~cytron/cacweb/Chapters/8/studio.shtml

The following is a very extensive pseudo code version of the solution that was just
proposed. It is okay if your solution is just an outline of a design.

In this approach we extend the symbol table to keep track of scope names. Each
scope has its own dictionary to keep track of renamed variables.When we enter a
new scope, it inherits all previous renamings. If a symbol is added that already exists
in the dictionary, it is just overwritten with the new name:

public class SymbolTable {

Stack<Scope> scopeStack = ...;

private class Scope(String name, Dict<String, String> renamings){...}

// Push new scope to stack passing on all renamings from current scope

// Generate a new unique name for the new scope

void enterScope() {...}

// Pop scope from stack

void exitScope() {...}

// Add renaming to dictionary of current scope

void addSymbol(String variableName) {

String newName = scopeStack.peek().name + variableName;

scopeStack.peek().renamings.put(variableName, newName);

}

// Look up variableName in current scope renaming dictionary

String getSymbol(variableName){...}

}

We can now create a visitor for moving and renaming declarations according to the
scope they are declared in:

public class ScopeLabelVisitor extends ASTVisitor {

private SymbolTable symbolTable = new SymbolTable();

private Node currentMethodScope;

public void visit(MethodNode funcNode){

currentMethodScope = funcNode;

symbolTable.enterScope();

// ... visit children

// (Here we may visit a scopeNode)

symbolTable.exitScope();

};

// Continues on the next page!

public void visit(ScopeNode scopeNode){

symbolTable.enterScope();
for (Node child : scopeNode.getChildren()) {

child.accept(this); // Visit child

// (The child may be of the type VarDeclNode)

// Move renamed declaration to method node

if (child instanceof VarDeclNode) {

scopeNode.remove(child);

currentMethodScope.insertChild(child);

}

}

symbolTable.exitScope();
};

public void visit(VarDeclNode decl){

symbolTable.addSymbol(decl.name);

...

};

...

}

(b) Appropriately renames symbol references to preserve the meaning of the
program
We can add the following method to the previous visitor:

public void visit(VariableIdNode idNode){

idNode.name = symbolTable.getRename(idNode.name);
}

16. As mentioned in Section 8.4.2, C allows the same identifier to appear as a struct
name, a label, and an ordinary variable name. Thus, the following is a valid C
program:

In C, the structure name never appears without the terminal struct preceding it. The
label can only be used as the target of a goto statement. Explain how to use the
symbol table interface given in Section 8.1.2 to allow all three varieties of xxx to
coexist in the same scope.

Section 8.1.2 Interface:
- openScope() opens a new scope in the symbol table. New symbols are en- tered in the resulting
scope.

- closeScope() closes the most recently opened scope in the symbol table. Symbol references
subsequently revert to outer scopes.

- enterSymbol(name,type) enters name in the symbol table’s current scope. The parameter type
conveys the data type and access attributes of name’s declaration.

- retrieveSymbol(name) returns the symbol table's currently valid declaration for name. If no
declaration for name is currently in effect, then a null pointer is returned.

- declaredLocally(name) tests whether name is present in the symbol table’s current (innermost)
scope. If it is, true is returned. If name is in an outer scope, or is not in the symbol table at all, false is
returned.
If we want to preserve the current symbol table interface without changes, we could
prefix every symbol name with its corresponding type. So to add the struct xxx to the
symbol_table we would call enterSymbol(“struct_xxx”, “struct”). When retrieving the
struct we would then call retrieveSymbol(“struct_xxx). This way we can differentiate
between symbols that have the same name, but different types.

Alternatively we can modify the interface in one of the following ways:
1. Since the struct and labels are semantically completely different to variable
declarations, it would make sense to extend the symbol table with the following
methods:

retrieveStruct(name), which returns the struct for the given name or null
retrieveLabel(name), which returns the label if it present, else null

Determining which of the two methods to call can be done based on the type of node
the visitor finds. If the node is of type Struct, use retrieveStruct etc. The symbol table

would then have to store all three types in a way that it can distinguish them from
each other.

2. Another possible way to allow for the three different types in the symbol table is to
simply add an extra column in the symbol table that holds the type of a declaration. In
addition to this, the symbol table method for retrieving a symbol should then be
modified to the following:

retrieveSymbol(name, type)
This method should return a valid declaration with the given name and type, if one
exists.
E.g the struct declaration xxx would have a type parameter of struct, integer
declaration of type integer and label declaration of type label. Thus when accessing
the identifer xxx as a certain type, all the xxx identifiers will be distinguishable.

Group Exercises - Lecture 10
3. Discuss the outcome of the individual exercises

Did you all agree on the answers?

4. Do Fischer et al exercise 1, 2, 15 on pages 336-341 (exercise 3, 4, 14 on pages
370-373 in GE)

1. The two data structures most commonly used to implement symbol tables in
production compilers are binary search trees and hash tables. What are the
advantages and disadvantages of using each of these data structures for symbol
tables?
Binary search tree:

- Advantages:

- Compact

- Fast search times(O(log n))

- Disadvantages:

- Constant need to rebalance the tree

Hash table:

- Advantages:

- Constant time lookup

- Disadvantages:

- Can be less memory efficient

- Overkill for very small tables

2. Consider a program in which the variable is declared as a method’s parameter and
as one of the method’s local variables. A programming language includes parameter
hiding if the local variable’s declaration can mask the parameter’s declaration.
Otherwise, the situation described in this exercise results in a multiply defined
symbol. With regard to the symbol table interface presented in Section 8.1.2, explain
the implicit scope-changing actions that must be taken if the language calls for

(a) Parameter hiding
(b) No parameter hiding

Section 8.1.2 Interface:
- openScope() opens a new scope in the symbol table. New symbols are en- tered in the resulting
scope.

- closeScope() closes the most recently opened scope in the symbol table. Symbol references
subsequently revert to outer scopes.

- enterSymbol(name,type) enters name in the symbol table’s current scope. The parameter type
conveys the data type and access attributes of name’s declaration.

- retrieveSymbol(name) returns the symbol table's currently valid declaration for name. If no
declaration for name is currently in effect, then a null pointer is returned.

- declaredLocally(name) tests whether name is present in the symbol table’s current (innermost)
scope. If it is, true is returned. If name is in an outer scope, or is not in the symbol table at all, false is
returned.

a) Parameter hiding

We create two scopes for the method. The first scope is for the method

parameters. All parameters symbols will go inside this scope. Inside this

scope we open a new scope for the method body. The locally declared

variable within the method body will be entered into this scope. When looking

up the variable in the scope, we first check our immediate scope, and then

the parent scope. If the variable is declared inside the method body scope as

well as in the parameter scope, we will find the one in the method body scope

first and hence shadow the one from the parameter list.

b) No parameter hiding

We create one common scope for both the parameter symbols and the

symbols in the method body. If a parameter and a variable declared in the

method has the same name, the symbol table would identify this as an error.

15. Using the symbol table interface given in Section 8.1.2, describe how to

implement structures (structs in C) under each of the following assumptions:

• All structures and fields are entered in a single symbol table.

• A structure is represented by its own symbol table, whose contents are the structure’s

subfields.

Section 8.1.2 Interface:
- openScope() opens a new scope in the symbol table. New symbols are en- tered in the resulting

scope.

- closeScope() closes the most recently opened scope in the symbol table. Symbol references

subsequently revert to outer scopes.

- enterSymbol(name,type) enters name in the symbol table’s current scope. The parameter type

conveys the data type and access attributes of name’s declaration.

- retrieveSymbol(name) returns the symbol table's currently valid declaration for name. If no

declaration for name is currently in effect, then a null pointer is returned.

- declaredLocally(name) tests whether name is present in the symbol table’s current (innermost)

scope. If it is, true is returned. If name is in an outer scope, or is not in the symbol table at all, false is

returned.

We will use the same solutions used in Section 8.2.2 on page 285 to handle

block-structured symbol tables. If all structures are to share the same symbol table,

we assign each structure a unique scope number. Scope numbers should be

distinguishable from the numbers used for nested scopes. Very large integers or

perhaps negative values might be used. The scope number assigned is stored with

the type information for a structure. When a reference like a.b is processed, a is first

looked up like an ordinary identifier.

We verify that a is a structure, with scope number s. When field b is looked up, s is

used to restrict lookup to the fields of the appropriate structure. When the scope of a

structure is closed, its fields are not purged from the symbol table since later qualified

lookups of its fields are possible.

If fields are given their own symbol table, lookup is easier still. When processing a

structure, a new symbol table is created and populated with all the fields declared

within the structure. A pointer to this table is stored with the type information for the

structure. When a reference like a.b is processed, a is first looked up like an ordinary

identifier. We verify that a is a structure, with its fields contained in symbol table st.

Then field b is looked up in st.

5. (optional - but recommended) Follow the Lab associated with Crafting a Compiler
Chapter 8 http://www.cs.wustl.edu/~cytron/cacweb/Chapters/8/lab.shtml
For this a virtual machine will be provided with the necessary tools pre installed.

6. Do exercise 3 in Chapter 5 of Sebesta on page 252.

3. Write a simple assignment statement with one arithmetic operator in some
language you know. For each component of the statement, list the various bindings
that are required to determine the semantics when the statement is executed. For
each binding, indicate the binding time used for the language.

You may consider the following Java code:

public static int increment(int x) {

return x + 1;

}

What is the binding time of
– Value of argument x?
– Set of values of argument x?
– Type of argument x?
– Set of types of argument x?
– Properties of operator +?

Value of argument x: Run Time

Set of values of argument x: Language design time (Note that for languages like
c/c++ the size of primitive values can vary depending on the machine you are
running it on, so in that case it would be bound at language implementation time)

Type of argument x: Compile Time

Set of types of argument x: Language Design Time. We can for example design the
language to accept float values into int parameters by implicitly casting them.

Properties of operator +: Compile Time (Not possible to dynamically overload
operators in Java)

http://www.cs.wustl.edu/~cytron/cacweb/Chapters/8/lab.shtml

7. What is the scope of the various x’s in the following C program (with static scoping)?

// Static scoping example

#include <stdio.h>

int x;

void Proc1(){

int x;

x = 3;

printf("In Proc1: x = %d\n", x);

}

void Proc2(){

x = 9;

printf("In Proc2, x = %d\n", x);

}

int main(){

x = 1;

printf("Before Proc1, x = %d\n", x);

Proc1();

printf("After Proc1, x = %d\n", x);

Proc2();

printf("After Proc2, x = %d\n", x);

return 0;

}

Output:
Before Proc1, x = 1
In Proc1, x = 3
After Proc1, x = 1
In Proc2, x = 9
After Proc2, x = 9

“In lexical scoping (and if you're the interpreter), you search in the local function (the
function which is running now), then you search in the function (or scope) in which
that function was defined, then you search in the function (scope) in which that
function was defined, and so forth. "Lexical" here refers to text, in that you can find
out what variable is being referred to by looking at the nesting of scopes in the
program text.”

See this link for a comparison between static and dynamic scoping:
https://wiki.c2.com/?DynamicScoping

https://wiki.c2.com/?DynamicScoping

8. What is the scope of the various x’s in the following C Program (with dynamic
scoping)?

// Dynamic Scoping Example

#include <stdio.h>

int x;

void Proc1(){

x = 1;

}

void Proc2(){

int x;

x = 2;

printf("In Proc2 before Proc1, x = %d\n", x);

Proc1();

printf("In Proc2 after Proc1, x = %d\n", x);

}

int main(){

x = 3;

printf("Before Proc2, x = %d\n", x);

Proc2();

printf("After Proc2, x = %d\n", x);

Proc1();

printf("After Proc1, x = %d\n", x);

return 0;

}

Result:
Before Proc2, x = 3
In Proc2 before Proc1, x = 2
In Proc2 after Proc1 x = 1
After proc 2, x = 3
After proc 1, x = 1

“In dynamic scoping you search in the local function first, then you search in the
function that called the local function, then you search in the function that called that
function, and so on, up the call stack. "Dynamic" refers to change, in that the call
stack can be different every time a given function is called, and so the function might
hit different variables depending on where it is called from.”
See this link for a more thorough explanation:
https://wiki.c2.com/?DynamicScoping

Note: In this exercise you are supposed to imagine c has dynamic scoping. If this
program is run, it will yield a different result.

https://wiki.c2.com/?DynamicScoping

Individual Exercises - Lecture 11
1. (optional - but recommended) Do the exercises associated with the Tutorial on the Visitor

Pattern (if you haven’t already done so)
You can consider looking at the ANTLR example included in the virtual machine. You can
expand the grammar, and investigate the visitor classes that ANTLR generates from it.
Try doing a simple visitor that just prints something for every node in the tree.

2. For the little language defined in Figure 7.14 design and implement in pseudo code AST
classes based on the AST structure in Figure 7.15

Example implementations for AssigmentNode and WhileNode in java.
Note that the classes could include an accept(); method to support use of the visitor
pattern in java.

class AssignmentNode implements Node{

private VariableNode variable;

private ExpressionNode expr;

public AssignmentNode(VariableNode variable, ExpressionNode expr){

this.variable = variable;

this.expression = expr;

}

@Override

List<Node> getChildren(){

return new ArrayList<>({variable, expr})
}

}

1

class WhileNode implements Node {

Private PredicateNode predicate;

Private LoopBodyNode loopBody;

Public WhileNode(PredicateNode pred, LoopBodyNode loop) {

this.predicate = pred;

this.loopBody = loop;

}

@Override

List<Node> getChildren() {

return new ArrayList<>({predicate, loopBody});

}

}

3. Construct an AST for the program in figure 7.18 (you may cheat by creating the AST
based on figure 7.19)

The program: If (x + y) { while (z) z = z + 1 od; x = 8 } else z = 7 fi $
(‘od’ is just the symbol that marks the end of the while loop body in this grammar)

Important points:

● Structural symbols (such as ‘{‘, ‘(‘ ‘;’ etc.) can be omitted as their meaning is
represented implicitly in the structure of the tree.

● Several nodes can often be compacted into a single node (because we do not
need information about how they were derived using the grammar)
For example a series of nested Stmt nodes may be compacted into a single
block node containing as many children as there are statements.

● You can use existing AST designs from other languages as inspiration for
your own. For instance: https://astexplorer.net/

2

https://astexplorer.net/

4. Add a pretty-printing method to each class in your AST structure from exercise 2 and
pretty print the program from exercise 3

One approach to pretty-printing is indenting nodes based on how deep into the tree they
are nested. To print a tree in this fashion, one might pass an indentation string that
increases in length for nested calls:

class WhileNode implements Node {

...

public void prettyPrint(String indentation){

printTabs(indentation);

System.out.println("While Node : ")

this.predicate.prettyPrint(indentation + " ")

System.out.println(); // New line

this.loopBody.prettyPrint(indentation + " ")

}

}

3

5. Design a Visitor for pretty-printing for the little language defined in Figure 7.14 using the
AST structure in Figure 7.15 and use it on the program from Figure 7.18

This visitor might include a global variable to keep track of indentation. Upon visiting a
node the indentationCounter is incremented, and upon finishing a visit method, the count
is decremented. Below is a partial implementation of such a visitor:

4

class PrettyPrintVisitor extends ASTVisitor{

private int indentation = 0;

public void visit(IfNode ifNode){

printTabs(indentation);

System.out.println(“IfNode”);

indentation++;

visit(whileNode.predicate); // Visits

visit(whileNode.loopBody); // Visits block node

indentation--;

}

public void visit(WhileNode whileNode){

printTabs(indentation);

System.out.println(“WhileNode”);

indentation++;

visit(whileNode.predicate); // Visits

visit(whileNode.loopBody); // Visits block node

indentation--;

}

public void visit(BlockNode block){

printTabs(indentation);

System.out.println("BlockNode");

indentation++;

for(Node n : block.getChildren())

visit(n);

indentation--;

}

...

}

The print result should be something like this:
IfNode

PlusNode
x
y

BlockNode
WhileNode

IdNode (This is the while predicate)
AssignNode (This is the while body)

IdNode (z)
PlusNode

IdNode(z)
Integernode(1)

AssignNode
IdNode(x)
IntegerNode(8)

AssignNode
IdNode(z)
Integer(7)

5

6. Do Fischer et al exercise 18, 21 on pages 339-340 Note the word VISIT is missing!
(exercise 18, 19 on pages 371-373 in GE)

18. Write a visit method for handling the array type definitions represented by the
AST in Figure 8.19(b), with upper and lower bounds included in array specification.
Note that some type checking on the bounds expressions will be required in this
method.

class TypeVisitor extends ASTVisitor{

...

Type visit(ArrayDefinition arrayDef){

lowerBound = visit(arrayDef.lowerBound)

upperBound = visit(arrayDef.upperBound)

if(lower.type != integer || upper.type != integer)

throw new InvalidBoundTypeException();

if(lower.value < 0 || upper.value < lower.value)

throw new InvalidBoundValueException();

elementType = visit(arrayDef.elementNode)

return new ArrayType(elemenType)

}

...

}

6

21. Extend the visit method in Section 8.7.1 to handle the feature in Java that allows
a list of interfaces implemented as part of a class declaration (as described at the
end of that section). Interface declarations themselves are similar to class
declarations. Write a visit method for processing interface declarations.

Extension to visit(ClassDeclaring cd):

...

cd.interfaces ← getRefToInterfaces()

for interface in cd.interfaces:

if interface.type.kind != interfaceType

then

attr.classType ← errorType

if not cd.methods.containsAll(interface.methods())

then

call ERROR("Class does not implement all methods from " +

interface.name)

...

7

The visit(interfaceDecl) method is very similar to the visit method for class declaration.
But recall that interfaces can only extend other interfaces. The following method skips the
code duplicated from the visit(ClassDeclaring) Method, and shows only the check to
verify that “parent classes” are interfaces:

procedure visit(InterfaceDecl iDecl)

...

for parent in iDecl.parentClasses:

if iDecl.parentclass.type.kind != interfaceType

then

attr.classtype ← errorType

call Error(parentclass.name, "is not an interface")

...

7.Do Fischer et al exercise 1, 2 on page 385 (exercise 1, 2 on pages 417-421 in GE)

1. Extend the semantic analysis, reachability, and throw visitors for if statements
(Section 9.1.2) to handle the special case in which the condition expression can be
evaluated, at compile time, to true or false.

A detailed answer to this exercise is presented in Solutions Manual for Crafting a

Compiler (can be found in general course materials on moodle):

In summary, check if the boolean expression inside the if statement can be computed at

compile time. For instance if the expressions consist only of constant values or literals. If

that is the case branching is not required and can be optimized out.

8

2. Assume that we add a new kind of conditional statement to C or Java, the signtest.
Its structure is:

Signtest (exp) {
neg: stmts
zero: stmts
pos: stmts

}

The integer expression exp is evaluated. If it is negative, the statements following
neg are executed. If it is zero, the statements following zero are executed. If it is
positive, the statements following pos are executed.

Show the AST you would use for this construct. Revise the semantic analysis,
reachability, and throws visitors for if statements (Section 9.1.2) to handle the
signtest.

A simple implementation of SignTest contains four children. One for integer sign
expression and three for the stmts. It’s possible to optimize this. For instance if the
expression is a value we can compute at compile time, then we can leave out the 2
unused statement branches.

The SignTest is a special case of an if statement. Firstly, we must ensure that the
expression, expr, evaluates to an integer. If the result of the expr is a signed integer, then
we can mark all 3 statements paths as reachable. If the expr evaluates to an unsigned
integer, we can mark the neg path as unreachable. Finally, we have the special case
where expr can be evaluated at compile time, In this case we could determine which path
would be taken at compile and mark the 2 others as unreachable.

The throws visitor remains the same as for an if statement.

9

Group Exercises - Lecture 11
1. Discuss the outcome of the individual exercises

Did you all agree on the results?

2. (optional) Do Fischer et al exercise 26 on page 341 (exercise 27 on pages 373 in GE)
(use the language you are defining in your project)

26. Recall from Section 8.8 that special checking must be done for names that are used
on the left-hand side of an assignment. The visitor class LHSSemanticVisitor was
introduced for this purpose. Section 8.8.1 noted that since a parser will not allow a literal
to appear as the target of an assignment, no visit method for handling literals was
included in LHSSemanticVisitor.
This example uses Java, you should use your own project language!

a) For a language of your choice, identify any other contexts in a program where an
L-value is required.

Increment operators in Java, where for example 5++; is not a legal expression.

b) Do the syntactic rules of the language guarantee that a literal can not appear in
these contexts?

No, the grammar actually allows literals(which are rvalues) in a postfix increment.
The syntax rules specify that a postfix increment has the form:

Where a PostFixExpression is defined as:

And Primary is defined as:

^ From the java syntax specification found on:
https://docs.oracle.com/javase/specs/jls/se15/html/jls-15.html#jls-PostIncrementE
xpression

10

https://docs.oracle.com/javase/specs/jls/se15/html/jls-15.html#jls-PostIncrementExpression
https://docs.oracle.com/javase/specs/jls/se15/html/jls-15.html#jls-PostIncrementExpression

c) Write appropriate LHSSemanticVisitor visit methods for the AST nodes
corresponding to any literals allowed by the language.

In the SemanticsVisitor we create a method for visiting postfix increment nodes:

public void visit(PostFixIncrementNode incNode) {

LHSSemanticVisitor lhsVisitor = new LHSSemanticVisitor();

incNode.incrementTarget.accept(lhsVisitor);

}

Inside the LHSSemanticVisitor we create methods for the possible increment
targets (considering only the increment operator):

public void visit(IdNode idNode){

if (symbolTable.get(idNode.name).isFinal()) {

throw new ConstantModifciationException(...);

} else if (!symbolTable.get(idNode.name).supportsIncrement()) {

throw new UnsupportedOperationException(...);

}

// You could also add more semantic checks,

// fx. to check that the variable has been declared

}

public void visit(IntegerLiteralNode intLiteralNode){

throw new InvalidLHSValueException(...);

}

// Repeat for other literal types such as float, doubles and strings

...

3. Do Fischer et al exercise 3, 7, 10, 13, 12 on pages 385-389 (exercise 3, 7, 11, 13, 14 on
pages 417-421 in GE)

3. Assume we add a new kind of looping statement, the exit-when loop to C or Java. This

loop is of the form:

loop

statements1

exit when expression

statements2

end

First, the statements in statements1 are executed. Then, expression is evaluated. If it is

true, then the loop is exited. Otherwise, the statements in statements2 and statements1

are executed. Next expression is reevaluated and the loop is conditionally exited. This

process repeats until expression eventually becomes true (or else the loop iterates

forever). Show the AST you would use for this construct. Revise the semantic analysis,

11

reachability, and throws visitors for while loops (Section 9.1.3) to handle this form of loop.

Be sure the special case of expression being constant-valued is handled properly

Once again we look at the special case where the expression can be evaluated at
compile compile time. In this case where it evaluates to true, we can mark stmts2 as
unreachable since it will always exit beforehand. If it is false at compile time, then both
statements will be reachable.

7. Some programming languages, such as Ada, require that within a for loop, the loop

index should be treated like a constant. That is, the only way that a loop index can

change is via the loop update mechanism listed in the loop header. Thus (using Java

syntax):

for (i=1;i<100;i++) print(i)

is legal, but:

for (i=1;i<100;i++) print(--i)

is not legal. Explain how to change the semantic analysis visitor of Section 9.1.4 to

enforce read-only access to a loop index within a loop body.

Give the loop index variable a different type or flag in the symbol table (for example you

can mark it as ‘read-only’). With such a flag it is easy to verify that no symbol marked

‘read-only’ is used on the left hand side. The semantic check has to make an exception

by not checking the ‘read-only’ for the assignment operation to a loop index using the

loop update mechanism in the loop where a specific loop index is declared.

12

10. One of the problems with the class structure used by Java and C is that field and

method declarations (which are terse) are intermixed with method implementations

(which can be lengthy and detailed). As a result, it can be hard to casually ”browse” a

class definition. As an alternative, assume we modify the structure of a class to separate

declarations and implementations. A class begins with class declarations. These are

variable and constant declarations (completely unchanged) as well as method headers

(without method bodies). An ”implemented as” section follows, which contains the bodies

of each method declared in the class. Each method declared in the class must have a

body defined in this section, and no body may be defined unless it has been previously

declared. Here is a simple example of this revised class structure:

class demo {

char skip = '\n';

int f();

void main();

implemented as

f: { return 10; }

main: { print("Ans =",f(),skip); }

}

What changes are needed in the semantic analysis of classes and methods to implement

this new class structure?

A detailed answer to this exercise is presented in Solutions Manual for Crafting a

Compiler. (Can be found in general course materials on moodle)

In summary, the headers must be processed to create the symbol tables entries. then,

the bodies can be processed with checks added to ensure the implementations match

the definitions, that all declared methods are implemented, and that all implemented

methods are declared.

13

13. As mentioned in Section 9.1.6, C, C++, and Java allow non-null cases in a switch

statement to ”fall through” to the next case if they do not end with a break statement. This

option is occasionally useful, but far more often leads to unexpected errors. Suggest how

the semantic analysis of switch statements (Figure 9.21) can be extended to issue a

warning for non-null cases that do not end in a break. (The very last case never needs a

break since there are no further cases to ”fall into.”)

The SemanticsVisitor already visits all statements in each case by calling VisitChildren in

visit(CaseItem cn). The method visit(CaseItem cn) could be extended to check if this is a

non-null case (i.e. it contains statements) and if the more variable in the CaseItem AST

node (Figure 9.20) is not null (i.e. this is not the last case). If both of these checks return

true and the last statement in the case is not a break, a warning should be emitted that

this is neither a none-null case nor is it the last case and as such should probably end

with a break.

12. Most programming languages, including C, C++, C, and Java pass parameters

positionally. That is, the first value in the argument list is the first parameter, the next

value is the second parameter, and so on.

For long parameter lists this approach is tedious and error prone. It is easy to forget the

exact order in which parameters must be passed. An alternative to positional parameters

is keyword parameters. Each parameter value is labeled with the name of the formal

parameter it represents. The order in which parameters are passed is now unimportant.

For example, assume method M is declared with four parameters, a to d. The call

M(1,2,3,4), using ordinary positional form, can be rewritten as M(d:4,a:1,c:3,b:2). The two

calls have identical effects; only the notation used to match actual parameters to formal

parameters differs. What changes would be needed in the semantic analysis of calls, as

defined in Figure 9.34, to allow keyword parameters?

A detailed answer to this exercise is presented in Solutions Manual for Crafting a

Compiler. (Can be found in general course materials on moodle)

In summary, the primary task is to determine what method is being called given the

method name and signature. For calls to methods with positional parameters only, their

types and order is required, but for keyword parameters their names must also be taken

into account. So to ensure a method can be called with a set of keyword arguments the

semantic analysis must find all relevant methods (e.g., overloading allows multiple

methods with the same name), and verify that the number of arguments, their types, and

14

their names match a unique method. Python is an example of a language that supports

both positional and keyword parameters:

def pow(x, y):

...

positional = pow(2, 8) # 256

keyword = pow(y=8, x=2) # 256

15

Individual Exercises - Lecture 12

1. Do the following for Java, C, PhP and SML: (You may replace the languages with other

languages you are familiar with)

a. Describe the set of values that data objects of type Integer (int) may contain

C: Ints are either 2 or 4 bytes big, in order to see the size of an int on your local compiler

load the <limits.h> package and print INT_MAX

2^16 or 2^32 signed.

-32,768 to 32,767 or -2,147,483,648 to 2,147,483,647

b. Determine the storage representation for values of Integer type

C: Stores integers as the binary representation in memory.

Other languages like Java have the concept of “boxing” of primitive data types like ints

and objects. See:

https://stackoverflow.com/questions/27647407/why-do-we-use-autoboxing-and-unboxing-

in-java

c. Determine the syntactic representation used for constants of that type

C uses the “const” keyword as part of the type qualifier. Const prohibits modifying an int

beyond its initialization.

Int const a = 1;

d. Determine the set of operations defined for Integers and give the signature for these

operations and syntactic representation

Arithmetic Operators: +, -, *, /, %, ++, --

Relational Operators: ==, !=, <=, >=, <, >

Logical Operators: &&, ||, !

Bitwise Operators: &, ^, |, ~, <<, >>

Assignment Operators: =, +=, -=, *=, /=, %=, <<=, >>=, &=, |=, ^=

Misc Operators: sizeof, &, *, ? :

C automatically coerces types in some operations such as addition. Adding an int to a

float will first convert the int to a float. Same is true for different integer sizes.

https://stackoverflow.com/questions/27647407/why-do-we-use-autoboxing-and-unboxing-in-java
https://stackoverflow.com/questions/27647407/why-do-we-use-autoboxing-and-unboxing-in-java

e. Determine if any of the operation symbols defined for integers may be overloaded

C does not support operator overloading

Consider looking at C++ operator or C# operator overloading:

https://en.cppreference.com/w/cpp/language/operators

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/operator-o

verloading

f. Determine whether static or dynamic type checking is used to determine the validity of

each operation.

C utilises static type checking based on the types of the operands.

2. Do exercise 1 for floating point data type

Like for exercise 1 this information is usually available in the documentation of the

language/implementation, its standard, or specified by the implementation of the

language.

For instance for C#:

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specificatio

n/types

Most languages map integers directly to their binary representation. Floating point

presents new challenges in this format. Different standards exist (as mentioned in today's

chapter) for storing floats in binary. These representations are often a compromise

between simplicity of the implementation, size, speed of translation/operation, and

precision of the value.

3. Consider the languages C and Java. For each language determine what the language

implementation does with respect to constructs that cannot be checked statically, e.g. arrays

bounds check, access to pointers/references and division by 0.

a) Does the language provide dynamic checking or leave it unchecked at runtime?

Java provides runtime bounds checking. For array access it throws an

ArrayIndexOutOfBoundsException when trying to access indexes outside the

specified array size. Additionally, when accessing variables that have not yet been

assigned a value a NullPointerException is thrown (not the case for primitive types

as they have default values).

In C, however, there is no runtime checking for array indexes and non-initialized

values.This means that it is possible to lookup data located outside of the array in

https://en.cppreference.com/w/cpp/language/operators
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/operator-overloading
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/operator-overloading
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/types

memory. Additionally, no checks are made when accessing uninitialized data structures,

and they may contain garbage data. Welcome to the land of undefined behaviour.

Java provides runtime checks for division by 0 and throws an instance of

ArithmeticException when it occurs. In C division by zero is undefined behaviour but does

not trigger any exceptions.

a. Are there other constructs you can think of?

Legal values for types. Fx. both C and Java exhibit rollover behaviour when encountering

an integer overflow. Neither language provides runtime checking for this. Some versions

of the Ada language trigger an exception in case of overflow.

a. What about the language you are designing?

What data types are in your language? Do you perform any runtime or compile checks on

them?

4. The language SIMSCRIPT allows data elements of different types to be stored as elements of

an array. One reason for this is that arrays in SIMSCRIPT are implemented as vectors of

pointers to the data elements thus each element in an array has a uniform representation. Both

Java and SML use the same implementation technique, but do not allow data elements of mixed

types in arrays. Can you explain why? Can you give a work-around in Java that enables you to

store mixed elements in an array? Can you explain why this works in Java? What about your

own language – will it allow mixed types in arrays/compound data types – why/why not?

Java can provide stronger type checking at compile time by only allowing one type of element in

a collection.

To work around this, collections, e.g. ArrayList, can be declared with the type Object, which

enables all types deriving from Object(every non-primitive type) to be added to the list

regardless of their type. Additionally, the collections can be declared using interfaces or super

classes(like Object), which both also enable different subtypes in the same array.

5. Do Sebesta exercise 9 on page 322.

9. Multidimensional arrays can be stored in row major order, as in C++, or in column

major order, as in Fortran. Develop the access functions for both of these arrangements

for three-dimensional arrays.

See the following resources:

● https://eli.thegreenplace.net/2015/memory-layout-of-multi-dimensional-arrays

https://eli.thegreenplace.net/2015/memory-layout-of-multi-dimensional-arrays

● https://stackoverflow.com/questions/14015556/how-to-map-the-indexes-of-a-matr

ix-to-a-1-dimensional-array-c

Group Exercises - Lecture 12

1. Discuss the outcome of the individual exercises

Did you all agree on the results?

2. Do the individual exercise 1 and 2 for your own language

If you do not deal with the low level details of how integers and floats are represented
in your language, then consider how they are represented in the language that you
are compiling to.

3. Do Sebesta exercise 13 on page 323 (rather than write, discuss with your group) or
more to the point discuss what was lost and what was gained by excluding pointers
from the design of Java

What was gained:
● Simplification of the language. No need to worry about dereferencing and

pointer arithmetic (which can often lead to program errors for unexperienced
programmers)

What was lost:
● Low level control of memory. I.e no/limited control of stack/heap allocation

(possible through sun.misc.Unsafe) and no option to pass parameters by
reference(parameters are always passed by value in Java).

See Sebesta - 6.11.7 Implementation of Pointer and Reference Types for more
Information.

4. What are the arguments for and against heap management with single-sized
elements and variable-sized elements?
Single-sized cells:

For:

■ Simple
■ Allocation is easy (just follow the linked list of pointers to available cells

and take the amount you need)

Against:

■ Not as powerful, most languages need variable-sized cells.
■ Garbage collection is difficult

● Potential for multiple pointers to same cell (Can be solved using
reference counting or the mark sweep approach)

Variable-size cells:

For:

■ Heap space can be utilized more effectively with objects of variable size

Against:

https://stackoverflow.com/questions/14015556/how-to-map-the-indexes-of-a-matrix-to-a-1-dimensional-array-c
https://stackoverflow.com/questions/14015556/how-to-map-the-indexes-of-a-matrix-to-a-1-dimensional-array-c

■ Has all the sames difficulties of managing a heap of single-size cells
■ Scanning is problematic, where does the next cell start, if they have

different sizes? (This can be solved by having each cell store its own size,
but this uses more space)

■ Finding an available (big enough) space is a complex problem

For more information see Sebesta Section 6.11.7.3 Heap Management

5. Do Sebesta exercise 16 on page 323.

16. What would you expect to be the level of use of pointers in C#? How often will
they be used when it is not absolutely necessary?

Pointers are rarely used in C# as constructs are added to replace them, specifically:

references, out parameters, and the Marshal Class. As such, pointers are generally only

used when a managed solution adds an unacceptable overhead, and their use is

discouraged by the language designers by requiring the unsafe keyword .

The principal argument for the more restrictive constructs used in C# is better error

detection, with which better reliability is obtained. A perhaps nebulus argument for the

use of pointers would be the loss of freedom when, e.g. using references. Languages

such as C and C++ put a stronger ‘faith’ in the programmer, that they know what they are

doing and will not make mistakes.

Individual Exercises - Lecture 13
1. Read the articles under additional references.

The articles will be used as a basis for the discussions in the group exercises.

2. Sebesta chapter 7, p 350-351, exercises 9,13, 19
9. Assume the following rules of associativity and precedence for expressions:

Show the order of evaluation of the following expressions by parenthe- sizing all
subexpressions and placing a superscript on the right parenthesis to indicate order.
For example, for the expression
a + b * c +d
the order of evaluation would be represented as
((a + (b * c)1)2 + d)3

Exercise Original Expression Expression with Explicit Evaluation
Order

A a * b - 1 + c
 (((𝑎 * 𝑏) 1 − 1) 2 + 𝑐) 3

B a * (b - 1) / c mod d
(((𝑎 * (𝑏 − 1) 1) 2/ 𝑐) 3 𝑚𝑜𝑑 𝑑) 4

C (a - b) / c & (d * e / a -
3) (((𝑎 − 𝑏) 1 / 𝑐) 2 & (((𝑑 * 𝑒) 3 / 𝑎) 4 − 3

D -a or c = d and e
 ((− 𝑎) 1 𝑜𝑟 ((𝑐 = 𝑑) 2 𝑎𝑛𝑑 𝑒) 3) 4

E a > b xor c or d <= 17
 (((𝑎 > 𝑏) 1 𝑥𝑜𝑟 𝑐) 3 𝑜𝑟 (𝑑 <= 17) 2) 4

F -a + b
(− (𝑎 + 𝑏) 1) 2

13. Let the function fun be defined as

int fun (int* k) {

*k += 4;

return 3 * (*k) - 1;

}

Suppose fun is used in a program as follows:

void main() {

int i = 10, j = 10, sum1, sum2;

sum1 = (i / 2) + fun(&i);

sum2 = fun(&j) + (j / 2);

}

This exercise does not specify which operator precedence and associativity to use. In our

solution and the one provided by Sebesta we assume the program to be written in C (as

the syntax indicates).

For more information on C: https://en.cppreference.com/w/c/language/eval_order

a. operands in the expressions are evaluated left to right? Sum1: 46, Sum2: 48

b. operands in the expressions are evaluated right to left? Sum1: 48, Sum2: 46

19. Consider the following C program:

int fun (int* i) {

*i += 5;

return 4;

}

void main(){

int x = 3;

x = x + fun(&x);

}

What is the value of x after the assignment statement in main, assuming
a. operands are evaluated left to right? X: 7
b. operands are evaluated right to left? X: 12

1

https://en.cppreference.com/w/c/language/eval_order

3. Sebesta chapter 7, p 352, programming exercises 1 and 2
1. Run the code given in Problem 13 (in the Problem Set) on some system that
supports C to determine the values of sum1 and sum2. Explain the results.

C program:

#include <stdio.h>

int fun(int* k) {

*k += 4;

return 3 * (*k) -1;

}

void main() {

int i = 10, j = 10, sum1, sum2;

sum1 = (i / 2) + fun(&i);

sum2 = fun(&j) + (j / 2);

printf("Sum1: %d, Sum2: %d \n", sum1, sum2);

}

Prints: Sum1: 46, Sum2: 48

The result indicates that the implementation of C used evaluated the expressions from

left to right. By evaluating the expression from left to right i is divided by 2 before four is

added to it so sum1 is 46. In contrast sum2 is 48 as 4 is added to j before j is divided by

2.

Again for more information on C: https://en.cppreference.com/w/c/language/eval_order

2. Rewrite the program of Programming Exercise 1 in C++, Java, and C#, run them,

and compare the results.

C++ Program: the result for C++ is the same as for C.

Java Program: Java uses pass-by-value exclusively. To emulate the behavior of the c

program a wrapper class is created and used in place of the integers i and j. This

simulates pass-by-reference semantics.

public class JavaVersion {

private static class IntWrapper {

int val;

public IntWrapper(int val) {

this.val = val;

}

}

2

https://en.cppreference.com/w/c/language/eval_order

static int fun(IntWrapper wrappedInt){

wrappedInt.val += 4;

return 3 * wrappedInt.val - 1;

}

public static void main(String[] args) {

IntWrapper i = new IntWrapper(10), j = new IntWrapper(10);

int sum1, sum2;

sum1 = (i.val / 2) + fun(i);

sum2 = fun(j) + (j.val / 2);

System.out.println(String.format("Sum1: %d, Sum2: %d", sum1, sum2));

}

}

Prints: sum1 = 46, sum2 = 48

class Program { // C# version

static int fun(ref int k) {

k += 4;

return 3 * (k) - 1;

}

static void Main(string[] args) {

int i = 10, j = 10, sum1, sum2;

sum1 = (i / 2) + fun(ref i);

sum2 = fun(ref j) + (j / 2);

Console.WriteLine($"Sum1: {sum1}, Sum2: {sum2}");

}

}

Prints: Sum1 = 46, Sum2 = 48

4. Sebesta chapter 8, p 386, programming exercises 1.a
1.a Rewrite the pseudocode segment using a loop structure in C, C++, Java, or C#

// Java code example

int i, j, k;

for (k = (j + 13) / 27; k > 10; k++) {

i = 3 * k - 1;

}

3

Group Exercises - Lecture 13
1. Discuss the outcome of the individual exercises

Did you all agree on the answers?

2. Discuss the article “Python & Java - A Side-by-Side Comparison”
Find it here:
https://pythonconquerstheuniverse.wordpress.com/2009/10/03/python-java-a-side-by
-side-comparison/
Consider topics such as productivity and expressiveness, i.e. how much code do you
need to write to express something?

3. Discuss the article “go to statement considered harmful” and “Structured Programming
with go to Statements”

Find them here:
http://doi.acm.org/10.1145/362929.362947
and
http://doi.acm.org/10.1145/356635.356640
Do you consider gotos harmful? Why do you have that opinion?

4. Sebesta chapter 7, p 350, exercises 4
4. Would it be a good idea to eliminate all operator precedence rules and require
parentheses to show the desired precedence in expressions? Why or why not?
As input to the discussion it is worth looking into how the Lisp languages (such as
Clojure, Common Lisp, and Scheme) are designed as these languages operate in
that way. In Lisp operators are functions that are applied to arguments, e.g, 2 + 2
becomes (+ 2 2) which is very similar to the function syntax used by imperative
languages like C plus(2, 2). So if the goal is to create a language that focuses on
functions (or lists) as much as possible, then eliminating operator precedence could
be a good idea.

It is worth noting that an expression with operators can easily be ambiguous if the
programmer isn’t familiar with the precedence, but that this isn’t possible in the same
way when users are forced to add parentheses. However requiring parentheses can
of course be a burden, e.g. by requiring more typing, and because users cannot rely
on their knowledge of mathematics to get an intuitive understanding of how
expressions work when learning the language. Extensive use of parentheses could
also have a negative impact on readability.

4

https://pythonconquerstheuniverse.wordpress.com/2009/10/03/python-java-a-side-by-side-comparison/
https://pythonconquerstheuniverse.wordpress.com/2009/10/03/python-java-a-side-by-side-comparison/
http://doi.acm.org/10.1145/362929.362947
http://doi.acm.org/10.1145/356635.356640

5. Should C's assignment operations such as += be included in other languages? Why or
why not?

The need to write an assignment that is based on the original value comes up often
in imperative languages, e.g. as an index variable when iterating over data
structures.

Writing:

A = A + B;

Is simply more verbose than:

A += B;

On the other hand, with a new operator not known from mathematics it can be
argued that the operation becomes harder to read as users might not know what ‘+=’
means? And as such, that the inclusion of assignment operations trade writability for
readability.
This example is of course relatively mild, but as expressivity goes to extremes,
readability goes down, so if the goal was to make an extremely readable language
(perhaps a beginner’s first imperative language?) compounded assignment operators
like those featured in C would be harder to defend. For an example of a programming
language with very concise code, arguably at the cost of readability, see APL:
https://en.wikipedia.org/wiki/APL_(programming_language)

6. Should C's single-operand assignment form, such as ++, be included in other languages?
Why or why not?

See Exercise 5 above, as the arguments for and against adding the ++ operator are
quite similar to the arguments for and against adding the += operator.

7. Sebesta chapter 8, p 385-386, exercises 5 and 9
5. What are the arguments, pros and cons, for Python’s use of indentation to specify
compound statements in control statements?
In Python:

if b > a:

print("b is greater than a")

elif a == b:

print("a and b are equal")

The scopes of control statements are marked with levels of indentation which makes
them more readable. However, the lack of explicit end markers also make it harder to
understand what scope a statement is part of if many nested scopes are used, and
simply changing the indentation of a line can cause either parsing error or change the
meaning of the program in the case of the last line. The latter might be more serious,
since this error can go unnoticed by the programmer if the compiler does not express
an error.

5

https://en.wikipedia.org/wiki/APL_(programming_language)

9. What are the arguments both for and against the exclusive use of Boolean
expressions in the control statements in Java (as opposed to also allowing arithmetic
expressions, as in C++)?

It can be argued that allowing arithmetic expressions to exist in control statements
(where 0 would evaluate to false and any other number to true) grants a greater
degree of expressivity.

An argument for exclusively using boolean values is that it can increase readability
and allows the compiler to catch certain type errors at compile time, e.g, x = 1 is not a
boolean expression but an assignment(which returns a value is some languages).
This means that ‘if (x = 1)’ can be detected as an error. Furthermore, it is very easy to
emulate the behavior of arithmetic expressions as booleans by adding a comparison
operator e.g, aritmeticExpr != 0.

6

Individual Exercises - Lecture 14

1. Read the articles under additional references
They can be found here:
http://zorac.aub.aau.dk/login?url=http://link.springer.com/book/10.1007%2F978-0-85
729-829-4 (chapter 4, p97-106)
Preprint:
http://people.cs.aau.dk/~bt/PLATEAU2016/Preprint-PLATEAU2016-KurtevChristense
nThomsen.pdf
Sample sheet: http://people.cs.aau.dk/~bt/PLATEAU2016/samplesheet.pdf
Task sheet: http://people.cs.aau.dk/~bt/PLATEAU2016/tasksheet.pdf

2. Go through the review questions (Sebesta) 1-37, p. 436-437

1. What are the three general characteristics of subprograms?

There is a caller and a callee

Callee returns control to the caller upon completion

The subprogram has 1 entry point.

While the callee is called, the caller is suspended, awaiting return of control from the

callee.

2. What is a subprogram call?

Request for execution of a specific subprogram (Sebesta 391)

3. What is a subprogram definition?

A subprogram definition consists of a header (describes the interface of the

subprogram) and a body (describing the actions of the subprogram) (Sebesta 391)

4. What characteristic of Python subprograms sets them apart from those of other

languages?

Function definitions (keyword ‘def’) are executable statements that assign the

function name to the function body. (Sebesta 391)

5. How do Ruby methods differ from the subprograms of other programming

languages?

In Ruby methods can be defined outside class definitions, in which case they are

considered methods of the root ‘Object’(Sebesta 392)

6. What is the feature of Lua functions?

All Lua functions are anonymous (they don’t have names) (Sebesta 392)

7. What are function declarations called in C and C++? Where are the declarations

often placed?

Prototypes. They are often placed near the top of the program or in header files.

1

http://zorac.aub.aau.dk/login?url=http://link.springer.com/book/10.1007%2F978-0-85729-829-4
http://zorac.aub.aau.dk/login?url=http://link.springer.com/book/10.1007%2F978-0-85729-829-4
http://people.cs.aau.dk/~bt/PLATEAU2016/Preprint-PLATEAU2016-KurtevChristensenThomsen.pdf
http://people.cs.aau.dk/~bt/PLATEAU2016/Preprint-PLATEAU2016-KurtevChristensenThomsen.pdf
http://people.cs.aau.dk/~bt/PLATEAU2016/samplesheet.pdf
http://people.cs.aau.dk/~bt/PLATEAU2016/tasksheet.pdf

8. Name one pure functional programming language that does not have mutable

data.

Haskell (Sebesta 393)

9. What are positional parameters?

For example a function in Java, that has the following parameters (int i, float f, String

s), could not take the following arguments (“string”, 5.2, 1), even though each of the

arguments’ types is represented. They have to follow the order of the parameters.

10. Give an example of a language that allows positional parameters in addition to

keyword parameters.

Python, C#

11. What is the use of a default value in a formal parameter?

Providing a default value for a parameter makes it optional during invocation. If a

value is not provided for the parameter it will set to its default value. Some

languages, like C#, requires all non-optional parameters to precede optional ones.

This is to ensure each argument is matched to the correct parameter. An alternative

to this is using named parameters.

See:https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-

structs/named-and-optional-arguments

12. What is the rule of using a default parameter in C++?

Formal parameters with default values must appear after all other parameters

because C++ use positional parameters

13. What is the rule for accepting variable parameters in C# methods?

Use the params keyword. All parameters must be of the same type

14. What language allows array formal parameters?

Ruby

15. What is an ellipsis?

Java ellipsis syntax (...) is used to accept a variable number of parameters

16. What are the modes, the conceptual models of transfer, the advantages, and the

disadvantages of pass-by-value, pass-by-result, pass-by-value- result, and

pass-by-reference parameter-passing methods?

Pass-by-value: In-mode. Often implemented by copy.

One advantage is that the callee can freely modify the passed value, and the caller

can know that the passed variable will not be affected (this is complicated slightly by

boxing). A disadvantage is that it can be expensive if the passed value is large.

Pass-by-result: Out-mode. Typically by copy.

2

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/named-and-optional-arguments#optional-arguments
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/named-and-optional-arguments#optional-arguments

Similar advantages/disadvantages of pass-by-value. Has the problem of parameter

collision. See Sebesta 9.5.2.2.

Pass-by-value-result: Inout. By copy.

Has the same problem of memory/cpu cost associated with copying. Also has the

problem of parameter collision.

Pass-by-reference: Inout. By access path.

Passing the parameter is effective in terms of memory and computation time. Access

to the formal parameters is, however, slightly slower due to extra level of indirection.

A disadvantage is that the subprogram may unexpectedly alter the variable you pass

to it, or even store the reference and alter the value later. This can make debugging

more challenging.

17. Describe the ways that aliases can occur with pass-by-reference parameters.

If the parameter of a function has a different name, than the argument being passed

to the function. Both variables will point to the same object / place in memory, but

they are referred to by two different names.

18. What is the difference between the way original C and C89 deal with an actual

parameter whose type is not identical to that of the corresponding formal parameter?

In original C neither the number of parameters and their types were not checked. In

C89 the type is included for the parameters in the function prototype.

19. Name some languages that support procedures.

C++, C, Python

20. Describe the problem of passing multidimensional arrays as parameters.

The problem relates to storing arrays of arrays. For instance in C, a function can only

occupy a fixed size of memory and so a function must be written for each length of

array that needs support, ie to pass an array with 100 columns you need the

following function definition in C:

..and to pass an array with 101 columns you need a function with definition:

This problem can be avoided if the array is passed as a pointer, but then you will also
need to pass the lengths of the array (rows and columns) and calculate the index
according to row major order (See Sebesta 9.5.6).

3

void fun(int matrix[][100])

void fun(int matrix[][101])

21. What is the name of the parameter-passing method used in Ruby?

Ruby uses pass-by-assignment. (see page 410 in Sebesta)

22. What are the two issues that arise when subprogram names are parameters?

Type checking the parameters of the passed subprogram and which environment

should be used to execute the passed subprogram

23. Define shallow and deep binding for referencing environments of subprograms

that have been passed as parameters.

Shallow: The environment of the call statement that enacts the passed subprogram.

That is, the passed subprogram runs within the environment of the subprogram that

calls it.

Deep: The environment of the definition of the passed subprogram. That is, the

passed subprogram runs within the environment of where it was defined.

24. What is a generic subprogram?

Functions that work regardless of the type of the argument given. This saves time,

since some algorithms can now be implemented only once.

25. What is ad hoc binding?

Ad-hoc binding refers to a method for determining which environment to reference

when executing nested subprograms. In ad-hoc binding we use the environment of

the call statement that passed the subprogram as an actual parameter. For a more

thorough explanation see Sebesta Section 9.6 pages 418-419.

26. What causes a C++ template function to be instantiated?

Naming the function in a call, or taking its address with the ‘&’ operator

27. In what fundamental ways do the generic methods of Java 5.0 differ from those of

C# 2005?

C# does not support wildcard types (indicated by ‘?’ in Java) (Sebesta 428)

28. If a Java 5.0 method returns a generic type, what type of object is actually

returned?

During execution the raw method works on objects of the Object class. Upon

returning the value it is cast to the appropriate type.

29. If a Java 5.0 generic method is called with three different generic parameters,

how many versions of the method will be generated by the compiler?

Only one copy of the code is built (because, as stated above, the raw method

operates on objects of the Object class).

30. When does a variable have unlimited extent?

A variable has unlimited extent, if the variable’s lifetime is the same as the lifetime of

the entire program.

4

31. What is subtype polymorphism?

This is a concept from object oriented programming, where a variable of type A can

be assigned a value of type A or any of the subclasses derived from A.

32. What is a multicast delegate?

A delegate class that can store a list of delegates, which can then be called in order

and the value of the last delegate is returned.

For definition of a delegate see Sebesta 9.7 on page 420.

33. What is the main drawback of generic functions in F#?

F# performs type inference for generic functions. So some generic functions like

adding to parameters, will have their types inferred to int and the function becomes

less useful.

34. What is a coroutine?

- A normal function will run to completion before returning.

- A coroutine is a function that has the ability to pause execution, and return

control to the caller for a time, before picking it up again where it left off.

35. What are the language characteristics that make closures useful?

Statically scoped, allow nested subprograms and allows subprograms as parameters

36. What languages allow the user to overload operators?

Python, C#, C++, Haskell… (see https://en.wikipedia.org/wiki/Operator_overloading

for a longer list)

37. What is a symmetric unit control model?

The coroutine control mechanism (Sebesta 9.13, p. 432)

3. Do Sebesta chapter 9, p 438, exercise 4
4. Suppose you want to write a method that prints a heading on a new output page,
along with a page number that is 1 in the first activation and that increases by 1 with
each subsequent activation. Can this be done without parameters and without
reference to nonlocal variables in Java? Can it be done in C#?
The Java program below implements a counter that does not make use of method
arguments nor nonlocal references:

5

public static void main(String[] args) {
 Runnable incrementer = createIncrementer();

 incrementer.run(); // Prints 0
 incrementer.run(); // Prints 1
 incrementer.run(); // Prints 2
}

public static Runnable createIncrementer(){

https://en.wikipedia.org/wiki/Operator_overloading

And here is a C# version

4. Argue for or against Java's design not to include operator overloading.

Allowing operator overloading makes operations with mathematical entities like complex
number and matrices simpler (e.g. BigDecimal in Java uses an add method instead of
+). On the other hand by allowing users to overload operators, types can be created
where + and - have completely different meaning making programs much harder to
understand. However, this negative aspect is similar to the problem of classes and
method being poorly named. Consider for example the addition of two lists list1 + list2,
does this refer to a pairwise addition of the elements, or concatenation of list1 and list2?

5. Go through Sebesta chapter 14, p 652-653, review questions 1-27

1. Define exception, exception handler, raising an exception, continuation,
finalization, and built-in exception.
Exception: The state of the program has somehow deteriorated to a point where the
intended computation is no longer possible and instead of continuing an exception is
raised as the mechanism to handle this state, via the exception handler.
Exception handler: A component responsible for deciding how to proceed in the
event of a specific type of exception.
Raising an exception: An event occurs, that triggers an exception. For example,
some invariant no longer holds.
Continuation: The question of whether to terminate the program or resume exection.
Finalization: Code that is always executed, regardless of whether an exception is
thorwn/raised. For example the finally block in java.
Build-in exception: The exception types built into the language (as opposed to
programmer-defined exceptions)

6

 AtomicInteger i = new AtomicInteger();
 return () -> System.out.println(i.getAndIncrement());
}

class Program {
 static void Main(string[] args) {
 var pageCounter = GetPageCounter();
 Console.WriteLine($"Page: {pageCounter()}");
 Console.WriteLine($"Page: {pageCounter()}");
 Console.WriteLine($"Page: {pageCounter()}");
 }

 static Func<int> GetPageCounter() {
 int page = 0;
 return () => page++;
 }

}

2. How did the early programming languages support the exception-handling
mechanism?
In early programming languages the occurrence of errors simply caused the program
to be terminated and control to be transferred to the operating system. Alternatively,
some languages, e.g. C, use integer values to represent at exit status of a program.
This integer value may represent some exception/error.
3. What are the advantages of having support for exception handling built into a
language?
It allows for programmers to create code that to some extent attempts to handle
exceptions that could occur as a construction that isn’t directly written along with the
rest of the program's statements.

It makes it possible to handle exceptions externally by raising errors up though the
call stack to an eventual point that has a solution.
4. What is the reason that some languages do not include exception handling?
One reason some languages do not include exception handling is the complexity it
adds to the language. Some methods of exception handling could be considered a
special case of the goto, a jump to another point in the program.
5. Give an example of an error that is not detectable by hardware but can be
detected by the code generated by the compiler in Java.
Checking that arrays are indexed within their bounds.
6. What is the use of label parameters in Fortran?
This allows the callee to return to a different point in the caller if an exception is
thrown.
7. How does exception propagation work in Java?
An exception is propagated through the call-stack until an appropriate try/catch
catches the exception. If the exception is not caught before the main method, the
program terminates.
8. How does a throw statement without an operand work in C++?
An empty throw either rethrows the exception if used inside a handler or terminates
the program. For more information see (2):
https://en.cppreference.com/w/cpp/language/throw
9. How can an exception handler be written in C++ so that it handles any exception?
C++ has a special construct for catching all exceptions:

catch(...)
10. What constraint will a function overriding a function that has a throws clause
face?
The overriding function cannot have a more general exception in its own throws
clause.
11. Does Java include built-in exceptions?
Yes. Here is a list
(https://www.geeksforgeeks.org/types-of-exception-in-java-with-examples/)
12. Which library functions in C++ support the overflow_error exception?
Some third party math libraries like boost.math

7

https://en.cppreference.com/w/cpp/language/throw
https://www.geeksforgeeks.org/types-of-exception-in-java-with-examples/

13. What are the two system-defined direct descendants of the Throwable class in
Java?
Error and Exception.
14. What package in Java contains the Array Index Out Of Bounds Exception?
Java.lang.Exception
15. How can an exception handler be written in Java so that it handles any
Exception?
catch(Exception e) will catch all exceptions.
catch(Exception e), however, catches exceptions and serious runtime errors that
most programs should not catch (e.g., VirtualMachineError - the Java Virtual Machine
is broken or has run out of resources necessary for it to continue operating.).
16. What is the difference between C++ exception handlers and Java exception
handlers?
C++ can throw anything as an exception, Java can only throw ‘throwables’
C++ has a catch all exception
17. What is the difference between Java exception handlers and Python exception
handlers?
Python’s handlers allow for an else clause to be defined which is called if no
exception is raised.
18. How can a method deal with exceptions it receives from another method that lists
a particular checked exception in its throw clause?
It can call the other method inside a try statement, with a catch clause, that handles
the case, where the exception is thrown. In Java, methods with a checked exception
can only be called inside a try-clause with a catch-clause catching the checked
exception.
19. In Java, when does a try clause only have a finally clause and no exception
handlers?
This was a result of the explicit lock interface introduced in Java 5.0. Now a section
that acquired a lock will be implemented in a try clause, with the lock being released
in a finally clause.
20. In Java, what clause should a method include to propagate any checked
exception?
A throws clause must be added to the methods definition.
21. Explain what an else block in Python does.
This is a block of code that only executes in the absence of an exception thrown in
the try clause.
22. What advantages do assert statements have?
They can help in debugging by telling exactly where in the program a function started
having unexpected values. These assertions can also be disabled for the deployment
build. This saves time for later program maintenance.
23. What happens when an assert statement evaluates to false?
In Java the AssertionError exception is thrown.
24. What does the message method of Ruby’s StandardError class do?
Returns the result of invoking exception.to_s. Normally this returns the
exception's human-readable error message or its name, as to_s by default returns
the exception's message or the name of the exception if no message is set.

8

25. What exactly happens when a raise statement with a string parameter is
Executed?
In Ruby this causes an RuntimeError to be raised with the string as its message.
26. What does the Python _debug_ flag do?
A constant that can be disabled by running the python program with the -o flag.
Means that unnecessary calls, such as messages written to the console during
design time can be removed elegantly.
27. In what ways are exception handling and event handling related?
In both cases a pre-registered handler is called when something occurs (an
exception or an event). However, while exceptions are either explicitly raised by user
code or implicitly raised by the runtime environment, events are created by external
actions such as the user clicking a button in a gui.

For more information see Sebesta Section 14.5 - 14.7

6. (optional but recommended) In exercise 2 for Lecture 11 you created an AST for the little
language defined in Figure 7.14. Design and implement a recursive interpreter for the
language based on the Visitor Pattern (clue: look at the Visitor for pretty printing you
implemented in exercise 4 in Lecture 11)

9

// Visitor for IfExpression in the main interpreter class

public void visit(ifExprNode ifNode) {
 boolean predicateResult;
 predicateResult = ifNode.predicateNode.accept(new BooleanVisitor());

if (predicateResult) {
 // Execute statements inside the if statement body

ifNode.Body.accept(this);
 } else if (ifNode.hasElseClause()) {
 // Execute statements inside the else body

 ifNode.elseBody.accept(this);

 }

}

This language does not feature boolean expressions/operators, so we are assuming the

c-style approach to boolean values, where 0 represents false and all other numbers

represent true. The ExpressionVisitor recursively calls down depth first into the expression

until literal values or ids are found. If an id is found, the value of said variable is looked up in

the symbol table, and the expression is then evaluated using the values from the variables

and the literals values of the expression when returning up the tree.

10

public boolean visit(PlusExpression plusNode) {
 int leftValue = plusNode.leftChild.accept(new ExpressionVisitor());
 int rightValue = plusNode.rightChild.accept(new ExpressionVisitor());
 int sum = leftValue + rightValue;
 return sum != 0;
}

Group Exercises - Lecture 14
1. Discuss the outcome of the individual exercises

Did you all agree on the answers?

2. Do Sebesta chapter 9, p 438, exercise 5
5. Consider the following program written in C syntax:

For each of the following parameter-passing methods, what are all of the values of
the variables value and list after each of the three calls to swap?

A) Passed by value,
swap(value, list[0]) => value: 2 and list: 1, 3, 5, 7, 9
swap(list[0], list[1]) => value: 2 and list: 1, 3, 5, 7, 9
swap(value, list[value]) => value: 2 and list: 1, 3, 5, 7, 9

B) Passed by reference
swap(value, list[0]) => Value: 1 and List: 2 3 5 7 9
swap(list[0], list[1]) => Value: 1 and List: 3 2 5 7 9
swap(value, list[value]) => Value: 2 and List: 3 1 5 7 9

C) Passed by value-result
As stated in Sebesta Section 9.5.2.2 when using variables that are passed-by-result
for indexing arrays the effect depends on when the parameter is bound to an
address. If the address is bound at the time of the call the result will match B,
otherwise the result is:

swap(value, list[0]) => Value: 1 and List: 2 3 5 7 9
swap(list[0], list[1]) => Value: 1 and List: 3 2 5 7 9
swap(value, list[value]) => Value: 2 and List: 3 2 1 7 9

For more information about parameter passing methods see Sebesta Section 9.5.2

11

void swap(int a, int b){
 int temp;
 temp = a;

 a = b;

 b = temp;

}

void main(){
 int value = 2, list[5] = {1, 3, 5, 7, 9};
 swap(value, list[0]);
 swap(list[0], list[1]);
 swap(value, list[value]);
}

3. What mechanism can be used for detecting errors in programming languages without
exception handling?

Examples include error codes (e.g., C, C++, Go), returning types that can be either
the result or an empty value like Option in Rust (e.g., Rust, OCaml, Haskell), or
jumping to different labels depending on if the operation fails or succeeds (e.g.
Fortran see Sebesta Section 14.1).

4. What is the difference between exception handling in C# and Java?

Java supports both checked and unchecked exceptions, C# only has unchecked
exceptions.
A checked exception is an exception the caller is forced to handle if the callee throws
it.

5. (optional) Write a recursive interpreter for (a subset) of the language you are designing in
your project

Only do a very small subset of your language.

12

Individual Exercises - Lecture 15

1. Read the articles under additional references.
The lean, mean, virtual machine:
https://www.infoworld.com/article/2077184/the-lean--mean--virtual-machine.html
The Jasmin User Guide:
http://jasmin.sourceforge.net/guide.html
Technical Overview of the Common Language Runtime (or why the JVM is not my
favorite execution environment):
https://www.semanticscholar.org/paper/Technical-Overview-of-the-Common-Langua
ge-Runtime-Meijer-Miller/60d90adf79acd100704ccc5d476982569272251c

2. Do Fischer et al exercise 4, 7, 8, 9 on pages 414-415 (exercise 4, 5, 8, 10 on pages
446-447 in GE)

4. Why are there two instructions (ldc and ldc_w) for pushing a constant value on top
of the stack?
In summary, ldc selects what to push onto the stack using one byte for the index
while ldc_w uses two bytes (wide index). The wide index is constructed as
indexbyte1 << 8 + indexbyte2.

7. The JVM has two instructions for unconditional jumps: goto and goto_w.
Determine the appropriate conditions for using each instruction.
The goto instruction forms a jump offset using two bytes, while the goto_w forms the
jump offset using four bytes. Thus, if the intended target of the jump can be reached
by an offset o, −32768 ≤ o ≤ 32767, then the goto instruction suffices. Otherwise, the
goto_w instruction must be used. It turns out, however, that the size of a JVM method
cannot exceed 65535 bytes, so the goto_w instruction is rarely needed.

8. The ifeq instruction provisions only 2 bytes for the branch offset. Unlike goto, there
is no corresponding goto_w for instruction ifeq. Explain how you would generate
code so that a successful outcome of ifeq could reach a target that is too far to be
reached by a 16 bit offset.
The ifeq instruction is a conditional jump using two bytes for the offset, to jump
further one can simply jump to another jump instruction that supports a larger offset
like goto_w.

https://www.infoworld.com/article/2077184/the-lean--mean--virtual-machine.html
http://jasmin.sourceforge.net/guide.html
https://www.semanticscholar.org/paper/Technical-Overview-of-the-Common-Language-Runtime-Meijer-Miller/60d90adf79acd100704ccc5d476982569272251c
https://www.semanticscholar.org/paper/Technical-Overview-of-the-Common-Language-Runtime-Meijer-Miller/60d90adf79acd100704ccc5d476982569272251c

9. Consider the C or Java ternary expression: (a > b) ? c : d, which leaves either c or
d on TOS depending on the outcome of the comparison. Assume all variables are
type int, but do not assume that any of them are 0. Explain how you would generate
code for the comparison that uses only the ifne instruction for branching (no other if
or goto instructions are allowed).

The ifne instruction can be used to compute a > b by checking that all other
conditions are not True, for example checking for equality by subtracting the two
numbers and checking if the result is not 0.
If a > b then a - b would be positive. Then we can use ifne to check the sign bit by
shifting right 31 bits (Given that the int is represented as 32 bit signed).
For a more thorough explanation see Solutions Manual for Crafting a Compiler
available on Moodle (Page 35)

3. (optional) Follow the studio associated with Crafting a Compiler Chapter 10:
Intermediate Representations
The materials for this exercise can be found in the virtual machine available on
Moodle.

4. (optional) Follow the Lab associated with Crafting a Compiler Chapter 10:
Intermediate Representations
The materials for this exercise can be found in the virtual machine available on
Moodle.

Group Exercises - Lecture 15

1. Discuss the outcome of the individual exercises
Did you all agree on the answers?

2. Do Fischer et al exercise 5, 6, 10 on pages 414-415 (exercise 6, 7, 9 on pages

446-447 in GE)

5. The form of the getstatic instruction is described in Section 10.2.3 as having both a
name and a type. While the name is certainly necessary to access the desired static
field, is the type information really necessary? Recall that the accessed field field has
declared type in the class defining the field
The JVM is designed to support separate compilation of Java classes. A getstatic
instruction may be issued for a static element of a class that has been modified and
recompiled out-of-view of the code that is fetching the static element.
We therefore could have two different views of the type of some static element: one
at the instruction fetching the value, created when the fetching code was compiled,
and another at the class providing the value, created when that code was compiled.
The type of the static field is included in the getstatic instruction so that the actual
and supposed type of the static element can be checked for compatibility.

6. The getstatic instruction described in Section 10.2.3 requires that the static field’s
name be specified as an immediate operand of the instruction.

Suppose the JVM instead had a getarbitrary instruction that could load a value from
some arbitrary location. Instead of specifying the field by its name in an immediate
operand, the location’s address would be found at TOS. What are the implications of
such an instruction on the performance and security of the JVM?
If JVM had a getarbitrary instruction without any checks it could be used like a pointer
in C and, e.g., read parts of a value such as the second half of a 64-bit long as a
32-bit int. But if the instruction has to be made secure JVM would need to check that
the address is the start of a value, that the value matches the expected type, and that
value is allowed to be read. So to keep guarantees to the getstatic instruction, the
implementation of getarbitrary would have a higher complexity.

10. A constructor call consumes the TOS reference to the class instance it should
initialize. All constructors are void, so they do not return any kind of result. However,
Java programs expect to obtain the result of the constructor call on TOS after the
constructor has finished. By what JVM instruction sequence can this be
accomplished?
As constructors consume the reference put on the top of the stack by new instruction,
the reference should be duplicated by dup before the constructor is executed.
For more information see Stack Operations in Fisher Section 10.2.

3. Discuss the advantages and disadvantages of types in the JVM instruction set.

Might be easier to implement statically typed languages on top of the JVM, since the
JVM bytecode verifier provides type checking before executing code. This means
that certain program errors that could otherwise lead to unintended behavior can be
detected by the JVM at runtime. Implementing type-safe interpreters are made
simpler by having typed instructions.

On the other hand the JVM provides no way of encoding type-unsafe features of
typical programming languages, such as pointers, immediate descriptors (tagged
pointers), and unsafe type conversions. As such, it may be slightly more difficult to
implement dynamically typed languages in the JVM(although “Da vinci Machine”
project extended the JVM to better support dynamic languages. This fx. added
instructions that allowed method invocation without type checking).
https://www.cin.ufpe.br/~haskell/papers/Technical_Overview_of_the_Common_Lang
uage_Runtime-Meijer&Miller.pdf
https://openjdk.java.net/projects/mlvm/

Typed instructions introduce a large number of instructions that have identical
behavior and differ only in their type. Furthermore, the JVM uses only one byte for
opcodes. If every typed operation supported every type in jvm, the amount of
instructions there would exceed what we could represent in a single byte. Instead the
JVM instructions have a reduced level of support for certain types(less orthogonality).
For a more thorough explanation, and a table showing what combination of
operations and types are available see:
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.11.1

4. MS IL has similar properties to JVM instruction, but they are not all typed. Discuss

why that is the case and what are the consequences.
Having a single untyped instruction (e.g., add) instead of one instruction per type
(e.g., iadd ladd fadd dadd) significantly reduces the number of instructions in the
instruction set. However, having untyped instructions makes the implementation of
an interpreter more difficult, as it must determine what operation to perform from its
operands. This is not a problem for the CLR as all methods are compiled when
executed, however, Oracle’s HotSpot JVM starts by interpreting the bytecode and
then compiles code executed repeatedly.
For more information see:
https://blog.overops.com/clr-vs-jvm-how-the-battle-between-net-and-java-extends-to-t
he-vm-level/
https://www.oracle.com/technical-resources/articles/java/architect-evans-pt1.html
https://docs.microsoft.com/en-us/dotnet/standard/managed-execution-process

https://www.cin.ufpe.br/~haskell/papers/Technical_Overview_of_the_Common_Language_Runtime-Meijer&Miller.pdf
https://www.cin.ufpe.br/~haskell/papers/Technical_Overview_of_the_Common_Language_Runtime-Meijer&Miller.pdf
https://openjdk.java.net/projects/mlvm/
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.11.1
https://blog.overops.com/clr-vs-jvm-how-the-battle-between-net-and-java-extends-to-the-vm-level/
https://blog.overops.com/clr-vs-jvm-how-the-battle-between-net-and-java-extends-to-the-vm-level/
https://www.oracle.com/technical-resources/articles/java/architect-evans-pt1.html
https://docs.microsoft.com/en-us/dotnet/standard/managed-execution-process

Individual Exercises - Lecture 16
1. Read the articles under additional references.

Can be found here:
http://www.techrepublic.com/article/examine-class-files-with-the-javap-command/581
5354
http://docs.oracle.com/javase/1.5.0/docs/tooldocs/windows/javap.html

2. Do Fischer et al exercise 3, 9, 11 on pages 441-443 (exercise 3, 10, 11 on pages
473-476 in GE)

3. Design an AST node that implements the CondTesting interface to accommodate
an if statement with no else clause.

(a) How do you satisfy the CondTesting interface while indicating that the if statement
has no else clause?
The simplest solution is to create a node with an empty else clause that generates no
instructions for the else branch. A downside of this design is that it creates an
unnecessary endLabel, since it should always skip the else clause.

(b) How is the code-generation strategy presented in Section 11.3.9 affected by your
design?
A benefit of the above design is that the existing code-generation strategy can be
used without any changes.

9. Some languages offer iteration constructs like C’s for statement, which aggregates
the loop’s initialization, termination, and repetition constructs into a single construct.
Investigate the syntax and semantics of C’s for statement. Develop an AST node and
suitable interface to represent its components. Design and implement its
code-generation visitor.
for (initializationStatement; testExpression; updateStatement)
{

// statements inside the body of loop
}

AST Node:
ForLoopNode:

children: initStatement, predicate, updateStatement, loopBody

1

http://www.techrepublic.com/article/examine-class-files-with-the-javap-command/5815354
http://www.techrepublic.com/article/examine-class-files-with-the-javap-command/5815354
http://docs.oracle.com/javase/1.5.0/docs/tooldocs/windows/javap.html

Code Generation Procedure:

procedure visit(forLoopNode n) {

doneLabel ← GenLabel()

loopLabel ← GenLabel()

n.getInitStatement().accept(this)

call emitLabelDef(looplabel)

n.predicate().accept(this)

predicate ← n.predicate.getResultLocal()

call emitBranchIfFalse(testExpressionResult, doneLabel)

n.getLoopBody.accept(this)

n.getUpdateStatement.accept(this)

call emitBranch(loopLabel)

call EmitLabelDef(doneLabel)

}

11. Section 11.3.10 generates code that emits the predicate test as instructions that
occur before the loop body. Write a visitor method that generates the loop body’s
instructions first, but preserves the semantics of the WhileTesting node (the predicate
must execute first).

procedure visit(While n){

loopBodyLabel ← GenLabel()

predicateLabel ← GenLabel()

call emitBranch(predicateLabel) // Jump to predicate

call EmitLabelDef(loopBodyLabel)

n.getLoopBody.accept(this)

call EmitLabelDef(predicateLabel)

n.getPredicate().accept(this)

predicateResult ← n.getPredicate().getResultLocal()

// If true, jump back to body

emitBranchIfTrue(predicateResult, loopBodyLabel)

}

2

3. Investigate how if-then-else, while, switch and other constructs in Java are
implemented by the Java compiler javac using javap
Compiling a .java file using “javac filename.java” and then running “javap -v
filename.class” gives you some information about how the java compiler handles
your code.
The table below shows the result from a java file with a simple while loop.

(Part of) Compiled Code Original Java Code

...
0: iconst_0
1: istore_0
2: iconst_0
3: istore_1
4: iload_0
5: iconst_5
6: if_icmpge 19
9: iload_1
10: iload_0
11: iadd
12: istore_1
13: iinc 0, 1
16: goto 4
19: iinc 1, 2
22: return
...

public class Program{
public static void main(){

int i = 0;
int a = 0;
while(i < 5){

a += i;
i += 1;

}
a += 2;

}
}

Note that in the bytecode the loop predicate check is inverted (‘>=’ instead of ‘<’). If
the inverted predicate evaluates to true, the loop is exited by jumping to 19. (Can
you see why this inversion might be useful?)

4. (optional but recommended) Follow the Lab associated with Crafting a
CompilerChapter 11: Code Generation for a Virtual Machine
The materials for this exercise are provided in the virtual machine found on moodle.
Running the main:
Right click the ANT build and click the second Ant build…:

Check both ‘build’ and ‘run’ in the options. This will make sure that the code
generator is first built and then run using the two files in the /TestFiles folder. Then
click run.

3

The rest is explained in comments inside the ...src/submit/CodeGenVisitor.java.

NOTE: There is an error in the code provided by Fischer for this exercise. This
prevents us from finding the main method. It can, however, be fixed by doing the
following:

Replace the following code (inside /CAC-lab11/src/submit/CodeGenVisitor.java)

public void visit(ClassDeclaring c) {

emitComment("CSE431 automatically generated code file");

emitComment("");

emit(c, ".class public " + c.getName());

emit(".super java/lang/Object");

emit("; standard initializer\n\n" + ".method public <init>()V\n"

+ "aload_0\n"

+ "invokenonvirtual java/lang/Object/<init>()V\n"

+ "return\n" + ".end method\n\n");

emitComment("dummy main to call our main, we don't handle

arrays");

skip(2);

emit(".method public static main([Ljava/lang/String;)V\n"

4

+ ".limit locals 1\n" + ".limit stack3\n"

+ "invokestatic " + c.getName() + "/main431()V\n"

+ "return\n" + ".end method\n\n");

visitChildren((AbstractNode) c);

}

With this code:

public void visit(ClassDeclaring c) {

emitComment("CSE431 automatically generated code file");

emitComment("");

emit(c, ".class public TestClasses/" + c.getName());

emit(".super java/lang/Object");

emit("; standard initializer\n\n" + ".method public <init>()V\n"

+ "aload_0\n"

+ "invokenonvirtual java/lang/Object/<init>()V\n"

+ "return\n" + ".end method\n\n");

emitComment("dummy main to call our main, we don't handle

arrays");

skip(2);

emit(".method public static main([Ljava/lang/String;)V\n"

+ ".limit locals 1\n" + ".limit stack3\n"

+ "invokestatic TestClasses/" + c.getName() +

"/main431()V\n"

+ "return\n" + ".end method\n\n");

visitChildren((AbstractNode) c);

}

5. (optional) In exercise 2 for Lecture 11 you created an AST for the little language
defined in Figure 7.14 and in exercise 5, for lecture 14 you designed and
implement a recursive interpreter for the language based on the Visitor Pattern.
Design and implement a code generator visitor for the language generation JVM
instructions (or rather Jasmin textual JVM programs)
Example of a generation method for the E + T case of the Expression rule:

visit(PlusExprNode plusNode) {

// Emit code that will push value of expression to TOS

plusNode.getLeftExpression().accept(this);

// Emit code that will push the value the right term to TOS

plusNode.getRightTern.accept(this);

emit("iadd");

5

Group Exercises - Lecture 16
1. Discuss the outcome of the individual exercises

Did you all agree on the answers?

2. Do Fischer et al exercise 5, 8, 4, 10 on pages 441-443 (exercise 4, 6, 7, 12 on pages
473-476 in GE)

5. Languages like Java and C allow conditional execution among statements using
the if construct. Those languages also allow conditional selection of an expression
value using the ternary operator, which chooses one of two expressions based on the
truth of a predicate. For example, the expression b ? 3 : 5 has value 3 if b is true;
otherwise, it has value 5.

(a) Can the ternary operator be represented by an CondTesting node in the AST? If
not, design an appropriate AST node for representing the ternary operator.
Yes, a ternary operator selects between two expressions similar to how if else
statements selects between two block statements.

(b) How does the treatment of the ternary operator differ from the treatment of an if
statement during semantic analysis?
In most languages the ternary operator yields a value (ie. it is an expression), while
an if-statement is just a statement.
For this reason we must do type checking on the ternary operator to verify that the
two branches return the same type, or atleast, type that can be coerced to the same
type.
Be aware that some languages (e.g., Scala and Rust) also treat if-else as
expressions.

(c) How does code generation differ for the two constructs?
The main difference is, that code generation for the ternary expression must leave
the value of the executed expression on TOS, whereas the if/else statement does
not.

6

8. The semantics of a WhileTesting node accommodate Java and C’s while
constructs. Languages like Java have other syntax for iteration, such as Java’s
do-while construct. The body of the loop is executed, and the predicate is then
tested. If the predicate is true, then the body is executed again. Execution continues
to loop in this manner until the predicate becomes false. The sense of the predicate
is consistent, in that iteration ceases when the predicate test is false. However, the
do-while construct executes the loop body before the test. The CondTesting node
represents constructs where the predicate is tested before the loop body is executed.

How would you accommodate the do-while statement? What changes are necessary
across a compiler’s phases, from syntax analysis to code generation?
The node could be annotated with a ConditionTestTime flag that signifies if the test is
supposed to happen before or after the loop iteration.
When generating the code, you emit the loop label at the start of the loop body, and
the conditional jump to the loop label at the end of the loop body.

4. Consider the code-generation strategy presented in Section 11.3.9. A conditional
jump to false Label is taken, when the predicate is false, to skip over code that
should execute only when the predicate is true. Rewrite the code-generation strategy
so that the conditional jump is taken when the predicate is true, to skip over code that
should execute only when the predicate is false.

procedure visit(CondTesting n)
trueLabel ← genLabel()
endLabel ← genLabel()
call n.getPredicate().accept(this)
predicateResult ← n.getPredicate() .getResultLocal()
call emitBranchIfTrue(predicateResult, trueLabel)
call n.getFalseBranch() .accept(this)
call emitBranch(endLabel)
call emitLabelDef(trueLabel)
call n.getTrueBranch().accept(this)

7

call emitLabelDef(endLabel)
end

10. Later versions of Java offer the so-called “enhanced for” statement. Investigate
the syntax and semantics of that statement. Develop an AST node and suitable
interface to represent the statement. Design and implement its code-generation
visitor.
An enhanced for loop is an adaptation of a normal for loop for cases where the
conditional check is trivial, i.e. looping over a collection, so its a for loop where the
condition is implicit and not user accessible. Example:

List<Integers> integers = ...

for (Integer number: integers) { System.out.println(number) }

A common implementation technique is for a type to implement a specific interface
so that it can return an iterator over its elements (e.g., Java’s iterable) which allows
multiple iterations. Using this approach, the AST node proposed for loops in Section
11.3.10 can be reused with the predicate being an iterable type. For code generation
an iterator for the type is retrieved using the iterable interface at the start of the loop,
then at each iteration it is verified that the iterator has more elements using the
hasNext method before next is called to retrieve an element which is assigned to the
symbol used in the foreach loop. At the code generation level, the predicate
condition would be generated based on the implementation of hasNext() method in
the iterator code.

Java Overview: https://www.journaldev.com/13460/java-iterator
Java Iterable: https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html
Java Iterator: https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html

3. Discuss and sketch a code generator for your language for the JVM
How do you translate your types into the ones for the JVM? How would some of your
language constructs look in java bytecode, for example an if-stmt?

8

https://www.journaldev.com/13460/java-iterator
https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html
https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html

Individual Exercises - Lecture 17

1. Read the articles under additional references
Can be found here:
http://www3.nd.edu/~dthain/courses/cse40243/spring2006/gc-survey.pdf
www.memorymanagement.org
https://www.memorymanagement.org/mmref/begin.html
https://www.c-sharpcorner.com/article/memory-management-in-net/
https://www.artima.com/insidejvm/applets/HeapOfFish.html
https://www.oracle.com/technetwork/java/javase/tech/memorymanagement-whitepap
er-1-150020.pdf

2. Do Fischer et al exercise 1, 3, 4, 5, 9, 12, 15, 20 on pages 482- 488 (exercise 2, 3, 4,
6, 11, 13, 16, 19 on pages 514-520 in GE)

1. Show the frame layout corresponding to the following C function:

int f(int a, char *b) {

char c;

double d[10];

float e;

...

}

Assume control information requires 3 words and that f’s return value is left on the
stack. Be sure to show the offset of each local variable in the frame and be sure to
provide for proper alignment (integers and floats on word boundaries and doubles on
doubleword boundaries)

1

http://www3.nd.edu/~dthain/courses/cse40243/spring2006/gc-survey.pdf
http://www.memorymanagement.org/
https://www.memorymanagement.org/mmref/begin.html
https://www.c-sharpcorner.com/article/memory-management-in-net/
https://www.artima.com/insidejvm/applets/HeapOfFish.html
https://www.oracle.com/technetwork/java/javase/tech/memorymanagement-whitepaper-1-150020.pdf
https://www.oracle.com/technetwork/java/javase/tech/memorymanagement-whitepaper-1-150020.pdf

Note that there are seven bytes of padding following variable c because the array of
doubles, d, requires double word alignment. The size of the frame could be reduced
by placing the float e before d. Such reordering is rarely done because memory
space currently is very cheap and programmers sometimes want to be able to
anticipate where variables will be placed (for debugging and cache optimization).

On the other hand, being able to predict where variables will be placed in a frame
makes it far easier to violate security rules. Hackers often access vital runtime data
(like return address or heap pointers) by overwriting valid values from adjacent fields.
Making data layout in a frame unpredictable enhances overall security.

3. Using the code below, show the sequence of frames, with dynamic links, on the
stack when r(3) is executed assuming we start execution (as usual) with a call to
main().

r(flag){

printf("Here !!!\n"); }

q(flag){

p(flag+1); }

p(int flag){

switch(flag){

case 1: q(flag);

case 2: q(flag);

case 3: r(flag); }

main(){

p(1);

}

The snapshot of frames when r(3) executes is shown below:

2

4. Consider the following C-like program that allows subprograms to nest. Show the
sequence of frames, with static links, on the stack when r(16) is executed assuming
we start execution (as usual) with a call to main(). Explain how the values of a, b, and
c are accessed in r’s print statement.

p(int a){

q(int b){

r(int c){

print(a+b+c);

}

r(b+3);

}

s(int d){

q(d+2);

}

s(a+1);

}

main(){

p(10);

}

The frame for r(16) has access to ‘c’ through itself. Access to ‘b’ can be obtained by
following the static link to the frame of q(13). ‘a’ can be found by following static links
to frame q(13) and from there to the frame of p(10).

5. Reconsider the C-like program shown in Exercise 4, this time assuming display
registers are used to access frames (rather than static links). Explain how the values
of a, b, and c are accessed in r’s print statement.
Display registers are described in section 12.2.4. For this sequence of calls we
would need a total of 3 display registers(because the deepest nesting level is three).

3

Again, accessing c is trivial as it is stored in the display of r(16) (d2).
Looking at d1 we get a reference to the display of method call q(13) which gives us
access to the ’b’ variable. Finally we look at d0, which references the display of the
method call p(10). Here we have access to the ‘a’ variable.

9. Assume that in C we have the declaration int a[5][10][20], where a is allocated at
address 1000. What is the address of a[i][j][k] assuming a is allocated in row-major
order? What is the address of a[i][j][k] assuming a is allocated in column-major
order?
Row major order:
Given a cube with the following dimension: i_length, j_length, k_length, then the
offset of a given index can be calculated as the following:
𝑂𝑓𝑓𝑠𝑒𝑡𝑅𝑜𝑤𝑀𝑎𝑗𝑜𝑟(𝑖, 𝑗, 𝑘) = 𝑖 * 𝑗

𝑙𝑒𝑛𝑔𝑡ℎ
* 𝑘

𝑙𝑒𝑛𝑔𝑡ℎ
+ 𝑗 * 𝑘

𝑙𝑒𝑛𝑔𝑡ℎ
+ 𝑘 = (𝑖 * 𝑗

𝑙𝑒𝑛𝑔𝑡ℎ
+ 𝑗) * 𝑘

𝑙𝑒𝑛𝑔𝑡ℎ
+ 𝑘

For this example we have that i_length = 5, j_length = 10, k_length = 20, then the
offset of the index 2, 1, 2 (i = 2, j = 1, k = 2) can be calculated in the following way:
𝑂𝑓𝑓𝑠𝑒𝑡(2, 1, 2) = (2 * 10 + 1) * 20 + 2 = 422
𝑀𝑒𝑚𝑜𝑟𝑦𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑅𝑜𝑤𝑀𝑎𝑗𝑜𝑟(2, 1, 2) = 1000 + 𝑂𝑓𝑓𝑠𝑒𝑡𝑅𝑜𝑤𝑀𝑎𝑗𝑜𝑟(2, 1, 2) = 1422

Column major order:
The offset using column major order can be calculated in the following way:
𝑂𝑓𝑓𝑠𝑒𝑡𝐶𝑜𝑙𝑀𝑎𝑗𝑜𝑟(𝑖, 𝑗, 𝑘) = 𝑖 + 𝑗 * 𝑖

𝑙𝑒𝑛𝑔𝑡ℎ
+ 𝑘 * 𝑖

𝑙𝑒𝑛𝑔𝑡ℎ
* 𝑗

𝑙𝑒𝑛𝑔𝑡ℎ

Using the same example as before (2,1,2 or i = 2, j = 1, k = 2) we get the following
allocation address:
𝑂𝑓𝑓𝑠𝑒𝑡𝐶𝑜𝑙𝑀𝑎𝑗𝑜𝑟(2, 1, 2) = 2 + 1 * 5 + 2 * 5 * 10 = 107
𝑀𝑒𝑚𝑜𝑟𝑦𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐶𝑜𝑙𝑀𝑎𝑗𝑜𝑟(2, 1, 2) = 1000 + 𝑂𝑓𝑓𝑠𝑒𝑡𝐶𝑜𝑙𝑀𝑎𝑗𝑜𝑟(2, 1, 2) = 1107

For an in-depth explanation of row-major and column-major order for
multi-dimensional arrays see:
https://eli.thegreenplace.net/2015/memory-layout-of-multi-dimensional-arrays

12. Assume we add a new option to C++ arrays that are heap-allocated, the flex
option. A flex array is automatically expanded in size if an index beyond the array’s
current upper limit is accessed. Thus we might see:

4

https://eli.thegreenplace.net/2015/memory-layout-of-multi-dimensional-arrays

ar = new flex int[10];

ar[20] = 10;

The assignment to position 20 in ar forces an expansion of ar’s heap allocation.
Explain what changes would be needed in array accessing to implement flex arrays.
What should happen if an array position beyond an array’s current upper limit is read
rather than written?
As the amount of memory currently allocated for the array can only hold 10 values, a
new block of memory must be allocated from the heap. Then all elements from the
original array must be copied to the new array and the new element 10 written to
location 20. When allocating a block of memory for the new array it is often better to
grow the array with a certain factor (e.g., 2x) instead of just making room for the new
elements to reduce the number of times the array must be resized. In Java ArrayList
implements an array that dynamically resizes when elements are added, the
implementation used for OpenJDK 8 can be found at [1].

The semantics for reading values from outside the bounds of a flex array is much
less clear. Two safe options would be to return a default value for the type stored in
the array (e.g., return 0 for int) or raise an error to inform the programmer that the
index provided is outside the bounds of the array. An unsafe options would be to
resize the array and then return the “garbage” value at the provided index (if all
values are initialized this is not a problem).

[1]
http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/tip/src/share/classes/java/util/ArrayList.jav
a

15. Assume we organize a heap using reference counts. What operations must be
done when a pointer to a heap object is assigned? What operations must be done
when a scope is opened and closed?

When reassigning a variable, the reference count of the heap reference being
overwritten is decreased by one and the reference count of the heap reference being
assigned is increased by one. Source and target locations containing null are treated
as special cases.

When a scope is opened, all heap references not explicitly initialized are set to null or
some special “error value.” When a scope is closed, all heap references that are lost
are treated as if they had been assigned null (thereby decreasing reference counts to
account for the lost heap references).

20. The second phase of a mark-sweep garbage collector is the sweep phase, in
which all unmarked heap objects are returned to the free space list. Detail the actions

5

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/tip/src/share/classes/java/util/ArrayList.java
http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/tip/src/share/classes/java/util/ArrayList.java

needed to step through the heap, examining each object and identifying those that
have not been marked (and hence are garbage).

Assume that the first word of each object is used to hold the length of the object and
the sign bit is used for marking. Then returning objects to the free list is a simple run
through the heap from its start address looking at the sign bit to determine if the
objects should go in the list. Next object is found by adding the length and the current
object to the address of the current object.

3. Do Sebesta exercise 7 and 8 page 468

7. It is stated in this chapter that when nonlocal variables are accessed in a

dynamic-scoped language using the dynamic chain, variable names must be stored

in the activation records with the values. If this were actually done, every nonlocal

access would require a sequence of costly string comparisons on names. Design an

alternative to these string comparisons that would be faster.

Use string mapping to replace variable names with integer placeholders that can be

accessed in a linear look up time, with a hashtable. This increases performance,

since integer comparison is cheap.

8. Pascal allows gotos with nonlocal targets. How could such statements be handled

if static chains were used for nonlocal variable access? Hint: Consider the way the

correct activation record instance of the static parent of a newly enacted procedure is

found (see Section 10.4.2).

Following the hint stated with the question, the target of every goto in a program

could be represented as an address and a nesting_depth, where the nesting_depth

is the difference between the nesting level of the procedure that contains the goto

and that of the procedure containing the target. Then, when a goto is executed, the

static chain is followed by the number of links indicated in the nesting_depth of the

goto target. The stack top pointer is reset to the top of the activation record at the end

of the chain.

6

Group Exercises - Lecture 17
1. Discuss the outcome of the individual exercises

Did you all agree on the answers?

2. Do Fischer et al exercise 2, 7, 11, 10, 13, 16, 19, 25, 24 on pages 482-488 (exercise
1, 8, 9, 10, 12, 15, 18, 24, 25 on pages 514-520 in GE)

2. Local variables are normally allocated within a frame, providing for automatic
allocation and deallocation when a frame is pushed and popped. Under what
circumstance must a local variable be dynamically allocated? Are there any
advantages to allocating a local variable statically (i.e., giving it a single fixed
address)? Under what circumstances is static allocation for a local permissible?

The variable must be dynamically allocated whenever the corresponding
function/method/procedure can be activated more than once, i.e. there is more than
one activation record for the function/method/procedure on the stack (think e.g. of a
recursive function).

Some languages allow the programmer to explicitly specify that a local function
variable should be static, which causes the variable to persist across all calls of the
function.

Local constants can also be statically allocated.

7. Although the first release of Java did not allow classes to nest, subsequent
releases did. This introduced problems of nested access to objects, similar to those
found when subprograms are allowed to nest. Consider the following Java class
definition:

class Test {

class Local {

int b;

int v(){ return a+b; }

Local(int val){ b=val; }

}

int a = 456;

void m(){

Local temp = new Local(123);

int c = temp.v();

}

}

Note that method v() of class Local has access to field a of class Test

7

as well as field b of class Local. However, when temp.v() is called, it
is given a direct reference only to temp. Suggest a variant of static links
that can be used to implement nested classes so that access to all visible
objects is provided.

The problem is that the frame produced from the call to .v() has only a static
reference to temp (the instance of the ‘Local’ class). From this we have no reference
to variable ‘a’ from the test class instance.

However, nested class instances can only exist if their outer class is also instantiated.
So to solve our problem: when creating an instance of the nested class(using the
new keyword), we simply include a pointer(static link) to the outer class.
Now when .v() is called, it will contain a static link to the instance of the Local class,
which then again contains a static link to the ‘Test’ class instance.

11. In Java, subscript validity checking is mandatory. Explain what changes would be
needed in C or C++ (your choice) to implement subscript validity checking. Be sure to
address the fact that pointers are routinely used to access array elements. Thus you
should be able to check array accesses that are done through pointers, including
pointers that have been incremented or decremented.

This would require us to know how an array is represented in memory and being able
to check that a pointer still points to the array elements, e.g. by going from the
current element back to the start of the array, where the size is kept.

First, arrays in C should be made first-class types that consist of a pointer and a size.
This would allow arrays to be both passed to/from functions and have their bounds
checked as their size is always available. Both explicit and implicit coercion of arrays
to pointers should not be allowed. Pointer arithmetic should also be disallowed in
order to prevent data from being accessed outside the bounds of an array. However,
many existing programs would have to be updated to account for these changes.
Adding bounds-checking to C has been a focus for much research with approaches
suggested that are backwards compatible [1] and some that extend C [2].

[1] Dinakar Dhurjati and Vikram Adve, Backwards-compatible array bounds checking
for C with very low overhead, https://dl.acm.org/doi/10.1145/1134285.1134309

[2] Andrew Ruef, Leonidas Lampropoulos, Ian Sweet, David Tarditi, and Michael
Hicks, Achieving Safety Incrementally with Checked C,
https://rd.springer.com/chapter/10.1007/978-3-030-17138-4_4

8

https://dl.acm.org/doi/10.1145/1134285.1134309
https://rd.springer.com/chapter/10.1007/978-3-030-17138-4_4

10. Most programming languages (including Pascal, Ada, C, and C++) allocate global
aggregates (records, arrays, structs, and classes) statically, while local aggregates
are allocated within a frame. Java, on the other hand, allocates all aggregates in the
heap. Access to them is via object references allocated statically or within a frame. Is
it less efficient to access an aggregate in Java because of its mandatory heap
allocation? Are there any advantages to forcing all aggregates to be uniformly
allocated in the heap?

Access to a heap object requires a heap validity check and an indirection. If the
object is accessed frequently, these overheads can probably be optimized away (as
redundant or loop-invariant operations). If the heap manager does not compact the
heap, a program may find active objects spread among inactive heap allocations,
increasing the program’s “footprint” in memory.

An advantage of allocating all aggregates in the heap is that the size of the
aggregate can be part of its value rather than its declaration. Java arrays can change
their size during execution. This can be very useful when no fixed size bounds are
apparent (e.g., a character buffer being edited, or an array being sorted). On the
other hand, sometimes it is useful to fix the size of an array and allocate it as
efficiently as possible (e.g., an array representing a chess board). C# has added
fixed-size arrays (that may be allocated statically or within a frame) as a language
extension. (Java-style arrays are of course retained.)

13. Fortran library subprograms are often called from other programming languages.
Fortran assumes that multidimensional arrays are stored in column-major order; most
other languages assume row-major order. What must be done if a C program (which
uses row-major order) passes a multidimensional array to a Fortran subprogram.
What if a Java method, which stores multidimensional arrays as arrays of array
object references, passes such an array to a Fortran subprogram?

When calling a Fortran library from C the programmer must manually reorganize the
multidimensional array so the values are stored in column-major as expected by
Fortran. When combining C and Fortran code it is recommended to perform all of the
array operations in either C or Fortran to remove the problem. When calling Fortran
from Java a multidimensional array in column-major order must be manually
constructed where the references are replaced with the actual data and passed it to
Fortran.

9

16. Some languages, including C and C++, contain an operation that creates a
pointer to a data object. That is, p = &x takes the address of object x, whose type is t,
and assigns it to p, whose type is t*.
How is management of the runtime stack complicated if it is possible to create
pointers to arbitrary data objects in frames? What restrictions on the creation and
copying of pointers to data objects suffice to guarantee the integrity of the runtime
stack?

Creating a pointer to a location in a frame is very dangerous as the pointer may be
used after the frame is popped from the stack. Hence modern successors to C and
C++, like Java and C♯, disallow this operation.

There are two approaches to handling pointers to frame locations. We may add the
rule that a pointer to a frame location may never be assigned to a variable with a
longer lifetime than the frame itself. This is a form of escape analysis that tracks
where a frame pointer may be assigned.

An alternative, taken by some functional languages like ML, is to allocate frames in
the heap rather than on a stack. Now the rules of garbage collection apply; when no
pointers to a frame remain, the frame is collected. As long as a pointer remains, the
frame is protected from garbage collection. It may appear that using the heap to hold
frames is needlessly inefficient, but this need not be the case. Modern copying
collectors (Section 12.4.3 on page 472) have the property that their cost is controlled
by the number of live heap objects. Dead objects, like frames for completed calls, are
essentially “free.”

19. In a strongly typed language such as Java, all variables and fields have a fixed
type known at compile-time. What runtime data structures are needed in Java to
implement the mark phase of a mark-sweep garbage collector in which all accessible
(“live”) heap objects are marked?

We must trace all pointers (references) found in global, stack and heap space. For
global pointers we can simply have a list of global addresses known (from their
declarations) to hold heap pointers. To save space, a bit map might be used. In a bit
map, each bit represents one word of global data space. A one bit means the word is
a pointer and a zero says it is not.

To find pointers within a frame, we start with the current frame pointer. Each frame, in
its control information, will contain a method code identifying the method the frame
corresponds to. Each method code will index a list (or bitmap) of frame offsets known
to hold heap pointers.

Each heap allocation has a header word. This header contains a type code
identifying the class the heap object implements. We use this type code to index a list
of offsets within the object that contain pointers. For array objects that contain
pointers, we can extract the size of the array and where within the object the array
elements begin.

10

25. An unattractive aspect of both mark-sweep and copying garbage collection is that
they are batch-oriented. That is, they assume that periodically a computation can be
stopped while garbage is identified and collected. In interactive or real-time
programs, pauses can be quite undesirable. An attractive alternative is concurrent
garbage collection in which a garbage collection process runs concurrently with a
program.

Consider both mark-sweep and copying garbage collectors. What phases of each
can be run concurrently while a program is executing (that is, while the program is
changing pointers and allocating heap objects)? What changes to garbage collection
algorithms can facilitate concurrent garbage collection?

Mark-sweep: The Mark sweep method does not immediately allow for concurrent
garbage collection. The releasing of heapvars to the freelist could, however, possibly
be done concurrently in the following manner. First halt the program, mark all vars
without any references. Then resume execution. Now a concurrent process could
run, that cleans the marked variables and puts them back into the free list.

Copying garbage collectors: The problem with running the copying GC concurrently,
is the possibility of copying memory that is being modified by the running program.
Modifications to the GC algorithm are therefore required in order to safely run
concurrently. Take a look at the additional references below.

For more information on GC in real time systems, take a look at:

https://en.wikipedia.org/wiki/Tracing_garbage_collection#Tri-color_marking

https://www.drdobbs.com/jvm/java-garbage-collection-for-real-time-sy/184410684

https://www.ibm.com/developerworks/library/j-rtj4/

24. Copying garbage collection can be improved by identifying long-lived heap
objects and allocating them in an area of the heap that is not collected.

What compile-time analyses can be done to identify heap objects that will be long
lived? At runtime, how can we efficiently estimate the “age” of a heap object (so that
long-lived heap objects can be specially treated)

Compile Time: Possibly follow references from the Main class and somehow estimate
how long each reference lives. For example, objects allocated and stored on the
Main object will probably live for the majority of the program.

Runtime: copying garbage collectors can be extended with generations. Objects are
allocated in the youngest generation and after they have survived garbage collection
n times they are moved to the next generation. Later generations are garbage
collected less frequently, and the oldest generation might not even be garbage

11

https://en.wikipedia.org/wiki/Tracing_garbage_collection#Tri-color_marking
https://www.drdobbs.com/jvm/java-garbage-collection-for-real-time-sy/184410684
https://www.ibm.com/developerworks/library/j-rtj4/

collected. For more information see Generational Garbage Collection in Fisher
Section 12.4.

3. What are the design issues for pointer types?
The primary design issues particular to pointers are the following:

1. What are the scope and lifetime of a pointer variable?
2. What is the lifetime of a heap-dynamic variable (the value a pointer

references)?
3. Are pointers restricted as to the type of value to which they can point?
4. Are pointers used for dynamic storage management, indirect addressing, or

both?
5. Should the language support pointer types, reference types, or both?

For more detail see Sebesta Section 6.11

4. What are the two most common problems with pointers?
Dangling Pointer: a pointer that is pointing to a location in memory that has been
deallocated, using this pointer is dangerous as the memory might have been
allocated for some other data, possibly even another data type.

Lost Heap-Dynamic Variable: if data is allocated on the heap but the pointer to the
data is lost, the program leaks memory as the data cannot be deallocated by the
program.

Also, Reading from uninitialized pointers provides either “garbage” values or causes
a segmentation fault. Use of pointers can also make the program harder to read and
comprehend.

For more detail see Sebesta Section 6.11

5. Why are pointers in most languages restricted to pointing to a single type variable?
A pointer points to a specific place in memory. When dereferencing the pointer to get
the value, the compiler needs to know how many bytes to read from the starting
address. Some types have different lengths i.e 32 and 64 bit integers. So restricting a
pointer to a single type ensures that the correct memory amount of memory is read.
Consider if there were no types in the declaration of a pointer in C. The compiler
would be able to perform some type inference for some simple programs, however, it
would not be able to detect all types behind a pointer. The compiler would therefore
not know how much memory to return. A solution to this would be to force the
programmer to decorate all dereferencing of pointers with a type or number of bytes
to read but that would introduce a lot of other potential problems.

12

6. Sebesta review questions 35, 36 page 321
35. Why are reference variables in C++ better than pointers for formal parameters?

Reference variables used as formal parameters in C++ always reference a value and
are implicitly dereferenced unlike pointers. Resulting in safer and more readable
code.

See also:
https://en.wikipedia.org/wiki/Reference_(C%2B%2B)#Relationship_to_pointers

36. What advantages do Java and C# reference type variables have over the
pointers in other languages?

Java class instances are referenced with reference variables. Since Java instances
are implicitly deallocated, there cannot be dangling references in Java. C# follows a
similar design, however it includes pointers when using the unsafe keyword. If a
object is pointed to by a pointer it will not be implicitly deallocated in C#

7. Sebesta problem set 13, 14 page 323 (in 14 discuss rather than write)
13. Write a short discussion of what was lost and what was gained in Java’s
designers’ decision to not include the pointers of C++.

Compared to C++, Java provides a more limited interface for reading from and
writing to memory by not including pointers, e.g., you cannot read data from a Java
array of longs at an arbitrary byte offset. As such, the lack of pointers limits what can
be expressed in Java to a small degree, on the other hand, it is much more difficult
for the programmer to make a mistake when reading and writing to memory. In
summary, it is a tradeoff between expressibility (e.g, allowing optimizations) and
safety.

14. What are the arguments for and against Java’s implicit heap storage recovery,
when compared with the explicit heap storage recovery required in C++? Consider
real-time systems.

Like stated for Problem Set 13, Java prioriotizes memory safety to a higher degree
than C++ and therefore uses garbage collection to manage heap memory while C++
requires that the programmer have to manually deallocate memory through RAII
(Resource Acquisition Is Initialization) and smart pointers like std::unique_ptr and
std::shared_ptr (reference counting). By automating memory management a large
collection of memory related bugs can be removed, e.g, Microsoft have stated that
~70% of the vulnerabilities they assign a CVE (Common vulnerabilities and
Exposures) each year are memory safety issues. However, garbage collection comes
at a cost as the programmer has no control over when it runs. This uncertainty is a
problem for real-time systems where guarantees on execution time is required, e.g.,
the embedded system controlling a car's airbag. However, research into using Java
for such applications has been performed [2].

13

https://en.wikipedia.org/wiki/Reference_(C%2B%2B)#Relationship_to_pointers

[1]
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-co
de/

[2]
https://vbn.aau.dk/da/publications/hvmtp-a-time-predictable-and-portable-java-virtual-
machine-for-ha

8. What is the expected level of use of pointers in C#? How often have you used
pointers in C#?
Raw pointers are almost never used in C#, e.g., they might be used for interfacing
with existing C or C++ code, however, references to classes are pointers in
themselves.

14

https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://vbn.aau.dk/da/publications/hvmtp-a-time-predictable-and-portable-java-virtual-machine-for-ha
https://vbn.aau.dk/da/publications/hvmtp-a-time-predictable-and-portable-java-virtual-machine-for-ha

Individual Exercises - Lecture 18
1. Read the following additional references.

Can be found here:
http://www.itu.dk/~sestoft/papers/numericperformance.pdf

2. Fischer et. al. exercises 1 (you may want to read Seftoft’s note first), 6, 9 (sketch
rather than implement - NOTE CG should be TreeCG), 10, 19, 21 538- 546 on pages
(exercises 2 (you may want to read Seftoft’s note first), 6, 8 (sketch rather than
implement), 10, 20, 21 on pages 570-578 in GE)

1. Consider the following Java method:

public static int fact(int n){

if (n == 0)

return 1;

else return n*fact(n-1); }

Using your favorite Java compiler, show the JVM bytecodes that would be generated

for this method. Explain what each of the generated bytecodes contributes to the

execution of the methods.

If the “public static” prefix is removed, the Java method becomes a valid C or C++

function. Compile it using your favorite compiler your favorite processor using no

optimization. List the machine instructions generated and show which machine

instructions correspond to each generated JVM bytecode.

The bytecodes generated by the Java compiler supplied as part of the Java

Development Kit, JDK (version 1.6.0:20) are:

1

http://www.itu.dk/~sestoft/papers/numericperformance.pdf

The integers in the left column are byte offsets in the method (used as target

addresses for branch instructions). The iload at offset 0 pushes the contents of local

variable 0 (n) onto the operand stack. If it is not equal to 0 (ifne), control is transferred

to offset 6. Otherwise, 1 is pushed onto the operand stack, and an integer return

(ireturn) is executed.

If n was not equal to 0 execution continues at offset 6. n is pushed twice, followed by

the integer 1. The isub at offset 9 computes n-1. The invokestatic calls the method

whose signature is at offset 2 in the constant pool. This is the string fact:(I)I which

represents a method named fact that takes an integer parameter and returns an

integer result.

The return value from the call is left at the top of the operand stack. The value of n is

below it. The imul at offset 13 computes n*fact(n-1). The ireturn at offset 14 returns

this value to the caller.

2

The MIPS code generated by gcc version 3.4.4 is:

The initial instructions, from addiu to the store of register 4 (the parameter register)

set up and link fact’s frame. Hence they are actually part of the invokestatic code

executed by fact’s caller. The load into register 2 corresponds to the bytecode at

offset 0. The bne corresponds to the ifne at offset 1. The li (load immediate) of 1 into

3

register 2 corresponds to the iconst 1 at offset 4. The sw of register 2 into the frame,

followed by the jump to $L1 and the code at $L1 implement the ireturn instruction at

offset 5.

At $L2 the else part in fact is implemented. The lw loads n into register 2. The addiu

computes n-1 into register 2, which is then moved into register 4 (the parameter

register). The jal is a call instruction, corresponding to the invokestatic at offset 10.

Next, n is loaded into register 3 (corresponding to the iload 0 at offset 6). The mult,

mflo pair compute n*fact(n-1), corresponding to the imul at offset 13. Finally, the sw

and the code at $L1 implement the ireturn instruction at offset 14.

6. Show the expression tree, with registerNeeds labeling, that corresponds to the

expression a+(b+(c+((d+e)*(f/g)))).

Show the code that would be generated using the treeCG code generator.

a+(b+(c+((d+e)*(f/g))))

4

lw $10, f # Load f into register 10

lw $11, g # Load g into register 11

div $10, $10, $11 # Compute f / g into register 10

lw $11, d # Load d into register 11

lw $12, e # Load e into register 12

add $11, $11, $12 # Compute d + e into register 11

mul $10, $10, $11 # Compute (d + e) * (f / g) into register 10

lw $11, c # Load c into register 11

add $10, $10, $11 # Compute c + ... into register 10

lw $11, b # Load b into register 11

add $10, $10, $11 # Compute b + ... into register 10

lw $11, a # Load a into register 11

add $10, $10, $11 # Compute a + ... into register 10

9. Sometimes the code generated for an expression tree can be improved if the

associative property of operators like + and * is exploited. For example, if the

following expression is translated using treeCG, four registers will be needed:

(a+b) * (c+d) * ((e+f) / (g-h))

Even if the commutativity of + and * is exploited, four registers are still required.

However, if the associativity of multiplication is exploited to evaluate multiplicands

from right to left, then only three registers are needed. First ((e+f)/(g-h)) is evaluated,

then (c+d)*((e+f)/(g-h)), and finally (a+b)*(c+d)*((e+f)/(g-h)).

Write a routine associate that reorders the operands of associative operations to

reduce register needs. (Hint: Allow associative operators to have more than two

operands.)

We first restructure the expression tree so that all operands of an associative

operator are visible. To do this, if an associative operator, op, has one or more

5

subtrees also rooted by op, we move the children of the subtrees rooted by op up to

the level of the parent operator. This is illustrated below:

Now we must handle the case in which an operator has more than 2 children.

Assume the greatest number of registers needed by any subtree is n. Obviously we

will need at least n registers to evaluate the operator and its children. Moreover, we

will never need more than n + 1 registers to do the evaluation. We can choose any

subtree and evaluate it, using no more than n registers. Its result can be held in an

additional register. The next subtree is evaluated, using no more than n registers. It is

combined, with the previous result, reusing that result’s register. This process is

continued until all subtrees are evaluated and combined.

How do we decide if n or n + 1 registers are required for a particular expression tree?

The key is to select the two subtrees that require the greatest number of registers to

evaluate. Say these values are n1 and n2, where n1 ≥ n2. If n1 > n2 then only n1

registers are needed. We evaluate the subtree needing n1 registers first, leaving its

results in a single register. The remaining n1 − 1 registers are sufficient to evaluate

all remaining subtrees, with partial results always held in the same result register.

If n1 = n2 then n1 +1 registers are needed. One or the other of the two most

expensive subtrees must be evaluated first. Its result, perhaps combined with other

subexpression values, must be held in a register. Thus when the other of the two

most expensive subtrees is evaluated n1 + 1 registers will be needed.

In our example, after restructuring the root operator * will have three subtrees.

((e+f)/(g-h)) requires 3 registers, while (a+b) and (c+d) each require 2 registers. Thus

6

n1 = 3 and n2 = 2, so we conclude 3 registers suffice if the associativity of * is

exploited.

10. In Section 13.4 we saw that many modern architectures are delayed load. That

is, a value loaded into a register may not be used in the next instruction; a delay of

one or more instructions is imposed (to allow time to access the cache).

The treeCG routine of Section 13.2 is not designed to handle delayed loads. Hence,

it almost always generates instruction sequences that stall at selected loads.

Show that if an instruction sequence (of length 4 or more) generated by treeCG is

given an additional register, it is possible to reorder the generated instructions to

avoid all stalls for a processor with a one instruction load delay. (It will be necessary

to reassign the register used by some operands to utilize the extra register.)

Example Expression: a + (b + c)

lw $10, c # Load c into register 10

lw $11, b # Load b into register 11

lw $12, a # Load a into register 12

add $10, $10, $11 # Compute b + c into register 10

add $10, $10, $12 # Compute a + (b + c) into register 10

By using the extra register to preemptively load another value into a register that is

needed in the computation directly following the current computation we ensure that

the value is fully loaded into the register instead of having to wait for the load to finish

between the two add instructions.

For a more detailed solution see page 278 to 286 in:

http://pages.cs.wisc.edu/~fischer/cs701.f14/lectures/L.All.pdf

7

http://pages.cs.wisc.edu/~fischer/cs701.f14/lectures/L.All.pdf

19. It is sometimes the case that we need to schedule a small block of code that

forms the body of a frequently executed loop. For example

for (i=2; a < 1000000; i++)

a[i] = a[i-1]*a[i-2]/1000.0;

Operations like floating point multiplication and division sometimes have significant

delays (5 or more cycles). If a loop body is small, code scheduling cannot do much;

there are not enough instructions to cover all the delays. In such a situation loop

unrolling may help. The body of loop is replicated n times, with loop indices and loop

limits suitably modified. For example, with n = 2, the above loop would become

for (i=2; a <999999; i+=2){

a[i] = a[i-1]*a[i-2]/1000.0;

a[i+1] = a[i]*a[i-1]/1000.0; }

A larger loop body gives a code scheduler more instructions that can be placed after

instructions that may stall. How can we determine the value of n (the loop unrolling

factor) necessary to cover all (or most) of the delays in a loop body? What factors

limit how large n (or an unrolled loop body) should be allowed to become?

Loop unrolling has much in common with software pipelining, which aims to

schedule several loop iterations simultaneously. A popular variant of software

pipelining first schedules only one iteration. If all pipeline stalls can’t be covered, a

second iteration is included, etc. As an upper limit to how many iterations to unroll,

we can use the maximum delay possible for any instruction being scheduled. Thus if

a multiply has a delay of 5 cycles, scheduling 5 iterations will certainly allow at least

the first iteration’s multiply to be fully covered. Note though that iterations near the

bottom of the loop may still see some delays. That is, if we unroll 5 iterations of a

loop, long delay instructions in the last of the 5 loop copies are helped least. They still

can be moved upward, so some benefit can be expected.

In practice a limiting factor in unrolling is the availability of registers. If we schedule i

iterations in an expanded loop body, we may see i copies of a long delay instruction

(like a multiply or divide) executing concurrently. Each will require a different result

register. In fact adding iterations until all delays are covered or until available

registers run out is a reasonable approach when unrolling a loop.

8

21. Assume we extend the IR tree patterns defined in Figure 13.27 with the patterns

for the MIPS add and load-immediate instructions shown in Figure 13.35.

Show how the IR tree of Figure 13.36, corresponding to:

A[i+1] = (1+i)*1000;

Would be matched. What MIPS instructions would be generated?

In the first printing of Crafting a Compiler the instruction patterns listed in Figure

13.35 on page 544 are incomplete. Patterns for loading an address and storing the

contents of a register into a memory location addressed by a register are needed:

These patterns will be added to the figure in subsequent printings. The IR tree is

matched bottom-up, so that code for operands is generated before the code for

operators. In this example, register allocation is very simple—each time a register is

assigned, a new register is allocated. A more realistic register assignment strategy is

discussed in the next exercise. Our traversal will be bottom-up, left to right. So first

the address of A is loaded into a register using a load immediate instruction. The IR

tree is now:

9

Next, the value held in location i is loaded into a register. One is added using a load

immediate, and then i+1 is multiplied by 4 (using a shift left instruction) to compute

the byte offset of i+1 in array A:

Adding $reg1 and $reg4 yields the address of A[i+1]. In translating 1+i we can’t use

an add immediate instruction because the pattern only allows an integer literal as the

right operand. A richer set of instruction patterns might allow an integer literal as the

left operand (since addition is commutative). We therefore load 1 in one register and

load the value at location i into a second register:

10

We add registers $reg6 and $reg7 together to obtain 1+i, then multiply by 1000:

Finally, we store the value of (1+i)*1000, held in $reg9, into the memory location

A[i+1], whose address is in $reg5:

11

Group Exercises - Lecture 18
1. Discuss the outcome of the individual exercises

Did you all agree on the answers?

2. Fischer et. al. exercises 5, 4, 15 (Note that GCR... skould be GCRegAlloc), 26, 28,
30 on pages 538-546 (exercises 4, 5, 14, 25, 29, 30 on pages 570-578 in GE)

5. Array bounds checks are mandatory in Java and C#. They are very useful in

catching errors, but are also fairly expensive, especially in loops. It is often the case

that conditional branches provide information useful in optimizing or even eliminating

unnecessary bounds checks. For example, in:

while (i < 10) {

print(a[i++]); }

We know i must be less than 10 whenever array a is indexed. Moreover, since i is

never decreased in the loop, a single check that i is non-negative at loop entrance

suffices.

Suggest ways in which information provided by conditional branches (in conditionals

and loops) can be exploited when code to index arrays is generated.

This analysis can be implemented as a variant of constant propagation (Section 14.6

on page 623). Rather than track variables known to hold a constant value, we track

the range of values a variable may hold. Thus in our example, at the start of each

iteration, we know i must be in the range [-∞..9] (-∞ and ∞ represent the minimum

and maximum possible integer values). Range information must be updated across

assignments. Thus after i++ we conclude i must be in the range [(-∞+1)..10].

At the end of conditionals and loops, range information must be merged. Thus if we

know j is in the range [0..10] at the end of the then part of an if, and j is in the range

[-5..5] at the end of the else part, then j is in the range [-5..10] after the if statement.

In Java the size of an array is part of its value, but it is very often the case that an

array variable is allocated only once, with an easily identifiable size. Note too that

conditional constant propagation, in which propagated constant values can be used

to evaluate and simplify boolean expressions, can be generalized to range analysis.

Thus if we know k is in the range [0..10], then an expression like (k<0) can be

simplified to false.

12

4. A common subprogram optimization is inlining. At the point of call, the body of the

called method is substituted for the call, with actual parameter values used to

initialize local variables that represent formal parameters.

Assume we have the bytecodes that represent the body of subprogram P that is

marked private or final (and hence cannot be redefined in a subclass). Assume

further that P takes n parameters and uses m local variables. Explain how we could

substitute the bytecodes representing P’s body for a call to P, prior to machine code

generation. What changes in the body must be made to guarantee that the

substituted bytecodes do not “clash” with other bytecodes in the context of call?

All references to the n parameters in P must be updated so P references the

arguments given at the call site. Also, care must be taken to rename the m local

variables so they do not conflict with the parameters and local variables currently in

scope at the call site.

15. Assume we have n registers available to allocate to a subprogram. Explain how,

using either GCRegAlloc or PriorityRegAlloc, we can estimate the total cost of

register spills within the subprogram. How could this cost estimate be used in

deciding how many registers to allocate to a subprogram?

The key is getting reasonable estimates of how often each basic block in a

subprogram will execute. Profiling is commonly used. An important issue is how

closely test data mimics actual user data. Lacking dynamic data provided by profiling,

static estimates may be used. We already scale spill cost estimates by a factor of 10

per loop nesting level. With a bit more effort actual loop counts can be extracted for

the common case of constant loop bounds. We reduce execution counts in

conditionals, perhaps assuming each leg of an if has a 50% chance of executing.

With estimates of execution frequencies, we can compute added execution time

whenever GCRegAlloc or PriorityRegAlloc elects to do a spill. We may total added

instruction counts or perhaps focus on added memory reads (since cache misses

and page faults can be very costly).

Given accurate spill costs estimates, we can now ask a key question — how much

benefit do we obtain by giving a subprogram an extra register. Interprocedural

register allocators ask this question repeatedly, deciding which of a number of

subprograms can best use an additional register.

13

26. The following instruction sequence often appears in Java programs:

a[i] = ...

... = a[i];

That is, an element of an array is stored, then that same element is immediately

reused. Suggest a peephole optimization rule, at the bytecode level, that would

recognize this situation and optimize it using the dup bytecode.

In the first printing of Crafting a Compiler this exercise incorrectly suggested using a

dup instruction instead of a dup x2. This error will be corrected in subsequent

printings.

This optimization is akin to a machine-level optimization that removes a register load

if the desired value is already a register resident. We will aim to make a copy of the

value assigned to a[i] and use that value in the second assignment, avoiding a reload

of a[i]. The patterns we use will depend on where a and i are stored. We’ll cover the

common case that both are local variables within a method. Related patterns will be

needed in the cases that a or i are fields.

We must also consider the possibility that the instructions on the right hand side of

the first assignment involve assignment or transfer of control. (We don’t want i

changed while evaluating the right-hand side.) Call an IR instruction that is not a label

and does not transfer control or potentially change a local variable to be “pure.” How

many IR instructions should we expect in the right-hand side of the first assignment?

We can write a number of related rules, each for a particular IR instruction count.

Alternatively, we can allow a pattern to match a range of instructions, with a fixed

upper limit (so that pattern matching doesn’t waste time trying to match unrealistically

large right-hand sides). Let the pattern pure[1:n] match from 1 to n pure instructions.

The pattern listed below will look for an array store (iastore) immediately followed by

an array load (iaload) of the same element in the same array. If this is found, a dup

x2 instruction duplicates the value being stored and places it below the three

operands to the array store instruction. This makes the array load instruction

unnecessary, as the desired value will be found at the top of the operand stack:

14

28. Many architectures include load-negative instruction that loads the negation of a

value into a register. That is, the value, while being loaded, is subtracted from zero,

with the difference stored into the register. Suggest two instruction-level peephole

optimization patterns that can make use of a load-negative instruction.

The obvious pattern corresponds to ...=-b which will load b then negate it. A load

negative of b is a clear improvement. For uniformity, we’ll use the MIPS instruction

set and we’ll assume lwn is a load word negative:

A less obvious (and probably less common) replacement involves an expression like

...=-(a+b). This will generate two loads, an add, and a negation.

But this expression is equivalent to ...=(-a)-b which can be implemented using a load

negative, a load and a subtraction:

15

30. Assume we have a peephole optimizer that has n replacement patterns. The

most obvious approach to implementing such an optimizer is to try each pattern in

turn, leading to an optimizer whose speed is proportional to n.

Suggest an alternative implementation, based on hashing, that is largely independent

of n. That is, the number of patterns considered may be doubled without

automatically doubling the optimizer’s execution time.

The basic idea is to represent patterns in a way that allows us to hash them. We can

then construct a map that will map those pattern hashes to an optimization.

For example: optimizationMap[“constant + constant”]=constantFoldingOptmization.

We then traverse the tree and plug the node combinations we find into the map. If a

node combination maps to an optimization, we apply it.

16

Individual Exercises - Lecture 19
1. Read the article under additional references.

Can be found here (Is available for free through AAU AUB here

https://www.aub.aau.dk, remember to login first!):

https://link.springer.com/article/10.1007%2FBF00289243

2. Sebesta, programming exercises 5, page 511, do the exercise in C, and Java or C#.

5. Write an abstract data type for complex numbers, including operations for addition,

subtraction, multiplication, division, extraction of each of the parts of a complex number,

and construction of a complex number from two floating-point constants, variables, or

expressions. Use C++, Java, C#, or Ruby.

Example implementation using C. As C does not provide classes or objects a struct

is used to represent the data while operations on the data type are implemented as

functions. While objects could be simulated using function pointers taking the struct

itself as the first argument, this would make the program much more complicated

and, as such, much harder to read and maintain.

typedef struct Complex {

const double real;

const double imaginary;

} Complex;

Complex new(double real, double imaginary) {

return (Complex) { real, imaginary };

}

Complex add(Complex a, Complex b) {

return new(a.real + b.real, a.imaginary + b.imaginary);

}

Complex sub(Complex a, Complex b) {

return new(a.real - b.real, a.imaginary - b.imaginary);

}

Complex mul(Complex a, Complex b) {

double real = a.real * b.real - a.imaginary * b.imaginary;

double imaginary = a.real * b.imaginary + a.imaginary * b.real;

return new(real, imaginary);

}

Complex div(Complex a, Complex b) {

double x = a.real * b.real + a.imaginary * b.imaginary;

1

https://www.aub.aau.dk
https://link.springer.com/article/10.1007%2FBF00289243

double y = a.imaginary * b.real - a.real * b.imaginary;

double z = b.real * b.real + b.imaginary * b.imaginary;

return new(x / z, y / z);

}

double real(Complex a) {

return a.real;

}

double imaginary(Complex a) {

return a.imaginary;

}

Example implementation using Java. Contrary to C, Java provides support for

object-oriented programming through classes and objects. Using a class both the code

and data can combine into a single entity. In addition, the data can be hidden from the

user of the class with the private access modifier while the data is only made readonly

in the C version of the program. As Java does not support operator overloading (unlike

C#) equations with Complex must be written using method calls instead of mathematical

operators.

class Complex {

public Complex(double real, double imaginary) {

this.real = real;

this.imaginary = imaginary;

}

public Complex add(Complex other) {

return new Complex(this.real + other.real,

this.imaginary + other.imaginary);

}

public Complex sub(Complex other) {

return new Complex(this.real - other.real,

this.imaginary - other.imaginary);

}

public Complex mul(Complex other) {

double real = this.real * other.real -

this.imaginary * other.imaginary;

double imaginary = this.real * other.imaginary +

this.imaginary * other.real;

return new Complex(real, imaginary);

}

2

public Complex div(Complex other) {

double x = this.real * other.real +

this.imaginary * other.imaginary;

double y = this.imaginary * other.real -

this.real * other.imaginary;

double z = other.real * other.real +

other.imaginary * other.imaginary;

return new Complex(x / z, y / z);

}

@Override

public String toString() {

return this.real + " " + this.imaginary + "i";

}

public double getReal() {

return this.real;

}

public double getImaginary() {

return this.imaginary;

}

private final double real;

private final double imaginary;

}

3. Sebesta, exercise 14 and 16, page 565.
14. Explain diamond inheritance.
Diamond inheritance occurs when a class (D) is a subtype of two different classes (B

and C) through multiple inheritance which themself are a subtype of a class (A). A

significant problem with multiple inheritance is that both B and C can define a method

with the same name and the same protocol. For example, a class that implements an

interface must define all of the methods declared in the interface. So, if both the

parent class and the interface include methods with the same name and protocol, the

subclass must reimplement that method to avoid the name conflict.

See Also: https://en.wikipedia.org/wiki/Multiple_inheritance#The_diamond_problem

3

https://en.wikipedia.org/wiki/Multiple_inheritance#The_diamond_problem

16. What is the primary reason why all Java objects have a common ancestor?

One reason why all Java objects have a common ancestor is so they can all inherit a

few universally useful methods, e.g. equals(Object other), toString(), hasCode().

Another reason is that code can be written that works for all objects without using

generics: https://en.wikipedia.org/wiki/Generics_in_Java.

4

https://en.wikipedia.org/wiki/Generics_in_Java

Group Exercises - Lecture 19
1. Discuss the outcome of the individual exercises

Did you all agree on the answers?

2. What are the language design requirements for a language that supports abstract
data types?
Sebesta lists three design issues for abstract data types:
(i) The first design issue is whether abstract data types can be parameterized.
(ii) The second design issue is what access controls are provided and how such
controls are specified.
(iii) Finally, the language designer must decide whether the specification of the type
is physically separate from its implementation. For more information see Sebesta
Section 11.3.

3. Sebesta, review questions, 21, 25, 33, 35, 36 page 509.
21. Where are Java classes allocated?
Instantiations are allocated from the heap
25. Describe the fundamental differences between C# structs and its classes.
Structs are value types, classes are references.
Structs cannot be default constructed, inherit another struct, or implement an
interface.
33. What problems can occur using C to define abstract data types?
C does not have complete support for abstract data types, but both abstract data
types and multiple-type encapsulations can be simulated by wrapping them in a
library file, i.e. a header file and then creating a .c file with the implementation of said
functions.
A problem with this solution could for example be, a user could simply cut and paste
the definitions from the header file into the client program, rather than using #include.
This would work, because #include simply copies the contents of its operand file into
the file in which the #include appears. However, this introduces two problems. First,
the documentation of the dependence of the client program on the library (and its
header file) is lost. Second, suppose a user copies the header file into his or her
program. Then the author of the library changes both the header and the
implementation files. Following this, the user uses the new implementation file with
the old header. For example, a variable x could have been defined to be int type in
the old header file, which the client code still uses, although the implementation code
has been recompiled with the new header file, which defines x to be float. So, the
implementation code was compiled with x as an int but the client code was compiled
with x as a float. The linker does not detect this error. Read more in section 11.6.2 in
Sebestas book.

5

35. What is a Java package, and what is its purpose?
Packages provide naming encapsulation. Access modifiers (private, protected etc.)
also allows restriction of access across packages.
36. Describe a .NET assembly.
An assembly is a file (.dll or .exe) that defines a module that can be separately
developed. (See Sebesta Section 11.6.4)

4. Sebesta, problem set, exercise 2, page 510.
2. Suppose someone designed a stack abstract data type in which the function top
returned an access path (or pointer) rather than returning a copy of the top element.
This is not a true data abstraction. Why? Give an example that illustrates the
problem.
The problems created by making an abstract data type a pointer are:
(a) There are many inherent problems in dealing with pointers (see Chapter 6),
(b) comparisons between objects do not work as expected, because they are only
pointer comparisons (rather than pointed-to value comparisons),
and (c) the implementation of the abstract type cannot control allocation and
deallocation of objects of the type (the user can create a pointer to an object with a
variable declaration and use it without creating an object).

5. Sebesta, review questions, 1 - 58, page 562-564
1. Describe the three characteristic features of object-oriented languages.
Abstract data types
Inheritance
Dynamic binding
2. What is the difference between a class variable and an instance variable?
A class variable (static in C#) belongs to the class and is accessible from all
instances of the class. This is opposed to the instance variable that belongs to the
individual instance (object) of the class and is accessible only through that instance.
3. What is multiple inheritance?
The concept of a class inheriting from more than one class.
4. What is a polymorphic variable?
A variable that can hold values of different types.
5. What is an overriding method?
In terms of inheritance, it is sometimes useful to replace a method inherited from a
superclass, that is where overriding comes in.
For example, in C# a method marked override explicitly replaces a method inherited
from a superclass with the new method of the same signature. In C#, however, this is
only possible if the method from the super class is marked as virtual.
6. Describe a situation where dynamic binding is a great advantage over static
binding.
If you need to administrate objects of different classes, that all inherit from a common
super class (base class), and call an inherited method on all of them.

6

7. What is a virtual method?
A dynamically bound method that can be overriding in a derived class. The keyword
virtual is for example used in C# and C++.
8. What is an abstract method? What is an abstract class?
An abstract method has no implementation and must be defined in inherited derived
classes.
An abstract class cannot be instantiated, and is instead meant as a base blueprint for
derived classes to implement.
9. Describe briefly the seven design issues used in this chapter for object-oriented
languages.

1. The exclusivity of objects: Should any other types be allowed?
2. Are subclasses subtypes?: Should two objects extending the same

superclass be interchangeable?
3. Single and multiple inheritance: Can an object inherit from than one class?
4. Allocation and deallocation of objects: When and how? (Heap or stack?
5. Dynamic or static binding: Which to use?
6. Nested classes: Should we allow for classes only visible to specific classes?
7. Initialization of objects: How are objects initialized to values?

10. What is a nesting class?
A class defined within another class.
Useful if a class is only used in one place
11. What is the message protocol of an object?
The message protocol or message interface is all the methods defined on an object.
A method call is equivalent to sending a message to the object.
12. From where are Smalltalk objects allocated?
All Smalltalk objects are allocated from the heap.
13. Explain how Smalltalk messages are bound to methods. When does this
take place?
Smalltalk messages are dynamically bound to methods at runtime by traversing the
inheritance hierarchy of the object receiving the message and executing the correct
method when found. If the top of the hierarchy (Object) has been reached and no
method matching the message is found, an error occurs. For more information see
Sebesta Section 12.4.1.3 Dynamic Binding.
14. What type checking is done in Smalltalk? When does it take place?
Smalltalk only supports dynamic type checking. Type checking is performed at
runtime when a message is sent to an object. For more information see Sebesta
Section 12.4.1.3 Dynamic Binding.
15. What kind of inheritance, single or multiple, does Smalltalk support?
Smalltalk only supports single inheritance. All objects must derive from an existing
object. For more information see Sebesta Section 12.4.1.2 Inheritance.
16. What are the two most important effects that Smalltalk has had on computing?
(i) The Smalltalk user-interface demonstrated how to integrate use of windows,
mouse-pointing devices, and pop-up and pull-down menus.
(ii) The advancement of object-oriented programming. For more information see

7

Sebesta Section 12.4.1.4 Evaluation of Smalltalk.
17. In essence, all Smalltalk variables are of a single type. What is that type?
Everything is an object as stated in Sebesta Section 12.4.1.1 General Characteristics
18. From where can C++ objects be allocated?
Objects can be allocated statically, stack dynamic, and heap dynamic.
19. How are C++ heap-allocated objects deallocated?
Explicitly, with delete (or with smart pointers, such as shared_ptr, unique_ptr)
20. Are all C++ subclasses subtypes? If so, explain. If not, why not?
In the case of public derivation, yes.
In the case of private derivation, no.
21. Under what circumstances is a C++ method call statically bound to a method?
If it is not a pointer to the base class, or in other terms, if the class is determinable at
compile time, not runtime. In general, method calls that are not defined as virtual are
statically bound. See Sebesta Section: 12.4.2.3 Dynamic Binding.
22. What drawback is there to allowing designers to specify which methods can be
statically bound?
Dynamic binding is slower than statically bound methods, so allowing users to define
statically bound methods can increase the program's performance if a method does
not need to be dynamically bound.
23. What are the differences between private and public derivations in C++?
In a private derivation public and protected members of the derived class are
replaced by private copies.
24. What is a friend function in C++?
A function that has been granted access to private or protected fields of a class.
25. What is a pure virtual function in C++?
Roughly equivalent to an abstract function in C#
Has no implementation, written like this: virtual void foo() = 0;
Requires implementation in the deriving classes.
26. How are parameters sent to a superclass’s constructor in C++?
Parameters are sent to the superclass constructor as part of the subclass constructor
definition. Defining the inheritance requires the superclass’s constructor parameters
to be provided as well.
27. What is the single most important practical difference between Smalltalk and
C++?
C++ uses static type checking which allows the compiler to detect errors at compile
time which cannot be done in Smalltalk. C++ is generally also more efficient than
Smalltalk
28. If an Objective-C method returns nothing, what return type is indicated in its
header?
Void
29. Does Objective-C support multiple inheritance?
No
30. Can an Objective-C class not specify a parent class in its header?
Yes it can. As part of its interface declaration.

8

31. What is the root class in Objective-C?
The NSObject
32. In Objective-C, how can a method indicate that it cannot be overridden in
descendant classes?
There is no way to prevent a subclass from overwriting an inherited method.
33. What is the purpose of an Objective-C category?
A category is a collection of methods that can be added to a class. No new instance
variables can be added to this secondary interface. It can be used in some places to
support multi inheritance without naming collisions on classes.
34. What is the purpose of an Objective-C protocol?
Similarly to an interface in Java/C#, it can provide some expected functionality of a
class that implements the protocol.
35. What is the primary use of the id type in Objective-C?
It is a generic type that can refer to any object. Anything can be cast to an id type and
an id type can be cast to anything.
36. How is the type system of Java different from that of C++?
Only primitive scalar types are not objects (bool, char, int, float etc.). Everything else
is an object in Java. This is not the case for C++.
37. From where can Java objects be allocated?
All Java objects are dynamically allocated from the heap.
38. What is boxing?
Boxing is used in Java for having an object type of the primitive types (int, float, char
etc.). The boxed versions har objects with names like Integer and Double. This was
done, since the Java generics can only be used with objects. The compiler, however,
autoboxes / unboxes.
The following code will box the i into an object of the type Integer and add it to the
list.

List<Integer> li = new ArrayList<>();

for (int i = 1; i < 50; i += 2)

li.add(i);

Due to boxing and type erasure the compiler changes the code above to
approximately:

List<Object> li = new ArrayList<>();

for (int i = 1; i < 50; i += 2)

li.add(Integer.valueOf(i));

39. How are Java objects deallocated?
In Java deallocation is done in the background by the Java garbage collector.
40. Are all Java subclasses subtypes?
Yes. The only class (which is not a subclass) that is not a subtype is the Object
class.
41. How are superclass constructors called in Java?
super(args) from inside the subclass constructor.

9

42. Under what circumstances is a Java method call statically bound to a method?
Static binding is used if it is defined as final, static, or private.
43. In what way do overriding methods in C# syntactically differ from their
counterparts in C++?
C# has a different abstract implementation.
In C# it is possible to mark a method sealed if they should be marked as explicitly
not overridable.
44. How can the parent version of an inherited method that is overridden in a
subclass be called in that subclass in C#?
Using the base keyword.
base.[MethodName]([Parameters]);
45. How does Ruby implement primitive types, such as those for integer and
floating-point data?
Every value is an object. (unlike for example Java where an int is a primitive type
but an Integer is an object)
46. How are getter methods defined in a Ruby class?
Multiple getter methods can be defined in one line using the following syntax:
Attr_reader :variable_1, :variable_2
Where Attr_reader is a built-in method that takes the variable names as
arguments.
47. What access controls does Ruby support for instance variables?
Variables are effectively private, and constants public.
48. What access controls does Ruby support for methods?
Public, protected, and private.
49. Are all Ruby subclasses subtypes?
No.
50. Does Ruby support multiple inheritance?
No.
51. What does reflection allow a program to do?
To access its metadata directly, to use it, or to intercede in execution. In java you can
for example read the name of a class and its fields into strings.
52. In the context of reflection, what is metadata?
The types, names and structures of a program.
53. What is introspection?
The process of a program examining its own metadata.
54. What is intercession?
The process of interceding in the execution of a program.
55. What class in Java stores information about classes in a program?
java.lang.Class
56. For what is the Java name extension .class used?
As a way to obtain the Class object of that class.
57. What does the Java getMethods method do?
Gets a method by name.
58. For what is the C# namespace System.Reflection.Emit used?
Tools for the emission of MSIL and other metadata.

10

6. Sebesta, problem set, 2, 6, 19 page 564-565.
2. Explain the principle of abstraction.
Abstraction is the process of creating a representation of an object or system that
omits unnecessary details or attributes.

6. Compare the multiple inheritance of C++ with that provided by interfaces in Java.
Earlier versions of Java did not allow for interfaces to provide an implementation for a
method, only a definition, so the problems caused by multiple inheritance in C++
could not occur. However, with the addition of default methods to Java interfaces, two
different interfaces can provide different implementations of a method with the same
signature. If this occurs the programmer must manually resolve this conflict by
implementing the method on the class. More information about default methods:
https://dzone.com/articles/interface-default-methods-java

19. What are the differences between a C++ abstract class and a Java interface?
Both instance variables, method definitions, and method implementations can be part
of a C++ abstract class, however, a Java interface can only contain method
definitions and method implementations but not instance variables.

7. Discuss how Tennent’s principle may be used in your own language design
Tennent's correspondence principle is a powerful programming language design
guideline. It says that the meaning of an expression or statement should not change
when an extra level of block structure is added around it.

You can read more about Tennet’s Principle here:
https://fanf.livejournal.com/118421.html

If your language contains block structures or other wrapping statements, e.g.
closures, consider if this affects the meaning of an expression or statement.

11

https://dzone.com/articles/interface-default-methods-java
https://fanf.livejournal.com/118421.html

Example Solutions - Lecture 20
1. The GNU Compiler Collection (gcc) compiler suite offers many levels of

optimizations. Investigate the various levels that are available for a given language
(e.g. C++). Hint: look at gcc flags controlling optimizations (Fischer et. al. exercise 1
on page 668 in GE)
Resources about the optimizations available in GCC and LLVM:

a. GCC 2.95.3: http://gcc.gnu.org/onlinedocs/gcc-2.95.3/gcc_2.html#SEC10
b. GCC 9.3.0: https://gcc.gnu.org/onlinedocs/gcc-9.3.0/gcc/Optimize-Options.html
c. Clang 11: https://clang.llvm.org/docs/UsersManual.html
d. LLVM’s Passes: https://llvm.org/docs/Passes.html

How different combinations of compilers, flags, and platforms change the instructions

produced for a specific program is easy to investigate using the Compiler Explorer at:

https://godbolt.org/

http://gcc.gnu.org/onlinedocs/gcc-2.95.3/gcc_2.html#SEC10
https://gcc.gnu.org/onlinedocs/gcc-9.3.0/gcc/Optimize-Options.html#Optimize-Options
https://clang.llvm.org/docs/UsersManual.html
https://llvm.org/docs/Passes.html
https://godbolt.org/

Group Exercises - Lecture 20
1. Discuss the outcome of the individual exercises

Did you all agree on the answer?

2. The GCC compiler suite can compile Java programs from either source or bytecode
form. What are the advantages and disadvantages of compiling from source as
compared to compiling from bytecode form? (Fischer et. al. 3, on page 668 in GE)
While source code is more difficult to parse than bytecode, it often contains more

information about the program that the compiler can use for optimizations. For

example, at the bytecode level different constructs in a programming language are

often represented by similar sequences of bytecodes, making it harder to distinguish

between them if an optimization only applies to one of the constructs. In addition,

some concepts might not even exist at the bytecode level as the source-to-bytecode

compiler removes them, e.g., through the use of type erasure.

