
1

Languages and Compilers
(SProg og Oversættere)

Lecture 1
Overview of the course and Language processors

Bent Thomsen
Department of Computer Science

Aalborg University

2

What is the Most Important
Open Problem in Computing?

Increasing Programmer Productivity

– Write programs quickly
– Write programs easily
– Write programs correctly

• Why?
– Decreases development cost
– Decreases time to market
– Decreases support cost

3

How to increase Programmer Productivity?

3 ways of increasing programmer productivity:
1. Process (software engineering)

– Controlling programmers
– Good process can yield up to 20% increase

2. Tools (verification, static analysis, program generation)

– Good tools can yield up to 10% increase
3. Better designed Languages --- the center of the universe!

– Core abstractions, mechanisms, services, guarantees
– Affect how programmers approach a task (C vs.

Haskell)
– New languages can yield 700% increase

4

Quicksort in C and Haskell

5

Programming Languages and Compilers
are at the core of Computing

All software is written in a programming language

Learning about compilers will teach you a lot about the
programming languages you already know.

Compilers are big – therefore you need to apply all you knowledge
of software engineering.

The compiler is the program from which all other programs arise.
Get it wrong and a lot of people will be affected!

6

What is a Programming Language?

• A set of rules that provides a way of telling a
computer what operations to perform.

• A set of rules for communicating an algorithm
• A linguistic framework for describing

computations
• Symbols, words, rules of grammar, rules of

semantics
– Syntax and Semantics
– (Libraries, Frameworks, Patterns and Pragmas)

7

Why Are There So Many
Programming Languages

• Why do some people speak French?
• Programming languages have evolved over time

as better ways have been developed to design
them.
– First programming languages were developed in the

1950s
– Since then thousands of languages have been developed

• Different programming languages are designed for
different types of programs.

8

Levels of Programming Languages
High-level program class Triangle {

...
float surface()
return b*h/2;

}

Low-level program LOAD r1,b
LOAD r2,h
MUL r1,r2
DIV r1,#2
RET

Executable Machine code 0001001001000101
0010010011101100
10101101001...

9

Types of Programming Languages

• First Generation Languages
Machine
0000 0001 0110 1110
0100 0000 0001 0010

• Second Generation Languages
Assembly
LOAD x
ADD R1 R2

• Third Generation Languages
High-level imperative/object oriented
public Token scan () {
while (currentchar == ‘ ’
|| currentchar == ‘\n’)
{….} }

• Fourth Generation Languages
Database
select fname, lname
from employee
where department=‘Sales’

• Fifth Generation Languages
Functional Logic
fact n = if n==0 then 1 uncle(X,Y) :- parent(Z,Y), brother(X,Z).
else n*(fact n-1)

Fortran, Pascal, Ada, C, C++, Java, C#

SQL

Lisp, SML, Haskel, Prolog

10

Beyond Fifth Generation Languages

• Some talk about
– Aspect Oriented Programming (Not so much)

– Agent Oriented Programming
– Intentional Programming
– Natural language programming

• Maybe you will invent the next big
language

11

The principal paradigms
• Imperative Programming

– Fortran, Pascal, C
• Object-Oriented Programming

– Simula, SmallTalk, C++, Java, C#
• Logic/Declarative Programming

– Prolog, SQL
• Functional/Applicative Programming

– Lisp, Scheme, Haskell, SML, F#
• (Aspect Oriented Programming)

– AspectJ, AspectC#, Aspect.Net
• (Reactive Programming)

– RxJava, Angular, React, Vue, Functional reactive

12

The Multi-Paradigm Era

Microsoft fellow Anders Hejlsberg, who heads
development on C#, said:

"The taxonomies of programming languages are
starting to break down,"

He points to dynamic languages, programming
languages, and functional languages.

He said "future languages are going to be an
amalgam of all of the above.

If in doubt, take a look at C#

The 10 most popular
programming languages

13

Swift
DART
Erlang
Scala
Lisp
Kotlin
F#
Haskel

https://www.tiobe.com/tiobe-index/

https://www.tiobe.com/tiobe-index/

14

What determines a “good” language

• Formerly: Run-time performance
– (Computers were more expensive than programmers)

• Now: Life cycle (human) cost is more important
– Ease of designing, coding
– Debugging
– Maintenance
– Reusability

• FADS
– A fad is any form of behavior that develops among a large population

and is collectively followed enthusiastically for a period of time,
generally as a result of the behavior being perceived as popular by one's
peers or being deemed "cool" Source Wikipedia

Concepts of Programming Languages, Eleventh Edition, Global Edition
Robert W. Sebesta

Copyright ©2017 by
Pearson Education, Ltd.

All rights reserved.

Table 1.1 Language evaluation criteria and the
characteristics that affect them

Evidense Based Programming
Language Design

• New direction in PL Resreach (ca. 2005)
– Use social science techniques

• Data Mining of repositories or MOC (massive Online Course)
• Questionaeres

– E.g. Perl vs. Python (age difference)
– E.g. ObjectiveC (Most like used in small companies)

– Use medical science techniques
• Controlled experiments

– E.g. Static vs. Dymanic types
• Placebo effects

– E.g. Quorum vs. Perl. Vs Randomo
– Use HCI techniques

• Eye tracking and Brain Scans
• (Usability Lab)
• Discount Method for Programming Language Evaluation

• Actually not that new
– SmallTalk and Logo designers used observational studies in the 70ies

16

17

Programming languages are languages

• But Computer languages lack ambiguity and
vagueness

• In English sentences can be ambiguous
– I saw the man with a telescope

• Who had the telescope?

– Take a pinch of salt
• How much is a pinch?

• In a programming language a sentence either
means one thing or it means nothing

18

Programming Language Specification

• Why?
– A communication device between people who need to

have a common understanding of the PL:
• language designer, language implementor, language user

• What to specify?
– Specify what is a ‘well formed’ program

• syntax
• contextual constraints (also called static semantics):

– scope rules
– type rules

– Specify what is the meaning of (well formed) programs
• semantics (also called runtime semantics)

19

Programming Language Specification

• Why?
• What to specify?
• How to specify ?

– Formal specification: use some kind of precisely defined
formalism

– Informal specification: description in English.

– Usually a mix of both (e.g. Java specification)
• Syntax => formal specification using CFG
• Contextual constraints and semantics => informal
• Formal semantics has been retrofitted though

– But trend towards more formality (C#, Fortress)
• fortress.pdf
• Ecma-334.pdf

Specification of Method invocation in C#
according to the ECMA 334 standard

20

Method invocation in Fortress

21

22

Programming Language Specification

– A Language specification has (at least) three parts
• Syntax of the language:

– usually formal in BNF or EBNF + RE for lexems
• Contextual constraints:

– scope rules (often written in English, but can be formal)
– type rules (formal or informal)

• Semantics:
– defined by the implementation
– informal descriptions in English
– formal using operational or denotational semantics

The Syntax and Semantics course will teach you how to read and
write a formal language specification – so pay attention!

23

Does Syntax matter?

• Syntax is the visible part of a programming language
– Programming Language designers can waste a lot of time discussing

unimportant details of syntax
• The language paradigm is the next most visible part

– The choice of paradigm, and therefore language, depends on how
humans best think about the problem

– There are no right models of computations – just different models of
computations, some more suited for certain classes of problems than
others

• The most invisible part is the language semantics
– Clear semantics usually leads to simple and efficient

implementations

• But syntax does matter!
– Syntax that suggest underlying semantics seems to be

important to programmers

24

Language Processors: What are they?

A programming language processor is any system (software
or hardware) that manipulates programs.
Examples:

– Editors
• Emacs

– Integrated Development Environments
• Eclipse
• NetBeans
• Visual Studio .Net

– Translators (e.g. compiler, assembler, disassembler)
– Interpreters

Interpreters

26

You use lots of interpreters every day!
Web-Client

Web-Server

DBMS

Database
Output

SQL
commands

PHP
Script

JavaScript
interpreter

JVM

WWW

Submit
Data

Call PHP
interpreter

Response Response

LAN

Web-Browser
HTML interpreter

Database
Server

27

Compilation

• Compilation is at least a two-step process, in
which the original program (source program) is
input to the compiler, and a new program (target
program) is output from the compiler. The
compilation steps can be visualized as the
following.

28

Compiler (simple view)

29

Compiler

30

Hybrid compiler / interpreter

31

Compiler (simple view again)

C code

32

The Phases of a Compiler

Syntax Analysis

Contextual Analysis

Code Generation

Source Program

Abstract Syntax Tree

Decorated Abstract Syntax Tree

Object Code

Error Reports

Error Reports

33

Different Phases of a Compiler
The different phases can be seen as different

transformation steps to transform source code into
object code.

The different phases correspond roughly to the different
parts of the language specification:

• Syntax analysis <-> Syntax
• Contextual analysis <-> Contextual constraints
• Code generation <-> Semantics

34

Multi Pass Compiler

Compiler Driver

Syntactic Analyzer

calls
calls

Contextual Analyzer Code Generator

calls

Dependency diagram of a typical Multi Pass Compiler:

A multi pass compiler makes several passes over the program. The
output of a preceding phase is stored in a data structure and used by
subsequent phases.

input

Source Text

output

AST

input output

Decorated AST

input output

Object Code

Organization of a Compiler

36

Programming Language Implementation

Translatorinput output
source program object program

is expressed in the
source language

is expressed in the
implementation language

is expressed in the
target language

Q: Which programming languages play a role in this picture?

A: All of them!

37

Single Pass Compiler

Compiler Driver

Syntactic Analyzer

calls

calls

Contextual Analyzer Code Generator

calls

Dependency diagram of a typical Single Pass Compiler:

A single pass compiler makes a single pass over the source text,
parsing, analyzing and generating code all at once.

Programming Language and
Compiler Design

• Many compiler techniques arise from the need to cope with
some programming language construct

• The state of the art in compiler design also strongly affects
programming language design

• The advantages of a programming language that’s easy to
compile:
– Easier to learn, read, understand
– Have quality compilers on a wide variety of machines
– Better code will be generated
– Fewer compiler bugs
– The compiler will be smaller, cheaper, faster, more reliable, and

more widely used
– Better diagnostic messages and program development tools

Compiler Writing Tools

• Compiler generators (compiler compilers)
– Scanner generator

• JLex (lex, lg)

– Parser generator
• JavaCUP (Yacc, pg)

– Front-end generator
• SableCC, JavaCC, (COCO/R, ANTLR, ..)

– Code-generation tools
• Much of the effort in crafting a compiler lies in

writing and debugging the semantic phases
– Usually hand-coded

40

Programming Language Projects

• A good DAT4/SW4/IT8 project group can
– Design a language (or language extensions)
– Define the language syntax using CFG
– Define the language semantics using SOS
– Implement a compiler/interpreter

• in Java (or C/C++, C#, SML, F#, Scala, Kotlin …)
• Build a recursive decent parser by hand
• Or using front-end tools such as Lex/Yacc, JavaCC, SableCC, ..
• Do code generation for abstract machine

– JVM (PerlVM or .Net CLR) or new VM
• Or code generation to some high level language

– C, Java, C#, SQL, XML
• Or code generation for some hardware platform

– MIPS, X86, ARM, ATmega, Z80, …
– (Prove correctness of compiler)

• Using SOS for Prg. Lang. and VM

41

Programming Language Life Cycle

Design

Specification

Manuals,
Textbooks

Compiler

Prototype

42

Some advice

• A language design and compiler project is easy to
structure.
– Design phase (Lecture 1-5 + 13-14 + 19)
– Front-end development (Lecture 6-9)
– Contextual analysis (Lecture 10-12)
– Code generation or interpretation (Lecture 15-18 + 20)

• You will learn the techniques and tools you need
in time for you to apply them in your project

43

Summary

• Programming Language Design
– New features
– Paradigm, Philosophy

• Programming Language Specification
– Syntax
– Contextual constraints
– Meaning (semantics and code generation)

• Programming Language Implementation
– Compiler
– Interpreter
– Hybrid system

44

Important

• At the end of the course you should …
• Know

– Which techniques exist
– Which tools exist

• Be able to choose “the right ones”
– Objective criteria
– Subjective criteria

• Be able to argue and justify your choices!

45

Finally

Keep in mind, the compiler is the program from which all other
programs arise. If your compiler is under par, all programs created
by the compiler will also be under par. No matter the purpose or use
-- your own enlightenment about compilers or commercial
applications -- you want to be patient and do a good job with this
program; in other words, don't try to throw this together on a
weekend.

Asking a computer programmer to tell you how to write a compiler
is like saying to Picasso, "Teach me to paint like you."

Sigh Nevertheless, Picasso shall try.

1

Languages and Compilers
(SProg og Oversættere)

Lecture 2
Programming Language Evolution

Bent Thomsen
Department of Computer Science

Aalborg University

Learning goals

• Introduction to programming language design
• Overview of the evolution of programming

languages

3

Why Are There So Many Programming
Languages

• Why does some people speak French?
• Programming languages have evolved over time as better

ways have been developed to design them.
– First programming languages were developed in the 1950s
– Since then thousands of languages have been developed

• Different programming languages are designed for different
types of programs.

Why do people design new
programming Languages?

• Most new languages are invented out of frustration!
– “The decision to create a new programming language or

to design an extension of an existing language is often a
reaction to some language that the designer knows (and
likes or dislikes)”

• P. Sestoft 2012

• A few languages are created because somebody
requested a new language
– Fortran, C#, Swift, DART
– All of you, because the study regulations says so

5

Programming Language design

• Designing a new programming language or extending an
existing programming language usually follows an
iterative approach:

1. Create ideas for the programming language or
extensions

2. Describe/define the programming language or
extensions

3. Implement the programming language or extensions
4. Evaluate the programming language or extensions
5. If not satisfied, goto 1

6

Programming Language design

1. Create ideas for the programming language or extensions
• This subject is almost completely absent from literature!

2. Describe/define the programming language or extensions
• We will spend quite a bit of time in this course and the SS

3. Implement the programming language or extensions
• We will spend a lot of time on this subject.

4. Evaluate the programming language or extensions
• is not usually covered in classic litterature on Programming

Languages and Compilers!
• But you saw Sebesta’s Language evaluation criteria in the last

lecture
• We shall see a some more later.

7

Concepts of Programming Languages, Eleventh Edition, Global Edition
Robert W. Sebesta

Copyright ©2017 by
Pearson Education, Ltd.

All rights reserved.

Table 1.1 Language evaluation criteria and the
characteristics that affect them

How to create ideas for a new programming
language or extensions ?

• Do a problem analysis!
– Who needs the new language?
– What is the purpose of the new language
– What type of programs would we like to write?

• Create some example programs
• Even before you have defined the language you can create

examples of programs as you would like them to look
• Take inspiration from other languages

– Which langauges do you know?
– What do you like about these languages?
– What do you dislike?
– Look at languages you don’t know!
– Look at the history of programming languages

9

10

Programming Language History
1940s

The first electronic computers were monstrous
contraptions
– Programmed in binary machine code by hand
– Code is not reusable or relocatable

• Each machine had its own machine language

– Computation and machine maintenance were
difficult:
• cathode tubes regularly burned out
• The term ‘‘bug’’ originated from a bug that reportedly

roamed around in a machine causing short circuits

11

… in the beginning of time

12

Programming Language History
Late 1940s early 1950s

• Assembly languages
– invented to allow machine operations to be

expressed in mnemonic abbreviations
– Enables larger, reusable, and re-locatable

programs
– Actual machine code is produced by an

assembler
– Early assemblers had a one-to-one

correspondence between assembly and machine
instructions

– Later: expansion of macros into multiple
machine instructions to achieve a form of
higher-level programming

Assembly
LOAD x
ADD R1 R2

; Hello World for Intel Assembler (MSDOS)

mov ax,cs
mov ds,ax
mov ah,9
mov dx, offset Hello
int 21h
xor ax,ax
int 21h

14

Programming Language History
Mid 1950s

• Fortran , the first higher-level language
– Now programs could be developed that were

machine independent!
– Main computing activity in the 50s: solve

numerical problems in science and engineering
– Other high-level languages soon followed:

• Algol 58 is an improvement compared to Fortran
• Cobol for business computing
• Lisp for symbolic computing and artificial intelligence
• BASIC for "beginners"

C Hello World in Fortran

PROGRAM HELLO
WRITE (*,100)
STOP

100 FORMAT (' Hello World! ' /)
END

* Hello World in COBOL

IDENTIFICATION DIVISION.
PROGRAM-ID. HELLO.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.
MAIN SECTION.
DISPLAY "Hello World!"
STOP RUN.

16

Programming Language History
1960s

• Structured Programming
– Dijkstra, Dahl, and Hoare.

• Pascal, Niklaus Wirth (ETH, Zurich)
– Modelled after Algol
– No GOTO
– Very strongly typed
– Procedures nested inside each other
– Designed for teaching programming

• Simula, Dahl and Nygaard (Norway)
– The first language with objects, classes, and

subclasses

{Hello world in Pascal}

program HelloWorld(output);
begin
WriteLn('Hello World!');

end.

18

Programming Language History
1970s

• C, Dennis Ritchie/Ken Thompson (Bell Labs)
– Successor to B, which was stripped-down BCPL.
– High-level constructs and low-level power
– Flat name space for functions/procedures

• Ada, Jean Ichbiah (France)
– Instigated by the Department of Defense
– Designed for systems programming, especially

embedded systems.

/* Hello World in C, Ansi-style */

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
puts("Hello World!");
return EXIT_SUCCESS;

}

-- Hello World in Ada

with Text_IO;
procedure Hello_World is

begin
Text_IO.Put_Line("Hello

World!");
end Hello_World;

20

Programming Language History
1970s

• Smalltalk, Alan Kay, Adele Goldberg (Xerox PARC)
– Graphics-rich

• GUI
• Fonts

– Object-oriented
• Everything is an object
• Objects communicate through messages

• Scheme, Gerald Sussman & Guy Steele (MIT)
– LISP with static scoping

• Prolog, Philippe Roussel (France)
– Based on rules, facts, and queries.

"Hello World in Smalltalk"

Transcript show: 'Hello
World!'.

; Hello World in Scheme

(display "Hello, world!")
(newline)

% Hello World in Prolog

hello :- display('Hello
World!') , nl .

22

Programming Language History
1980s

• Object-oriented programming
– Important innovation for software development
– The concept of a class is based on the notion of

data type abstraction from Simula 67 , a language
for discrete event simulation that has classes but
no inheritance

• 1979-1983: C++ Bjarne Stroustrop (Bell Labs)
– Originally thought of as “C with classes”.
– First widely-accepted object-oriented language.
– First implemented as a pre-processor for the C

compiler.

// Hello World in C++ (pre-ISO)

#include <iostream.h>

main()
{

cout << "Hello World!" << endl;
return 0;

}

24

Programming Language History
1980s

• Functional Programming
– Extensive list of new concepts

• Lazy vs. eager evaluation
• Pure vs. imperative features
• Parametric polymorphism
• Type inference
• (Garbage collection)

– Hope
– Clean
– Haskell
– SML
– Caml

25

Programming Language History
1990s

• HTML, Tim Berners-Lee (CERN)
– “Hypertext Markup Language”

• Language of the World Wide Web.
– A markup language, not a programming language.

• Scripting languages
– PERL.

• CGI or Apache module
– Languages within Web pages

• JavaScript, VBScript
• PHP, ASP, JSP

• Java, James Gosling (Sun)

26

The evolution of Java
• 1993 Oak project at Sun

– small, robust, architecture independent, Object-Oriented, language to control interactive TV.
– didn’t go anywhere

• 1995 Oak becomes Java
– Focus on the web

• 1996 Java 1.0 available
• 1997 (March) Java 1.1 - some language changes, much larger library, new event handling model
• 1997 (September) Java 1.2 beta – huge increase in libraries including Swing, new collection classes, J2EE
• 1998 (October) Java 1.2 final (Java2!)
• 2000 (April) Java 1.3 final
• 2001 Java 1.4 final (assert)
• 2004 Java 1.5 (parameterized types, enum, …)
• 2005 J2EE 1.5
• 2006 Java 6
• 2011 Java 7
• 2014 Java 8 (lambda expressions)
• 2017 Java 9 (expected 23.3.17, but released 21.9.17
• – REPL, process control, collections, streams, …)
• 2018 Java 10 (March – Minor updates, GC interface, parallel GC)
• 2018 Java 11 (September - Local-variable syntax for lambda parameters, ZGC: a scalable low-latency GC)
• 2019 Java 12 (March)
• Java SE 13 (September 17, 2019)
• Java SE 14 (March 17, 2020) – preview of patternmatching
• Java SE 15 (September 15, 2020)

27

Programming Language History
2000s

• XML
• Microsoft .NET

– Multiple languages
• C++
• C#
• Visual Basic
• COBOL
• Fortran
• Eiffel

– Common virtual machine (.Net CLR)
– Web services

28

C# History
• 12/1998 – COOL project started
• 07/1999 – First internal ports to COOL
• 02/2000 – Named changed to C#
• 07/2000 – First public preview release
• 02/2002 – C# 1.0, VS.NET 2002
• 05/2003 – C# 1.1, VS.NET 2003
• 06/2004 – Beta 1 of C# 2.0 and VS 2005
• 04/2005 – Beta 2 of C# 2.0 and VS 2005
• 11/2005 – C# 2.0 VS 2005, C# 2.0 release

– Generics, anonymous delegates, nullable types, iterators, partial classes
• 11/2006 – C# 3.0, VS 2008

– (local type inference, lambdas, expression trees, LINQ)
• 04/2010 – C# 4.0, VS 2010

– Type dynamics, named+optional parameters, co-/contra variant generics
• 08/2012 – C# 5.0, VS 2012

– Async methods
• 06/2015 – C# 6.0, VS 2015

– Await in catch/finally blocks, succinct null checking
• 2017 – C# 7.0,7.1,7.2, VS 2017

– Pattern matching, Local functions, tuples
• 2018 – C# 7.3

– Reassigning ref local variables, Using initializers on stackalloc arrays
• 2019 – C# 8

– readonly struct members, default interface members, switch expressions, Property, Tuple, and positional patterns, using
declarations

– static local functions, Disposable ref struct, Nullable reference types, Indices and Ranges, Null-coalescing assignment,AsyncStreams
• 2020 – C# 9

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-29

Genealogy of Common Languages

lang.pdf

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-30

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-31

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-32

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-33

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-34

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-35

36

Programming Language History
2010s

• Multi paradigm integration, especially
OO+FP(+concurrency)
– C#, C++ and Java
– Python
– Ruby
– Groovy
– Clojure
– Fortress
– Scala
– O’Caml, F#
– Haskell
– Erlang
– Swift, DART, RUST, Kotlin

-- Hello World in Haskell

main = putStrLn "Hello World“

%% Hello World in Erlang

-module(hello).

-export([hello/0]).

hello() ->
io:format("Hello World!~n", []).

// Hello world in Swift

println("Hello, world!")

// Hello world in Dart

main() {
print('Hello world!');

}

// Hello world in Kotlin

fun main(args : Array<String>) {
println("Hello, world!")

}

38

Three Trends

• Declarative programming languages in vogue
again
– Especially functional

• Dynamic Programming languages gained
momentum, but …

• Concurrent Programming languages came
back on the agenda
– Reactive programming

• (a special kind of concurrent programming)

So what can you do in your projects?

• Look at code in the languages you know
• Use Sebesta’s Language Evalualtion criteria

to those languages
• Look at code in languages you do not know
• Make a list of language features you like
• Make a list of language features you dislike
• Creat some example programs

39

40

So how would you like to
programme in 20 years?

1

Languages and Compilers
(SProg og Oversættere)

Lecture 2
Tombstone Diagrams

Bent Thomsen
Department of Computer Science

Aalborg University

With acknowledgement to Norm Hutchinson whose slides this lecture is based on.

Learning goals

• Knowledge of compilers and interpreters as programs
• Knowledge of tombstone diagrams
• Introduction to Cross compilation
• Introduction to Two stage compiling
• Reasoning about Portability
• Introduction to bootstrapping

2

3

Terminology

Translatorinput output
source program object program

is expressed in the
source language

is expressed in the
implementation language

is expressed in the
target language

Q: Which programming languages play a role in this picture?

A: All of them!

4

Tombstone Diagrams

What are they?
– diagrams consisting out of a set of “puzzle pieces” we can use

to reason about language processors and programs
– different kinds of pieces
– combination rules (not all diagrams are “well formed”)

M

Machine implemented in hardware

S -> T
L

Translator implemented in L

M
L

Language interpreter in L

Program P implemented in L

L
P

5

Tombstone diagrams: Combination rules

S
P P

TS -> T
M
M

L
P

S -> T
MWRONG!

OK!
OK!

OK!M
M
P

OK!

M
L
P

WRONG!

6

Tetris
x86C

Tetris

Compilation

x86

Example: Compilation of C programs on an x86 machine

C -> x86
x86

x86
Tetris

x86

7

Tetris
ARMC

Tetris

Cross compilation

x86

Example: A C “cross compiler” from x86 to ARM

C -> ARM
x86

A cross compiler is a compiler which runs on one machine (the host
machine) but emits code for another machine (the target machine).

Host ≠ Target

Q: Are cross compilers useful? Why would/could we use them?

ARM
Tetris

ARM

download

8

Tetris
x86

Tetris
JVMJava

Tetris

Two Stage Compilation

x86

Java->JVM
x86

A two-stage translator is a composition of two translators. The
output of the first translator is provided as input to the second
translator.

x86

JVM->x86
x86

9

Tetris
x86

Tetris
CJava

Tetris

Two Stage Compilation (via C)

x86

Java->C
x86

A two-stage translator is a composition of two translators. The
output of the first translator is provided as input to the second
translator.

x86

C->x86
x86

10

x86
Java->x86

Compiling a Compiler

Observation: A compiler is a program!
Therefore it can be provided as input to a language processor.
Example: compiling a compiler.

Java->x86
C

x86

C -> x86
x86

11

Interpreters

An interpreter is a language processor implemented in software, i.e.
as a program.

Terminology: abstract (or virtual) machine versus real machine

Example: The Java Virtual Machine

JVM
x86
x86

JVM
Tetris

Q: Why are abstract machines useful?

12

Interpreters

Q: Why are abstract machines useful?

1) Abstract machines provide better platform independence

JVM
x86
x86 ARM

JVM
Tetris

JVM
ARM

JVM
Tetris

13

Interpreters

Q: Why are abstract machines useful?

2) Abstract machines are useful for testing and debugging.

Example: Testing the “Ultima” processor using hardware emulation

Ultima
x86
x86

Ultima≡
Ultima

P

Ultima
P

Functional equivalence

Note: we don’t have to implement Ultima emulator in x86 we can
use a high-level language and compile it.

14

Interpreters versus Compilers

Q: What are the tradeoffs between compilation and interpretation?

Compilers typically offer more advantages when
– programs are deployed in a production setting
– programs are “repetitive”
– the instructions of the programming language are complex

Interpreters typically are a better choice when
– we are in a development/testing/debugging stage
– programs are run once and then discarded
– the instructions of the language are simple
– the execution speed is overshadowed by other factors

• e.g. on a web server where communications costs are much higher than
execution speed

15

Interpretive Compilers

Why?
A tradeoff between fast(er) compilation and a reasonable runtime
performance.

How?
Use an “intermediate language”
• more high-level than machine code => easier to compile to
• more low-level than source language => easy to implement as an

interpreter

Example: A “Java Development Kit” for machine M

Java->JVM
M

JVM
M

16

P
JVMJava

P

Interpretive Compilers

Example: Here is how we use our “Java Development Kit” to run a
Java program P

Java->JVM
M JVM

MM

JVM
P

Mjavac java

17

Portable Compilers

Example: Two different “Java Development Kits”

Java->JVM
JVM

JVM
M

Kit 2:

Java->JVM
M

JVM
M

Kit 1:

Q: Which one is “more portable”?

18

Example: a “portable” compiler kit

Java->JVM
Java

JVM
Java

Java->JVM
JVM

Q: Suppose we want to run this kit on some machine M. How could
we go about realizing that goal? (with the least amount of effort)

Portable Compiler Kit:

19

Example: a “portable” compiler kit

Java->JVM
Java

JVM
Java

Java->JVM
JVM

Q: Suppose we want to run this kit on some machine M. How could
we go about realizing that goal? (with the least amount of effort)

JVM
Java

JVM
C

reimplement

C->M
M

JVM
M

M

20

Example: a “portable” compiler kit

Java->JVM
Java

JVM
Java

Java->JVM
JVM

JVM
M

This is what we have now:

Now, how do we run our Tetris program?

Tetris
JVMJava

Tetris

M

Java->JVM
JVM
JVM

M

JVM
Tetris

JVM
M
M

21

Bootstrapping

Java->JVM
Java

JVM
Java

Java->JVM
JVM

Remember our “portable compiler kit”:

We haven’t used this yet!

Java->JVM
Java

Same language! Q: What can we do with a compiler written in
itself? Is that useful at all?

JVM
M

22

Bootstrapping

Java->JVM
Java

Same language!

Q: What can we do with a compiler written in
itself? Is that useful at all?

• By implementing the compiler in (a subset of) its own language, we
become less dependent on the target platform => more portable
implementation.

• But… “chicken and egg problem”? How do to get around that?
=> BOOTSTRAPPING: requires some work to make the first “egg”.

There are many possible variations on how to bootstrap a compiler
written in its own language.

23

Bootstrapping an Interpretive Compiler to
Generate M code

Java->JVM
Java

JVM
Java

Java->JVM
JVM

Our “portable compiler kit”:

P
MJava

P
Goal: we want to get a “completely native” Java compiler on machine M

Java->M
M

JVM
M

M

24

Bootstrapping an Interpretive Compiler to
Generate M code (first approach)

Step 1: implement

Java->M
Java JVM

Java ->M
Java->JVM

JVM
JVM

M
M

Java ->M
Java

Step 2: compile it

Step 3: Use this to compile again

by rewriting Java ->JVM
Java

25

Bootstrapping an Interpretive Compiler to
Generate M code (first approach)

Step 3: “Self compile” the Java (in Java) compiler

M
Java->M

JVM
M
M

Java->M
Java Java->M

JVM

This is our desired
compiler!

Step 4: use this to compile the P program

P
MJava

P
Java->M

M

26

Bootstrapping an Interpretive Compiler to
Generate M code (second approach)

Idea: we will build a two-stage Java -> M compiler.

P
M

P
MJava

P P
JVM

M

Java->JVM
M

M

JVM->M
M

We will make this by
compiling

To get this we implement

JVM->M
Java

Java->JVM
JVM and compile it

27

Bootstrapping an Interpretive Compiler to
Generate M code (second approach)

Step 1: implement

JVM->M
Java JVM

JVM->M
Java->JVM

JVM
JVM

M
M

JVM->M
Java

Step 2: compile it

Step 3: compile this

28

Bootstrapping an Interpretive Compiler to
Generate M code (second approach)

Step 3: “Self compile” the JVM (in JVM) compiler

M
JVM->M

JVM
M
M

JVM->M
JVM JVM->M

JVM

This is the second
stage of our
compiler!

Step 4: use this to compile the Java compiler

29

Bootstrapping an Interpretive Compiler to
Generate M code

Step 4: Compile the Java->JVM compiler into machine code

M
Java->JVM

M

Java->JVM
JVM JVM->M

M

The first stage of
our compiler!

We are DONE!

P
M

P
MJava

P P
JVM

M

Java->JVM
M

M

JVM->M
M

30

Bootstrapping to Improve Efficiency

The efficiency of programs and compilers:
Efficiency of programs:

- memory usage
- runtime

Efficiency of compilers:
- Efficiency of the compiler itself
- Efficiency of the emitted code

Idea: We start from a simple compiler (generating inefficient code)
and develop more sophisticated versions of it. We can then use
bootstrapping to improve performance of the compiler.

31

Bootstrapping to Improve Efficiency

We have:
Java->Mslow

Java
Java-> Mslow

Mslow

We implement:
Java->Mfast

Java

Java->Mfast

Java

M

Java->Mfast
Mslow

Step 1

Java-> Mslow
Mslow

Step 2 Java->Mfast

Java

M

Java->Mfast
MfastJava-> Mfast

Mslow

Fast compiler that
emits fast code!

32

Conclusion

• To write a good compiler you may be writing several
simpler ones first

• You have to think about the source language, the target
language and the implementation language.

• Strategies for implementing a compiler
1. Write it in machine code
2. Write it in a lower level language and compile it using an

existing compiler
3. Write it in the same language that it compiles and bootstrap

• The work of a compiler writer is never finished, there
is always version 1.x and version 2.0 and …

AtoCC Demo

33

1

Languages and Compilers
(SProg og Oversættere)

Lecture 3
The ac language and compiler

Bent Thomsen
Department of Computer Science

Aalborg University

With acknowledgement to H. J. Wang whose slides this lecture is based on.

Learning goals

• Get an overview of a simple language (ac)
• Get an introduction to language definition
• Get an overview of the compilation process for a simple

language
• Get a quick overview of a compiler’s phases and their

associated data structures

2

3

The “Phases” of a Compiler

Syntax Analysis

Contextual Analysis

Code Generation

Source Program

Abstract Syntax Tree

Decorated Abstract Syntax Tree

Object Code

Error Reports

Error Reports

4

Different Phases of a Compiler

The different phases can be seen as different
transformation steps to transform source code into
object code.

The different phases correspond roughly to the different
parts of the language specification:

• Syntax analysis <-> Syntax
• Lexical analysis <-> Regular Expressions
• Parsing <-> Context Free Grammar

• Contextual analysis <-> Contextual constraints
• Scope checking <-> Scope rules (static semantics)
• Type checking <-> Type rules (static semantics)

• Code generation <-> Semantics (dynamic semantics)

Organization of a Compiler

5

Phases of a Simple Compiler
• Scanner: source program -> tokens

– Part of Syntax analysis phase
– Fischer et. Al. Chap. 3

• Parser: tokens -> abstract syntax tree (AST)
– Part of Syntax analysis phase
– Fischer et. Al. Chap. 5 & 6

• Symbol table: created from AST
– Part of contextual analysis phase
– Fischer et. Al. Chap. 8

• Semantic analysis: AST decoration
– Part of contextual analysis phase
– Fischer et. Al. Chap. 9

• Translation (Code generation)
– Part of code generation phase
– Fischer et. Al. Chap. 11 and Chap 13.

6

An Informal Definition of the ac Language
• ac: adding calculator
• Types

– integer
– float: allows 5 fractional digits after the decimal point
– Automatic type conversion from integer to float

• Keywords
– f: float
– i: integer
– p: print

• Variables
– 23 names from lowercase Roman alphabet except the three reserved keywords f, i,

and p
• Monolitic scope, i.e. names are visible in the program when they are

declared
– Note more complex languages may have nested scopes

• e.g. in C we can write { int x; … { int x; … x =5; … } … x =x +1; …}
• Target of translation: dc (desk calculator)

– Reverse Polish notation (RPN)

7

Example Program

f b //declare variable b as float
i a //declare variable a as int
a = 5 //assign a the value 5
b = a + 3.2 //assign b the result of

//calculating a + 3.2
p b //print the content of b

8

An Example ac Program

• Example ac program:
– f b

i a
a = 5
b = a + 3.2
p b

• Corresponding dc
code
– 5

sa
la
3.2
+
sb
lb
p

9Note that DC is a stack machine just like the JVM, CLR and PostScript

Formal Definition of ac

• Syntax specification:
– context-free grammar (CFG)
– (Chap. 4)

• Token specification:
– Regular Expressions (RE)
– (Sec. 3.2)

• Note no formal definition of Type Rules or
Runtime semantics (in Fischer et. Al.)

10

A sketch SOS for ac

11

Syntax Specification

12

Context Free Grammar
• CFG:

– A set of productions or rewriting rules
– E.g.: Stmt id assign Val Expr

| print id
– Two kinds of symbols

• Terminals: cannot be rewritten
– E.g.: id, assign, print
– Empty or null string: λ - some references use ε for empty string
– End of input stream or file: $

• Nonterminals:
– E.g.: Val, Expr
– Start symbol: Prog

– Left-hand side (LHS)
– Right-hand side (RHS)

13

Example Program

f b //declare variable b as float
i a //declare variable a as int
a = 5 //assign a the value 5
b = a + 3.2 //assign b the result of

//calculating a + 3.2
p b //print the content of b
$ //symbol used to signal

//end of input
14

f b i a a = 5 b = a + 3.2 p b $
15

16

1717

Definition of ac language

Regular expression specifies Token
– The actual input characters that correspond to each

terminal symbol (called token) are specified by
regular expression.

– For example:
• assign symbol as a terminal, which appears in the input

stream as “=“ character.
• The terminal id (identifier) could be any alphabetic character

except f, i, or p, which are reserved for special use in ac. It is
specified as [a-e] | [g-h]] | [j-o] | [q-z]

– Regular expression will be covered in Ch. 3.
– Also need to specify which symbols to ignore

• E.g. blanks, tabs, comments (sometimes called Ignore Tokens)

Token Specification for ac

18Note: In most languages id is a sequence of letters and numbers starting
With a letter defined as [a-z]([a-z]|[0-9])*

Tokens and FSA

19

20

Phases of an ac compiler
• Scanning/lexing

– The scanner reads a source ac program as a text file
and produces a stream of tokens.

– Fig. 2.5 shows a scanner that finds all tokens for ac.
– Fig. 2.6 shows scanning a number token.

– Each token has the two components:
1)Token type explains the token’s category. (e.g., id)
2)Token value provides the string value of the token. (e.g., “b”)

- Automatic construction of scanners: Chap.3

21

Scanning: Divide Input into Tokens

An example ac source program:
f b
i a
a = 5
b = a + 3.2
p b

floatdl
f

id
b

intdcl
i

scanner

id
a

id
a

assign
=

id
a

plus
+

...

... fnum
3.2

print
p

id
b

eot

Lexems are “words” in the input, for
example keywords, operators,
identifiers, literals, etc.
Tokens is a datastructure for lexems
and additional information

inum
5

assign
=

22

23

24

25

Pause

26

Parsing
• To determine if the stream of tokens conforms to the

language’s grammar specification
– Chap. 4, 5, 6
– For ac, a simple parsing technique called recursive descent is used

• “Mutually recursive parsing routines that descend through a derivation
tree”

• Each nonterminal has an associated parsing procedure for determining
if the token stream contains a sequence of tokens derivable from that
nonterminal

• Examine the next input token to predict which production
should be applied, e.g:

» Stmt id assign Val Expr
» Stmt print id

– Predict set
» {id} [1]
» {print} [6]

27

TMT
PEEK

PEEK

MATCH
MATCH

MATCH
MATCH

ERROR

AL

XPR

TMT
PEEK

PEEK

MATCH
MATCH

MATCH
MATCH

ERROR

AL

XPR

28

Stmt id assign Val Expr

Stmt print id

• Consider the productions for Stmts
– Stmts Stmt Stmts
– Stmts λ

• The predict sets
– {id, print} [8]
– {$} [11]

29

TMTS
PEEK PEEK

PEEK

TMT
TMTS

ERROR

30

31

The result of parsing

• If all of the tokens are processed, an
abstract syntax tree (AST) will be
generated.
– An example is shown in fig 2.9.
– Actually the AST is produced during the process

• AST serves as a representation of a
program for all phases

after syntax analysis.
32

33

Abstract Syntax Trees

• Parse trees are large and unnecessarily detailed
(Fig. 2.4)
– Abstract syntax tree (AST) (Fig. 2.9)

• Inessential punctuation and delimiters are not included
– A common intermediate representation for all phases

after syntax analysis
• Declarations need not be in source form
• Order of executable statements explicitly represented
• Assignment statement must retain identifier and expression
• Nodes representing computation: operation and operands
• Print statement must retain name of identifier

34

35

36

Contextual Analysis
• Aspects of compilation that can be difficult to

perform during syntax analysis
– Some aspects of language cannot be specified in a CFG

• Symbol usage consistency with type declaration
• Scope/visibility of variables
• In Java: x.y.z

– Package x, class y, static field z
– Variable x, field y, another field z

• Operator overloading
– +: numerical addition or appending of strings

– Separation into phases makes the compiler much
easier to write and maintain

37

Semantic Analysis

• Example processing
– Declarations and name scopes are processed

to construct a symbol table
– Type consistency
– Make type-dependent behavior explicit

38

Symbol Tables

• To record all identifiers and their types
– 23 entries for 23 distinct identifiers in ac (Fig.

2.11)
• Type info.: integer, float, unused (null)
• Attributes: scope, storage class, protection

properties
– Symbol table construction (Fig. 2.10)

• Symbol declaration nodes call
VISIT(SymDeclaring n)

• ENTERSYMBOL checks the given symbol has not
been previously declared

39

40

41

Type Checking
• Only two types in ac

– Integer
– Float

• Type hierarchy
– Float wider than integer
– Automatic widening (or casting)

• integer -> float
• All identifiers must be type-declared in a

program before they can be used
• This process walks the AST bottom-up from

its leaves toward its root.
42

43

Phases of an ac compiler (Cont.)

• At each node, appropriate analysis is applied:

– For constants and symbol references, the visitor methods simple
set the supplied node’s type based on the node’s contents.

– For nodes that compute value, such as plus and minus, the
appropriate type is computed by calling the utility methods.

– For an assignment operation, the visitor makes certain that the
value computed by the second child is of the same type as the
assigned identifier (the first child).

The results of applying semantic analysis to the AST of fig 2.9 are
shown in fig 2.13.

44

Type Checking

45

46

47

48

• Type checking
– Constants and symbol reference: simply set the

node’s type based on the node’s contents
– Computation nodes: CONSISTENT(n.c1, n.c2)
– Assignment operation: CONVERT(n.c2, n.c1.type)

• CONSISTENT()
– GENERALIZE(): determines the least general type
– CONVERT(): checks whether conversion is necessary

49

50

Code Generation
• The formulation of target-machine instructions

that faithfully represent the semantics of the
source program
– Chap. 11 & 13
– dc: stack machine model
– Code generation proceeds by traversing the AST,

starting at its root
• VISIT (Computing n)
• VISIT (Assigning n)
• VISIT (SymReferencing n)
• VISIT (Printing n)
• VISIT (Converting n)

51

52

53

54

• That’s it !!
• At least for ac on dc

55

56

Some advice
• A language design and compiler project follows

an iterative approach
• but each iteration is easy to structure:

– Design phase (Lecture 1-5 + 13-14 + 19)
– Front-end development (Lecture 6-9)
– Contextual analysis (Lecture 10-12)
– Code generation or interpretation (Lecture 15-18 + 20)
– If not happy start again

• You will learn the techniques and tools you need
in time for you to apply them in your project

57

Choosing the impl. language

Translatorinput output
source program object program

is expressed in the
source language

is expressed in the
implementation language

is expressed in the
target language

Q: Which programming languages play a role in this picture?

A: All of them!

What can we do now in our
projects?

• Write programs!
• Imagine that you have already designed your

language – how would programs look?
• Serves as outset for discussions about your

language design
– Especially token and grammer design

• Write lots of programs – they will serve as
test case for your compiler later

• Start thinking about implementation
language

58

1

Languages and Compilers
(SProg og Oversættere)

Lecture 4
Language specifications

Bent Thomsen
Department of Computer Science

Aalborg University

Learning goals

• A deeper understanding of programming language
specifications

• Introduction to context free grammars
• Introduction to BNF and EBNF
• Overview of formal specifications notations

2

3

Programming Language Specification

• Why?
– A communication device between people who need to

have a common understanding of the PL:
• language designer, language implementor, language user

• What to specify?
– Specify what is a ‘well formed’ program

• syntax
• contextual constraints (also called static semantics):

– scope rules
– type rules

– Specify what is the meaning of (well formed) programs
• semantics (also called runtime semantics)

4

Programming Language Specification

• Why?
• What to specify?
• How to specify ?

– Formal specification: use some kind of precisely defined formalism
– Informal specification: description in English.

– Usually a mix of both (e.g. Java specification)
• Syntax => formal specification using RE and CFG
• Contextual constraints and semantics => informal
• Formal semantics has been retrofitted though

– But trend towards more formality (C#, Fortress)
• fortress.pdf
• Ecma-334.pdf

Fortress definition p. 71 and p. 181

5

The C89 standard – 519 pages

7

8

Programming Language Specification

A language specification need to address:

• Syntax
• Token grammar: Regular Expressions
• Context Free Grammar: BNF or EBNF

• Contextual constraints
• Scope rules (static semantics)

– Often informal, but can be formalized
• Type rules (static semantics)

– Informal or Formal

• Semantics (dynamic semantics)
– Informal or Formal

Copyright © 2015 Pearson. All rights reserved. 1-9

Syntax Analysis

• The syntax analysis portion of a language
processor nearly always consists of two
parts:
– A low-level part called a lexical analyzer

(mathematically, a finite automaton based on a
regular grammar)

– A high-level part called a syntax analyzer, or
parser (mathematically, a push-down
automaton based on a context-free grammar,
or BNF)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-10

The General Problem of Describing
Syntax: Terminology

• A sentence is a string of characters over
some alphabet

• A language is a set of sentences

• A lexeme is the lowest level syntactic unit
of a language (e.g., *, sum, begin)

• A token is a category of lexemes (e.g.,
identifier)

Definition of Tokens/lexemes

• Tokens are often specified using regular expressions
• Remember:

11

Note: In most languages id is a sequence of letters and numbers starting
With a letter defined as [a-z]([a-z]|[0-9])*

Copyright © 2009 Addison-Wesley. All rights reserved. 1-12

Formal Definition of Languages

• Generators
– A device that generates sentences of a language
– One can determine if the syntax of a particular sentence is

syntactically correct by comparing it to the structure of
the generator

• Recognizers
– A recognition device reads input strings over the alphabet

of the language and decides whether the input strings
belong to the language

– Example: syntax analysis part of a compiler

Copyright © 2009 Addison-
Wesley. All rights reserved.

1-13

BNF and Context-Free Grammars

• Context-Free Grammars
– Developed by Noam Chomsky in the mid-1950s
– Language generators, meant to describe the syntax of

natural languages
– Define a class of languages called context-free

languages

• Backus-Naur Form (1959)
– Invented by John Backus to describe Algol 58
– Modified by Peter Naur to describe Algol 60
– BNF is equivalent to context-free grammars

14

Syntax Specification

Syntax is specified using “Context Free Grammars”:
– A finite set of terminal symbols (or tokens)
– A finite set of non-terminal symbols
– A start symbol
– A finite set of production rules

A CFG defines a set of strings
– This is called the language of the CFG.

15

Backus-Naur Form

Usually CFG are written in BNF notation.

A production rule in BNF notation is written as:

N ::= α where N is a non terminal
and α a sequence of terminals and non-terminals

N ::= α | β | ... is an abbreviation for several rules with N
as left-hand side.

Sometimes non terminals are represented in angel brackets: <N> and ::= is replaced with →

16

Syntax Specification

Example:
Start ::= Letter

| Start Letter

| Start Digit

Letter ::= a | b | c | d | ... | z
Digit ::= 0 | 1 | 2 | ... | 9

Q: What is the “language” defined by this grammar?

Note: a sequence of letters and numbers starting with a letter defined in RE as
[a-z]([a-z]|[0-9])*

17

What is the “language” defined by this grammar?
identifier::= available-identifier

| @ identifier-or-keyword
available-identifier::= identifier-or-keyword (that is not a keyword)
identifier-or-keyword::= identifier-start-character identifier-part-charactersopt
identifier-start-character::= letter-character

| _ (the underscore character U+005F)
identifier-part-characters::= identifier-part-character

| identifier-part-characters identifier-part-character
identifier-part-character::= letter-character

| decimal-digit-character
| connecting-character
| combining-character
| formatting-character

letter-character::= A Unicode character of classes Lu, Ll, Lt, Lm, Lo, or Nl
| A unicode-escape-sequence representing a character of classes Lu, Ll, Lt, Lm, Lo, or Nl

combining-character::= A Unicode character of classes Mn or Mc
| A unicode-escape-sequence representing a character of classes Mn or Mc

decimal-digit-character::= A Unicode character of the class Nd
| A unicode-escape-sequence representing a character of the class Nd

connecting-character::= A Unicode character of the class Pc
| A unicode-escape-sequence representing a character of the class Pc

formatting-character::= A Unicode character of the class Cf
| A unicode-escape-sequence representing a character of the class Cf

http://msdn.microsoft.com/en-us/library/aa664812(VS.71).aspx

What is the “language” defined by this grammar?

18

Spot the syntax error

{
x = 1;
y = 2;
z = 1+2

}

19

20

Syntax Specification

Subtle example 1:
Block ::= { Statements }

Statements ::= Statement ; Statements

| Statement

Statement ::= V-name = Expression

| Identifier (Expression)

| …

21

Syntax Specification

Subtle example 2:
Block ::= { Statements }

Statements ::= Statement Statements

| Statement

Statement ::= V-name = Expression ;

| Identifier (Expression) ;

| …

22

Syntax Specification

Subtle example 3:
Block ::= { Statements }

Statements ::= Statement ; Statements

| Statement ;

Statement ::= V-name = Expression

| Identifier (Expression)

| …

Table 1.1
Language
evaluation

criteria and the
characteristics

that affect them

24

Syntax Specification

Subtle example 4:
Block ::= begin Statements end

Statements ::= Statement ; Statements

| Statement ;

Statement ::= V-name = Expression

| Identifier (Expression)

| …

25

Syntax Specification

Bad example 4:
Block ::= \nl Statements \nl

Statements ::= Statement \nl Statements

| Statement \nl

Statement ::= V-name = Expression

| Identifier (Expression)

| …

Copyright © 2009 Addison-Wesley. All rights reserved. 1-26

BNF Fundamentals

• In BNF, abstractions are used to represent classes of syntactic structures--they act like
syntactic variables (also called nonterminal symbols, or just nonterminals)

• Terminals are lexemes or tokens

• A rule has a left-hand side (LHS), which is a nonterminal, and a right-hand side (RHS),
which is a string of terminals and/or nonterminals

• Nonterminals are often enclosed in angle brackets

– Examples of BNF rules:
<ident_list> → identifier | identifier, <ident_list>

<if_stmt> → if <logic_expr> then <stmt>

• Grammar: a finite non-empty set of rules

• A start symbol is a special element of the nonterminals of a grammar

Note: terminals/lexemes like if and then are often used in CFG instead of tokens if_token and then_token

Copyright © 2009 Addison-Wesley. All rights reserved. 1-27

BNF Rules

• An abstraction (or nonterminal symbol)
can have more than one RHS
<stmt> → <single_stmt>

<stmt> → begin <stmt_list> end

• Alternative rules are written with |

<stmt> → <single_stmt>
| begin <stmt_list> end

Copyright © 2009 Addison-Wesley. All rights reserved. 1-28

Describing Lists

• Syntactic lists are described using
recursion
<ident_list> → ident

| ident, <ident_list>

• A derivation is a repeated application of
rules, starting with the start symbol and
ending with a sentence (all terminal
symbols)

Pause

Copyright © 2009 Addison-Wesley. All rights reserved. 1-29

Copyright © 2009 Addison-Wesley. All rights reserved. 1-30

An Example Grammar

<program> → <stmts>

<stmts> → <stmt> | <stmt> ; <stmts>

<stmt> → <var> = <expr>

<var> → a | b | c | d

<expr> → <term> + <term> | <term> - <term>

<term> → <var> | const

Copyright © 2009 Addison-Wesley. All rights reserved. 1-31

An Example Derivation

<program> => <stmts> => <stmt>

=> <var> = <expr>

=> a = <expr>

=> a = <term> + <term>

=> a = <var> + <term>

=> a = b + <term>

=> a = b + const

Copyright © 2009 Addison-Wesley. All rights reserved. 1-32

Derivations

• Every string of symbols in a derivation is a
sentential form

• A sentence is a sentential form that has only
terminal symbols

• A leftmost derivation is one in which the
leftmost nonterminal in each sentential form is
the one that is expanded

• A rightmost derivation is one in which the
rightmost nonterminal in each sentential form
is the one that is expanded

• A derivation may be neither leftmost nor
rightmost

Copyright © 2009 Addison-Wesley. All rights reserved. 1-33

Parse Tree

• A hierarchical representation of a derivation
<program>

<stmts>

<stmt>

const

a

<var> = <expr>

<var>

b

<term> + <term>

Copyright © 2009 Addison-Wesley. All rights reserved. 1-34

Ambiguity in Grammars

• A grammar is ambiguous if and only if it
generates a sentential form that has two
or more distinct parse trees

Copyright © 2009 Addison-Wesley. All rights reserved. 1-35

An Ambiguous Expression Grammar

<expr> → <expr> <op> <expr> | const

<op> → / | -

<expr>

<expr> <expr>

<expr> <expr>

<expr>

<expr> <expr>

<expr> <expr>

<op>

<op>

<op>

<op>

const const const const const const- -/ /

<op>

Copyright © 2009 Addison-Wesley. All rights reserved. 1-36

An Unambiguous Expression Grammar

• If we use the parse tree to indicate
precedence levels of the operators, we
cannot have ambiguity

<expr> → <expr> - <term> | <term>
<term> → <term> / const| const

<expr>

<expr> <term>

<term> <term>

const const

const/

-

Copyright © 2009 Addison-Wesley. All rights reserved. 1-37

Associativity of Operators

• Operator associativity can also be indicated by a
grammar

<expr> -> <expr> + <expr> | const (ambiguous)
<expr> -> <expr> + const | const (unambiguous)

<expr><expr>

<expr>

<expr> const

const

const

+

+

Copyright © 2009 Addison-Wesley. All rights reserved. 1-38

Extended BNF

• Optional parts are placed in brackets []
<proc_call> -> ident [(<expr_list>)]

• Alternative parts of RHSs are placed
inside parentheses and separated via
vertical bars
<term> → <term> (+|-) const

• Repetitions (0 or more) are placed inside
braces { }
<ident> → letter {letter|digit}

Copyright © 2009 Addison-Wesley. All rights reserved. 1-39

BNF and EBNF

• BNF
<expr> → <expr> + <term>

| <expr> - <term>
| <term>

<term> → <term> * <factor>
| <term> / <factor>
| <factor>

• EBNF
<expr> → <term> {(+ | -) <term>}
<term> → <factor> {(* | /) <factor>}

Copyright © 2009 Addison-Wesley. All rights reserved. 1-40

Recent Variations in EBNF

• Alternative RHSs are put on separate lines
• Use of a colon or = or := instead of →
• Use of opt for optional parts
• Use of oneof for choices
• Sometimes terminal (lexems or tokens) are

written in “ “ or `` or in bold or color ..
• Sometimes given in a seperate grammar

and the non-terminals from this grammer
is used as terminal in the CFG

• Sometimes ()* is used for { } and ? for []

Copyright © 2009 Addison-Wesley. All rights reserved. 1-41

BNF and EBNF

• BNF
<expr> → <expr> + <term>

| <expr> - <term>
| <term>

<term> → <term> * <factor>
| <term> / <factor>
| <factor>

• EBNF
<expr> → <term> ((+ | -) <term>)*
<term> → <factor> ((* | /) <factor>)*

EBNF in EBNF

Production = production_name "=" [Expression] "." .
Expression = Alternative { "|" Alternative } .
Alternative = Term { Term } .
Term = production_name | token ["…" token]

| Group | Option | Repetition .
Group = "(" Expression ")" .
Option = "[" Expression "]" .
Repetition = "{" Expression "}" .

42

43

An Example Language Specification

Mini Triangle is a very simple Pascal-like language introduced in
Brown & Watt’s book: Language Processors in Java

An example program:

!This is a comment.
let const m ~ 7;

var n
in

begin
n := 2 * m * m ;
putint(n)

end

Declarations

Command

Expression

44

Syntax of Mini Triangle

Program ::= single-Command
single-Command

::= V-name := Expression
| Identifier (Expression)
| if Expression then single-Command

else single-Command
| while Expression do single-Command
| let Declaration in single-Command
| begin Command end

Command ::= single-Command
| Command ; single-Command

45

Syntax of Mini Triangle (continued)
Expression
::= primary-Expression

| Expression Operator primary-Expression
primary-Expression

::= Integer-Literal
| V-name
| Operator primary-Expression
| (Expression)

V-name ::= Identifier
Identifier ::= Letter

| Identifier Letter
| Identifier Digit

Integer-Literal ::= Digit
| Integer-Literal Digit

Operator ::= + | - | * | / | < | > | =

46

Syntax of Mini Triangle (continued)

Declaration
::= single-Declaration

| Declaration ; single-Declaration
single-Declaration

::= const Identifier ~ Expression
| var Identifier ::= Type-denoter

Type-denoter ::= Identifier

Comment ::= ! CommentLine eol
CommentLine ::= Graphic CommentLine
Graphic ::= any printable character or space

47

Concrete Syntax of Commands

single-Command
::= V-name := Expression
| Identifier (Expression)
| if Expression then single-Command

else single-Command
| while Expression do single-Command
| let Declaration in single-Command
| begin Command end

Command ::= single-Command
| Command ; single-Command

48

Abstract Syntax of Commands

Command
::= V-name := Expression AssignCmd
| Identifier (Expression) CallCmd
| if Expression then Command

else Command IfCmd
| while Expression do Command WhileCmd
| let Declaration in Command LetCmd
| Command ; Command SequentialCmd

An abstract syntax , like the above, is often used in the definition of the formal semantics

49

Even more Abstract Syntax of Commands

Command
::= V-name Expression AssignCmd
| Identifier Expression CallCmd
| Expression Command Command IfCmd
| Expression Command WhileCmd
| Declaration Command LetCmd
| Command Command SequentialCmd

An abstract syntax, like the above, may form the basis for the design of the AST

50

Contextual Constraints
Syntax rules alone are not enough to specify the format of
well-formed programs.

Example 1:
let const m~2
in m + x

Example 2:
let const m~2 ;

var n:Boolean
in begin

n := m<4;
n := n+1

end

Undefined! Scope Rules

Type error! Type Rules

51

Scope Rules
Scope rules regulate visibility of identifiers. They relate
every applied occurrence of an identifier to a binding
occurrence
Example 1
let const m~2;

var r:Integer
in

r := 10*m

Binding occurence

Applied occurence

Terminology:

Static binding vs. dynamic binding

Example 2:
let const m~2
in m + x

?

52

Type Rules
Type rules regulate the expected types of arguments and
types of returned values for the operations of a language.

Examples

Terminology:

Static typing vs. dynamic typing

Type rule of < :
E1 < E2 is type correct and of type Boolean
if E1 and E2 are type correct and of type Integer

Type rule of while:
while E do C is type correct
if E of type Boolean and C type correct

53

Semantics
Specification of semantics is concerned with specifying the
“meaning” of well-formed programs.

Terminology:

Expressions are evaluated and yield values (and may or may not
perform side effects)

Commands are executed and perform side effects.

Declarations are elaborated to produce bindings

Side effects:
• change the values of variables
• perform input/output

54

Semantics

Example: The semantics of expressions.

An expression is evaluated to yield a value.

An (integer literal expression) IL yields the integer value of IL

The (variable or constant name) expression V yields the value of
the variable or constant named V

The (binary operation) expression E1 O E2 yields the value
obtained by applying the binary operation O to the values yielded
by (the evaluation of) expressions E1 and E2

etc.

55

Semantics
Example: The semantics of declarations.

A declaration is elaborated to produce bindings. It may also have
the side effect of allocating (memory for) variables.

The constant declaration const I~E is elaborated by binding
the identifier value I to the value yielded by E

The constant declaration var I:T is elaborated by binding I
to a newly allocated variable, whose initial value is undefined.
The variable will be deallocated on exit from the let containing
the declaration.

The sequential declaration D1;D2 is elaborated by elaborating
D1 followed by D2 combining the bindings produced by both. D2
is elaborated in the environment of the sequential declaration
overlaid by the bindings produced by D1

56

Semantics
Example: The (informally specified) semantics of commands in
Mini Triangle.

Commands are executed to update variables and/or perform input
output.

The assignment command V := E is executed as follows:

first the expression E is evaluated to yield a value v

then v is assigned to the variable named V

The sequential command C1;C2 is executed as follows:

first the command C1 is executed

then the command C2 is executed

etc.

57

Structured operational semantics

Copyright © 2009 Addison-Wesley. All rights reserved. 1-58

Semantics

• There is no single widely acceptable
notation or formalism for describing
semantics

• Several needs for a methodology and
notation for semantics:
– Programmers need to know what statements mean
– Compiler writers must know exactly what language

constructs do
– Correctness proofs would be possible
– Compiler generators would be possible
– Designers could detect ambiguities and inconsistencies

Semantic styles

• Structural Operational Semantics
– Sebesta’s book has a very narrow view
– Much better view in

• Transitions and Trees: An introduction to structural
operational semantics, Cambridge University Press

• Denotational Semantics
– Based on recursive function theory
– Originally developed by Scott and Strachey (1970)

• Axiomatic Semantics
– Sometimes called Hoare Logic
– Original purpose: formal program verification

Copyright © 2009 Addison-Wesley. All rights reserved. 1-59

60

Important!

• Syntax is the visible part of a programming language
– Programming Language designers can waste a lot of time discussing

unimportant details of syntax
– But syntax is important – syntax should convey the meaning

intutively
• The language paradigm is the next most visible part

– The choice of paradigm, and therefore language, depends on how
humans best think about the problem

• Imperative, Object Oriented, Functional, ..
– There are no right models of computations – just different models of

computations, some more suited for certain classes of problems than
others

• The most invisible part is the language semantics
– Clear semantics usually leads to simple and efficient

implementations

Before Language definition
• Write programs !!
• Serves as inspiration for language specification

– Syntax
• Tokens
• CFG

– Static semantics
• Scope rules
• Type rules

– Semantics
• Informal
• Formal

• Serves as test case for compiler !!
• Read language specifications: C, C#, Java, ..

61

1

Languages and Compilers
(SProg og Oversættere)

Lecture 5
Context Free Grammars

Bent Thomsen
Department of Computer Science

Aalborg University

2

Programming Language Specification

– A Language specification has (at least) three parts
• Syntax of the language:

– usually formal CFG in BNF or EBNF
– Tokens defined using regular expressions (RE)

• Contextual constraints:
– scope rules (often written in English, but can be formal)
– type rules (formal or informal)

• Semantics:
– defined by the implementation
– informal descriptions in English
– formal using operational or denotational semantics

3

Syntax Specification

Syntax is specified using “Context Free Grammars”:
– A finite set of terminal symbols
– A finite set of non-terminal symbols
– A start symbol
– A finite set of production rules

A CFG defines a set of strings
– This is called the language of the CFG.

How to design a grammar?

• Let's write a CFG for C-style function prototypes!
• Write examples:

– void myf1(int x, double y);
– int myf2();
– int myf3(double z);
– double myf4(int, int w, int);
– void myf5(void);

• Terminals: void, int, double, (,), , , ; , ident
– ident = [a-z]([a-z]|[0-9])*

4

Designing a grammar for Function Prototypes

• Here is one possible
grammar

S → Ret ident (Args);
Ret → Type | void
Type → int | double
Args → ε | void | ArgList
ArgList → OneArg | ArgList, OneArg
OneArg → Type | Type ident

• Examples

– void ident(int ident, double ident);
– int ident();
– int ident(double ident);
– double ident(int, int ident, int);
– void ident(void);

5

Designing a grammar for Function Prototypes

• Here is another possible
grammar

S → Ret ident Args ;
Ret → int | double | void
Type → int | double
Args → () | (void)| (ArgList)
ArgList → OneArg |OneArg,ArgListArg
OneArg → Type | Type ident

• Examples

– void ident(int ident, double ident);
– int ident();
– int ident(double ident);
– double ident(int, int ident, int);
– void ident(void);

6

Context-Free Grammars
• Components: G=(N,Σ,P,S)

– A finite terminal alphabet Σ: the set of tokens
produced by the scanner

– A finite nonterminal alphabet N: variables of the
grammar

– A start symbol S: S∈N that initiates all derivations
• Goal symbol

– A finite set of productions P: AX1…Xm, where A∈N,
Xi∈N∪Σ, 1≤i≤m and m≥0.

• Rewriting rules
• Vocabulary V=N∪Σ

– N∩Σ=φ

• CFG: recipe for creating strings
• Derivation: a rewriting step using the

production Aα replaces the nonterminal
A with the vocabulary symbols in α
– Left-hand side (LHS): A
– Right-hand side (RHS): α

• Context-free language of grammar G L(G):
the set of terminal strings derivable from S

• notation:
– Aα

|β
…
|ζ

• or
– Aα

Aβ
…

Aζ

• αAβ=>αγβ: one step of derivation using
the production Aγ
– =>+: derives in one or more steps
– =>*: derives in zero or more steps

• S=>*β: β is a sentential form of the CFG
• SF(G): the set of sentential forms of G
• L(G)={w∈Σ*|S=>+w}

– L(G)=SF(G)∩Σ*

Two conventions that nonterminals are rewritten in some systematic order
Leftmost derivation: from left to right
Rightmost derivation: from right to left

Leftmost Derivation

• A derivation that always chooses the
leftmost possible nonterminal at each step
– =>lm, =>+

lm, =>*lm

– A left sentential form
• A sentential form produced via a leftmost

derivation
• E.g. production sequence in top-down parsers
• (Fig. 4.1)

• E.g: a leftmost derivation of f (v + v)
– E =>lm Prefix (E)

=>lm f (E)
=>lm f (v Tail)
=>lm f (v + E)
=>lm f (v + v Tail)
=>lm f (v + v)

Rightmost Derivations

• The rightmost possible nonterminal is
always expanded
– =>rm, =>+

rm, =>*rm

– A right sentential form
• A sentential form produced via a rightmost

derivation
• E.g. produced by bottom-up parsers (Ch. 6)
• (Fig. 4.1)

• E.g: a rightmost derivation of f (v + v)
– E =>rm Prefix (E)

=>rm Prefix (v Tail)
=>rm Prefix (v + E)
=>rm Prefix (v + v Tail)
=>rm Prefix (v + v)
=>rm f (v + v)

Parse Trees

• Parse tree: graphical representation of a
derivation
– Root: start symbol S
– Each node: either grammar symbol or λ (or ε)
– Interior nodes: nonterminals

• An interior node and its children: production
– E.g. Fig. 4.2

17171717

BNF form of grammars
• Backus-Naur Form (BNF) is a formal grammar for

expressing context-free grammars.
• The single grammar rule format:

– Non-terminal → zero or more grammar symbols

• It is usual to combine all rules with the same left-hand
side into one rule, such as:

N → α
N → β
N → γ

Greek letters α,β, or γ means a string of symbols.
are combined into one rule:

N → α | β | γ
α, β and γ are called the alternatives of N.

18181818

Extended BNF form of grammars
• BNF is very suitable for expressing nesting and

recursion, but less convenient for repetition and
optionality.

• Three additional postfix operators +,?, and *, are
thus introduced:
– R+ indicates the occurrence of one or more Rs, to

express repetition (sometime R_opt isused).
– R? indicates the occurrence of zero or one Rs, to

express optionality (sometimes [R] is used).
– R* indicates the occurrence of zero or more Rs, to

express repetition (sometimes {R} is used).
• The grammar that allows the above is called

Extended BNF (EBNF).

19191919

Extended forms of grammars
An example is the grammar rule in EBNF:

parameter_list →
(’IN’ | ‘OUT’)? identifier (‘,’ identifier)*

or
parameter_list →

[’IN’ | ‘OUT’] identifier {‘,’ identifier}
which produces program fragments like:

a, b
IN year, month, day
OUT left, right

20202020

Extended forms of grammars
• Rewrite EBNF grammar to CFG

– Given the EBNF grammar:
expression → term (+ term)*

Rewrite it to:
expression → term term_tmp
term_tmp → + term term_tmp

| λ

22222222

Properties of grammars
• A non-terminal N is left-recursive if,

starting with a sentential form N, we can
produce another sentential form starting
with N.
– ex: expression → expression ‘+’ factor | factor

• right-recursion also exists, but is less
important.
– ex: expression → term ‘+’ expression

23232323

Properties of grammars (Cont.)
• A non-terminal N is nullable, if starting

with a sentential form N, we can produce
an empty sentential form.
example:

expression → λ
• A non-terminal N is useless, if it can never

produce a string of terminal symbols.
example:

expression → + expression
| - expression

24

Grammar Transformations

Left factorization

single-Command
::= V-name := Expression
| if Expression then single-Command
| if Expression then single-Command

else single-Command

single-Command
::= V-name := Expression
| if Expression then single-Command

(λ | else single-Command)

X Y | X Z X (Y | Z)

Example:
X Y=λ Z

25

Grammar Transformations (ctd)

Elimination of Left Recursion

N ::= X | N Y

Identifier ::= Letter
| Identifier Letter
| Identifier Digit

N ::= X M
M ::= Y M | λExample:

Identifier ::= Letter
| Identifier (Letter|Digit)

Identifier ::= Letter (Letter|Digit)*

N ::= X | N Y N ::= X Y*

26

Grammar Transformations (ctd)

Substitution of non-terminal symbols
N ::= X
M ::= α N β

single-Command
::= for contrVar := Expression

to-or-dt Expression do single-Command
to-or-dt ::= to | downto

Example:

N ::= X
M ::= α X β

single-Command ::=
for contrVar := Expression
(to|downto) Expression do single-Command

2727

From tokens to parse tree

The process of finding the structure in the
flat stream of tokens is called parsing,
and the module that performs this task is
called parser.

28

Parsing methods
There are two well-known ways to parse:

1) top-down
Left-scan, Leftmost derivation (LL).

2) bottom-up
Left-scan, Rightmost derivation in reverse (LR).

• LL constructs the parse tree in pre-order;
• LR in post-order.

29

Different kinds of Parsing Algorithms

• Two big groups of algorithms can be distinguished:
– bottom up strategies
– top down strategies

• Example parsing of “Micro-English”
Sentence ::= Subject Verb Object .
Subject ::= I | a Noun | the Noun
Object ::= me | a Noun | the Noun
Noun ::= cat | mat | rat
Verb ::= like | is | see | sees

The cat sees the rat.
The rat sees me.
I like a cat

The rat like me.
I see the rat.
I sees a rat.

30

Top-down parsing

The cat sees a rat .The cat sees rat .

The parse tree is constructed starting at the top (root).

Sentence

Subject Verb Object .

Sentence

Noun

Subject

The

Noun

cat

Verb

sees a

Noun

Object

Noun

rat .

31

Left derivations

Sentence

→ Subject Verb Object .

→ The Noun Verb Object.

→ The cat Verb Object.

→ The cat sees Object.

→ The cat sees a Noun .

→ The cat sees a rat .

Sentence ::= Subject Verb Object .
Subject ::= I | a Noun | the Noun
Object ::= me | a Noun | the Noun
Noun ::= cat | mat | rat
Verb ::= like | is | see | sees

32

Top-down parsing

The cat sees a rat .The cat sees rat .

The parse tree is constructed starting at the top (root).

Sentence

Subject Verb Object .

Sentence

Noun

Subject

The

Noun

cat

Verb

sees a

Noun

Object

Noun

rat .

33

Right derivations

Sentence

→ Subject Verb Object .

→ Subject Verb a Noun .

→ Subject Verb a rat .

→ Subject sees a rat .

→ The Noun sees a rat .

→ The cat sees a rat .

Sentence ::= Subject Verb Object .
Subject ::= I | a Noun | the Noun
Object ::= me | a Noun | the Noun
Noun ::= cat | mat | rat
Verb ::= like | is | see | sees

34

Bottom up parsing

The cat sees a rat .The cat

Noun

Subject

sees

Verb

a rat

Noun

Object

.

Sentence

The parse tree “grows” from the bottom (leafs) up to the top (root).
Just read the right derivations backwards Sentence

→ Subject Verb Object .

→ Subject Verb a Noun .

→ Subject Verb a rat .

→ Subject sees a rat .

→ The Noun sees a rat .

→ The cat sees a rat .

35

Look-Ahead

Derivation

LL-Analyse (Top-Down)
Left-to-Right Left Derivative

Look-Ahead

Reduction

LR-Analyse (Bottom-Up)
Left-to-Right Right Derivative

Top-Down vs. Bottom-Up parsing

36

Hierarchy

Pause

37

38

Formal definition of LL(1)

A grammar G is LL(1) iff
for each set of productions X ::= X1 | X2 | … | Xn :
1. first[X1], first[X2], …, first[Xn] are all pairwise disjoint
2. If Xi =>* λ then first[Xj]∩ follow[X]=Ø, for 1≤j≤ n.i≠j

If G is λ-free then 1 is sufficient

Define FIRST(α),where α is any string of grammar symbols, to be:
the set of terminals

that begin strings derived from α

First Sets

• The set of all terminal symbols that can
begin a sentential form derivable from the
string α
– First(α)={ a∈Σ| α=>*aβ }
– We never include λ in First(α) even if α=>λ
– E.g. (in Fig.4.1)

• First(Tail) = {+}
• First(Prefix) = {f}
• First(E) = {v, f, (}

Follow Sets

• The set of terminals that can follow a
nonterminal A in some sentential form
– For A∈N,

• Follow(A) = {b∈Σ|S=>+αAbβ}
– The right context associated with A
– Fig. 4.11

42

Follow Sets

• Follow(A) is the set of prefixes of strings of terminals that can
follow any derivation of A in G
– $ ∈ follow(S) (sometimes <eof> ∈ follow(S))
– if (B→αAβ) ∈ P, then
– first(β)⊕follow(B)⊆ follow(A)

• The definition of follow usually results in recursive set definitions. In order to
solve them, you need to do several iterations on the equations.

– E.g. (in Fig.4.1)
• Follow(Tail) = {)}
• Follow(Prefix) = {(}
• Follow(E) = {$,)}

44

A few provable facts about LL(1) grammars

• No left-recursive grammar is LL(1)
• No ambiguous grammar is LL(1)
• Some languages have no LL(1) grammar
• A λ-free grammar, where each alternative Xj for N ::=

Xj begins with a distinct terminal, is a simple LL(1)
grammar

45

LR Grammars

• A Grammar is an LR Grammar if it can be parsed by an
LR parsing algorithm

• Harder to implement LR parsers than LL parsers
– but tools exist (e.g. JavaCUP, Yacc, C#CUP and SableCC)

• Can recognize LR(0), LR(1), SLR, LALR grammars
(bigger class of grammars than LL)
– Can handle left recursion!
– Usually more convenient because less need to rewrite the

grammar.
• LR parsing methods are the most commonly used for

automatic tools today (LALR in particular)

Other Types of Grammars

• Regular grammars: less powerful
• Context-sensitive and unrestricted

grammars: more powerful
• Parsing Expression Grammars

Designing CFGs is a craft.

• When thinking about CFGs:
– Think recursively: Build up bigger structures

from smaller ones.
• Have a construction plan:

– Know in what order you will build up the
string.

• Store information in nonterminals:
– Have each nonterminal correspond to some

useful piece of information.

Copyright © 2009 Addison-
Wesley. All rights reserved.

1-48

Ambiguity in Grammars

• A grammar is ambiguous if and only if it
generates a sentential form that has two
or more distinct parse trees

Copyright © 2009 Addison-
Wesley. All rights reserved.

1-49

An Ambiguous Expression Grammar

<expr> → <expr> <op> <expr> | const

<op> → / | -

<expr>

<expr> <expr>

<expr> <expr>

<expr>

<expr> <expr>

<expr> <expr>

<op>

<op>

<op>

<op>

const const const const const const- -/ /

<op>

Copyright © 2009 Addison-
Wesley. All rights reserved.

1-50

An Unambiguous Expression Grammar

• If we use the parse tree to indicate
precedence levels of the operators, we
cannot have ambiguity

<expr> → <expr> - <term> | <term>
<term> → <term> / const| const

<expr>

<expr> <term>

<term> <term>

const const

const/

-

const – (const / const)

Copyright © 2009 Addison-
Wesley. All rights reserved.

1-51

Associativity of Operators
• Operator associativity can also be indicated by a

grammar

<expr> -> <expr> + <expr> | const (ambiguous)
<expr> -> <expr> + const | const (unambiguous)

<expr><expr>

<expr>

<expr> const

const

const

+

+

(const + const) + const

Associativity and Left Resursion
<expr> -> <expr> + const | const
(unambiguous, but left recursive)

<expr> -> const + <expr> | const
(unambiguous, right recursive, but => right assoc.)

i.e. const + (const + const)
Not a problem for +, but what about - ?

(5 – 3) – 2 = 0
5 – (3 – 2) = 4

1-52

Eliminating Left recursion
<expr> -> <expr> (+ <expr>)*

or

<expr> -> const <exprlist>
<exprlist> -> + const <exprlist> | λ

Still gives the wrong parse tree, but this can
be sorted when generating AST

1-53

Hidden left-factors and hidden left recursion
• Sometimes, left-factors or left recursion are hidden
• Examples:

– The following grammar:
• A -> da | ac B
• B -> ab B | da A | A f

– has two overlapping productions: B -> da A and B =>*daf .
– The following grammar:

• S -> T u | wx
• T -> S q | vv S

– has left recursion on T (T =>* Tuq)

• Solution: expand the production rules by
substitution to make

• left-recursion or left factors visible and then
eliminate them

54

55

Dangling Else Problem

Example: (from Mini Triangle grammar)

single-Command
::= if Expression then single-Command
| if Expression then single-Command

else single-Command

if a then if b then c1 else c2

single-Command

single-Command

This parse tree?

56

Dangling Else Problem

Example: (from Mini Triangle grammar)

single-Command
::= if Expression then single-Command
| if Expression then single-Command

else single-Command

if a then if b then c1 else c2

single-Command

single-Command

or this one ?

57

Dangling Else Problem

Example: “dangling-else” problem (from Mini Triangle grammar)

single-Command
::= if Expression then single-Command
| if Expression then single-Command

else single-Command

sC ::= if E then sC endif
| if E then sC else sC endif

Rewrite Grammar:

58

Dangling Else Problem

Example: “dangling-else” problem (from Mini Triangle grammar)

single-Command
::= if Expression then single-Command
| if Expression then single-Command

else single-Command

sC ::= CsC
| OsC

CsC ::= if E then CsC else CsC
CsC ::= …
OsC ::= if E then sC

| if E then CsC else OsC

Rewrite Grammar:

Ambiguity
• Sometimes obvious

– Exp ::= Exp + Exp
• Sometimes difficult to spot
• Undecidable Property (known since 1962)

• Engineering approach
– Try a parser generator
– Use a Grammar engineering toolbox

• KfG in AtoCC
• Context Free Grammer tools

– http://smlweb.cpsc.ucalgary.ca/start.html
– http://mdaines.github.io/grammophone/

• Try ACLA
– (Ambiguity Checking with Language Approximations)
– http://services2.brics.dk/java/grammar/demo.html

59

http://smlweb.cpsc.ucalgary.ca/start.html
http://mdaines.github.io/grammophone/
http://services2.brics.dk/java/grammar/demo.html

What can you do in your project?

• Start writing a CFG
– Define keywords, identifiers, numbers, ..
– Define productions

• Test it with
– kfG Edit
– Context Free Grammer tool
– ACLA

You may need more than one Grammar
• Abstract Syntax

– To communicate the essentials of the language
– To serve as design pattern for AST
– To serve in the formal specification of the semantics
– May be ambiguous

• Concrete Syntax
– The grammar we use as specification for building a parser
– Must be unambiguous

• Lexical elements (Syntax given as Regular Expressions)
– Identifiers e.g. Id := [a-z]([a-z]|[0-9])*
– Keywords (or reserved words)

• if, then, while,
• begin .. end v.s. { .. }

61

Grammar tools

• Demo
– Prefix
– Exp with ambiguity and without
– Dangling else
– LL(1) – first and follow

62

1

Languages and Compilers
(SProg og Oversættere)

Lecture 6
Lexical Analysis

Bent Thomsen
Department of Computer Science

Aalborg University

Learning goals

• Understand the lexical analysis phase of the compiler
• Understand the role of regular expressions
• Understand the structure of the lexical analysis
• Understand the role of finite automata
• Get an overview of the Jlex tool

2

Remember exercise 4 from before lecture 1 ?

• Write a Java program that can read the string “a + n * 1”
and produce a collection of objects containing the
individual symbols when blank spaces are ignored (or
used as separator).

• Today we shall see several ways of solving this exercise

3

4

The “Phases” of a Compiler

Syntax Analysis

Contextual Analysis

Code Generation

Source Program

Abstract Syntax Tree

Decorated Abstract Syntax Tree

Object Code

Error Reports

Error Reports

5

Syntax Analysis: Scanner

Scanner

Source Program

Abstract Syntax Tree

Error Reports

Parser

Stream of “Tokens”

Stream of Characters

Error Reports

Dataflow chart

6

1) Scan: Divide Input into Tokens

An example ac source program:
f b
i a
a = 5
b = a + 3.2
p b

floatdl
f

id
b

intdcl
i

scanner

id
a

id
a

assign
=

id
a

plus
+

...

... fnum
3.2

print
p

id
b

eot

Lexems are “words” in the input, for
example keywords, operators,
identifiers, literals, etc.
Tokens is a datastructure for lexems
and additional information

inum
5

assign
=

7

Developing a Scanner

public class Token {
byte kind; String spelling;
final static byte

IDENTIFIER = 0; INTLITERAL = 1; OPERATOR = 2;
BEGIN = 3; CONST = 4; ...
...

public Token(byte kind, String spelling) {
this.kind = kind; this.spelling = spelling;

}

...
}

In Java the scanner will normally return instances of Token:

8

1) Scan: Divide Input into Tokens

An example ac source program:
f b
i a
a = 5
b = a + 3.2
p b

floatdl id
b

intdcl

scanner

id
a

id
a

assign

id
a

plus

...

... fnum
3.2

print id
b

eot

Lexems are “words” in the input, for
example keywords, operators,
identifiers, literals, etc.
Tokens is a datastructure for lexems
and additional information

inum
5

assign

9

Developing a Scanner

abstract class Token ..

public class IdentToken extends Token {
String spelling;

...

public IdentToken(String spelling) {
this.spelling = spelling;

}

public class AssignToken extends Token {

...
}

In Java the scanner will normally return instances of Token,
but we could also use a subclass hierachy:

10

Programming Language Specification

– A Language specification has (at least) three parts
• Syntax of the language:

– Lexems/tokens as regular expressions
» Reserved words

– Grammar (CFG) - usually formal in BNF or EBNF
• Contextual constraints:

– scope rules (often written in English, but can be formal)
– type rules (formal or informal)

• Semantics:
– defined by the implementation
– informal descriptions in English
– formal using operational or denotational semantics

11

Lexical Elements
• Character set

– Ascii vs Unicode
• Identifiers

– Java vs C#
• Operators

– +, -, /, * , …
• Keywords

– If, then, while
• Noise words
• Elementary data

– numbers
• integers
• floating point

– strings
– symbols

• Delimiters
– Begin .. End vs {…}

• Comments
– /* vs. # vs. !

• Blank space
• Layout

– Free- and fixed-field formats

Java Keywords

abstract continue for new switch assert default if
package synchronized boolean do goto private this break
double implements protected throw byte else import
public throws case enum instanceof return transient
catch extends int short try char final interface static
void class finally long strictfp volatile const float native
super while

• The keywords const and goto are reserved, even though they are not currently
used.

• While true and false might appear to be keywords, they are technically
Boolean literals

• Similarly, while null might appear to be a keyword, it is technically the null
literal

12

Lexems
• The Lexem structure can be more detailed and

subtle than one might expect
– String constants: “”

• Escape sequence: \”, \n, …
• Null string

– Rational constants
• 0.1, 10.01,
• .1, 10. vs. 1..10

• Design guideline:
– if the lexem structure is complex then examine the

language for design flaws !!

• Note recent research shows huge difference between novices and
experienced programmers views on keywords:

– repeat while … do .. end vs. while (..) {…}

(Try to) Avoide Weird Stuff

• PL/I
– IF IF = THEN THEN = ELSE; ELSE ELSE = END; END

• C#
– if (@if == then) then = @else; else @else = end;

• C
– a (* b) … call of a with pointer to b or declaration on pointer b

to a type where a is defined using typedef

• Whitespace language
– Commands composed of sequences of spaces, tab stops and

linefeeds 14

15

Simple grammar for Identifiers

Example:
Start ::= Letter

| Start Letter

| Start Digit

Letter ::= a | b | c | d | ... | z
Digit ::= 0 | 1 | 2 | ... | 9

This grammar can be transformed to a regular expression:
[a-z]([a-z]|[0-9])*

Regular Expressions

16

ε The empty string
t Generates only the string t
X Y Generates any string xy such that x is generated by x

and y is generated by Y
X | Y Generates any string which generated either

by X or by Y
X* The concatenation of zero or more strings generated

by X
(X) For grouping

17

Identifier Grammar Easily Transform to RE

Elimination of Left Recursion
N ::= X | N Y

Identifier ::= Letter
| Identifier Letter
| Identifier Digit

N ::= X Y*

Example:

Identifier ::= Letter
| Identifier (Letter|Digit)

Identifier ::= Letter (Letter|Digit)*

Left factorization
X Y | X Z X (Y | Z)

Regular Grammers

• A grammar is regular if by substituting every
nonterminal (except the root one) with its righthand
side, you can reduce it down to a single production for
the root, with only terminals and operators on the right-
hand side.

• I.e. this grammer is regular:

• Because it can be reduced to:

18

Regular Grammers

• Or rather

• Which is called a regular expression, often written as:

• Sometimes regular grammers are described as:
– Right regular i.e. having the form A := a A | b
– Left regular i.e. having the form A := A a | b

• Why are we so interested in Regular Expressions?
– Because there are simple implementation techniques for Res
– REs can be implemented via Finite State Machines (FSM)

19

(a | b | c | d | ... | z)((a | b | c | d | ... | z)|(0 | 1 | 2 | ... | 9))*

[a-z]([a-z]|[0-9])*

ac Token Specification

[0-9]+|[0-9]+.[0-9]+|[a-e,g-h,j-o,q-z]|f|p|i|=|\+|-

24

26

How to change code to accept:
0|[1-9][0-9]*(.[0-9]*)

Pause

28

Implement Scanner based on RE by hand

1) Express the “lexical” grammar as RE
(sometimes it is easier to start with a BNF or an EBNF
and do necessary transformations)

• For each variant make a switch on the first character by
peeking the input stream

• For each repetition (..)* make a while loop with the
condition to keep going as long as peeking the input still
yields an expected character

• Sometimes the “lexical” grammar is not reduced to one
single RE but a small set of REs – in this case a switch or if-
then-else case analysis is used to determine which rule is
being recognized, before following the first two steps

29

30

Developing a Scanner

• Express the “lexical” grammar in EBNF
Token ::= Identifier | Integer-Literal | Operator |

; | : | := | ~ | (|) | eot
Identifier ::= Letter (Letter | Digit)*
Integer-Literal ::= Digit Digit*
Operator ::= + | - | * | / | < | > | =
Separator ::= Comment | space | eol
Comment ::= ! Graphic* eol

Now perform substitution and left factorization...
Token ::= Letter (Letter | Digit)*

| Digit Digit*
| + | - | * | / | < | > | =
| ; | : (=|ε) | ~ | (|) | eot

Separator ::= ! Graphic* eol | space | eol

31

Developing a Scanner

private byte scanToken() {
switch (currentChar) {

case ‘a’: case ‘b’: ... case ‘z’:
case ‘A’: case ‘B’: ... case ‘Z’:

scan Letter (Letter | Digit)*
return Token.IDENTIFIER;

case ‘0’: ... case ‘9’:
scan Digit Digit*
return Token.INTLITERAL ;

case ‘+’: case ‘-’: ... : case ‘=’:
takeIt();
return Token.OPERATOR;

...etc...
}

Token ::= Letter (Letter | Digit)*
| Digit Digit*
| + | - | * | / | < | > | =
| ; | : (=|ε) | ~ | (|) | eot

32

Developing a Scanner

...
return ...

case ‘a’: case ‘b’: ... case ‘z’:
case ‘A’: case ‘B’: ... case ‘Z’:

scan Letter (Letter | Digit)*
return Token.IDENTIFIER;

case ‘0’: ... case ‘9’:
...

...
return ...

case ‘a’: case ‘b’: ... case ‘z’:
case ‘A’: case ‘B’: ... case ‘Z’:

scan Letter
scan (Letter | Digit)*
return Token.IDENTIFIER;

case ‘0’: ... case ‘9’:
...

...
return ...

case ‘a’: case ‘b’: ... case ‘z’:
case ‘A’: case ‘B’: ... case ‘Z’:

acceptIt();
scan (Letter | Digit)*
return Token.IDENTIFIER;

case ‘0’: ... case ‘9’:
...

...
return ...

case ‘a’: case ‘b’: ... case ‘z’:
case ‘A’: case ‘B’: ... case ‘Z’:

acceptIt();
while (isLetter(currentChar)

|| isDigit(currentChar))
scan (Letter | Digit)

return Token.IDENTIFIER;
case ‘0’: ... case ‘9’:

...

...
return ...

case ‘a’: case ‘b’: ... case ‘z’:
case ‘A’: case ‘B’: ... case ‘Z’:

acceptIt();
while (isLetter(currentChar)

|| isDigit(currentChar))
acceptIt();

return Token.IDENTIFIER;
case ‘0’: ... case ‘9’:

...

Let’s look at the identifier case in more detail

Thus developing a scanner is a mechanical task.

33

Developing a Scanner

public class Token {
byte kind; String spelling;
final static byte

IDENTIFIER = 0; INTLITERAL = 1; OPERATOR = 2;
BEGIN = 3; CONST = 4; ...
...

public Token(byte kind, String spelling) {
this.kind = kind; this.spelling = spelling;
if spelling matches a keyword change my kind
automatically

}

...
}

In Java the scanner will normally return instances of Token:

34

Developing a Scanner

public class Token {
...

public Token(byte kind, String spelling) {
if (kind == Token.IDENTIFIER) {

int currentKind = firstReservedWord;
boolean searching = true;
while (searching) {

int comparison = tokenTable[currentKind].compareTo(spelling);
if (comparison == 0) {
this.kind = currentKind;

searching = false;
} else if (comparison > 0 || currentKind == lastReservedWord) {

this.kind = Token.IDENTIFIER;
searching = false;

} else { currentKind ++; }
}

} else
this.kind = kind;

...

The scanner will return instances of Token:

35

Developing a Scanner

public class Token {
...

private static String[] tokenTable = new String[] {
"<int>", "<char>", "<identifier>", "<operator>",
"array", "begin", "const", "do", "else", "end",
"func", "if", "in", "let", "of", "proc", "record",
"then", "type", "var", "while",
".", ":", ";", ",", ":=", "~", "(", ")", "[", "]", "{", "}", ""
"<error>" };

private final static int firstReservedWord = Token.ARRAY,
lastReservedWord = Token.WHILE;

...
}

The scanner will return instances of Token:

36

Developing a Scanner

...
return ...

case ‘a’: case ‘b’: ... case ‘z’:
case ‘A’: case ‘B’: ... case ‘Z’:

scan Letter (Letter | Digit)*
return Token.IDENTIFIER;

case ‘0’: ... case ‘9’:
...

...
return ...

case ‘a’: case ‘b’: ... case ‘z’:
case ‘A’: case ‘B’: ... case ‘Z’:

scan Letter
scan (Letter | Digit)*
return Token.IDENTIFIER;

case ‘0’: ... case ‘9’:
...

...
return ...

case ‘a’: case ‘b’: ... case ‘z’:
case ‘A’: case ‘B’: ... case ‘Z’:

acceptIt();
scan (Letter | Digit)*
return Token.IDENTIFIER;

case ‘0’: ... case ‘9’:
...

...
return ...

case ‘a’: case ‘b’: ... case ‘z’:
case ‘A’: case ‘B’: ... case ‘Z’:

acceptIt();
while (isLetter(currentChar)

|| isDigit(currentChar))
scan (Letter | Digit)

return Token.IDENTIFIER;
case ‘0’: ... case ‘9’:

...

...
return ...

case ‘i’: acceptIt(); if (currentChar == ‘f’) {acceptIt(); return Token.IF }
else if (currentChar == ‘n’) {acceptIt(); return Token.IN }

…
case ‘a’: case ‘b’: ... case ‘z’:
case ‘A’: case ‘B’: ... case ‘Z’:

acceptIt();
while (isLetter(currentChar)

|| isDigit(currentChar))
acceptIt();

return Token.IDENTIFIER;
case ‘0’: ... case ‘9’:

...

Alternative implementation recognizing reserved words

Thus developing a scanner is a mechanical task.

37

Developing a Scanner

• Developing a scanner by hand is relatively easy for
simple token grammars

• But for complex token grammars it can be hard and
error prone

• The task can be automated
• Programming scanner generator is an example of

declarative programming
– What to scan, not how to scan

• Most compilers are developed using a generated scanner
• But before we look at doing that, we need some theory!

38

FA and the implementation of Scanners

• Regular expressions, (N)DFA-ε and NDFA and DFA’s
are all equivalent formalism in terms of what languages
can be defined with them.

• Regular expressions are a convenient notation for
describing the “tokens” of programming languages.

• Regular expressions can be converted into FA’s (the
algorithm for conversion into NDFA-ε is
straightforward)

• DFA’s can be easily implemented as computer
programs.

will explain this in subsequent slides

39

Generating Scanners

• Generation of scanners is based on
– Regular Expressions: to describe the tokens to be recognized
– Finite State Machines: an execution model to which RE’s are

“compiled”

Recap: Regular Expressions
ε The empty string
t Generates only the string t
X Y Generates any string xy such that x is generated by x

and y is generated by Y
X | Y Generates any string which generated either

by X or by Y
X* The concatenation of zero or more strings generated

by X
(X) For grouping

40

Generating Scanners

• Regular Expressions can be recognized by a finite state machine.
(often used synonyms: finite automaton (acronym FA))

Definition: A finite state machine is an N-tuple (States,Σ,start,δ ,End)
States A finite set of “states”
Σ An “alphabet”: a finite set of symbols from which the

strings we want to recognize are formed (for example:
the ASCII char set)

start A “start state” Start ∈ States
δ Transition relation δ ⊆ States x States x Σ. These are

“arrows” between states labeled by a letter from the
alphabet.

End A set of final states. End ⊆ States

41

Generating Scanners

• Finite state machine: the easiest way to describe a Finite
State Machine (FSM) is by means of a picture:

Example: an FA that recognizes M r | M s

M

M

r

s

= final state

= non-final state

= initial state

Converting a RE into an NDFA-ε

42

43

Deterministic, and non-deterministic FA

• An FA is called deterministic (acronym: DFA) if for
every state and every possible input symbol, there is
only one possible transition to choose from. Otherwise it
is called non-deterministic (NDFA).

M

M

r

s

Q: Is this FSM deterministic or non-deterministic:

44

Deterministic, and non-deterministic FA
• Theorem: every NDFA can be converted into an

equivalent DFA.

M

M

r

s

DFA ?M
r

s

46

Implementing a DFA

Definition: A finite state machine is an N-tuple (States,Σ,start,δ ,End)
States N different states => integers {0,..,N-1} => int data type
Σ byte or char data type.
start An integer number
δ Transition relation δ ⊆ States x Σ x States.

For a DFA this is a function
States x Σ -> States
Represented by a two dimensional array (one dimension
for the current state, another for the current character. The
contents of the array is the next state.

End A set of final states. Represented (for example) by an array
of booleans (mark final state by true and other states by
false)

Comment -> //(Not(Eol))*Eol

49

Implementing a Scanner as a DFA

Slightly different from previously shown implementation (but
similar in spirit):

• Not the goal to match entire input
=> when to stop matching?

– Token(if), Token(Ident i) vs. Token(Ident ifi)

Match longest possible token

Report error (and continue) when reaching error state.

• How to identify matched token class (not just true|false)

Final state determines matched token class

50

FA and the implementation of Scanners

Token definitions
Regular expressions

Scanner DFA
Java or C or ...

Scanner Generator

What a typical scanner generator does:

A possible algorithm:
- Convert RE into NDFA-ε
- Convert NDFA-ε into NDFA
- Convert NDFA into DFA
- generate Java/C/... code

note: In practice this exact
algorithm is not used. For reasons of
performance, sophisticated
optimizations are used.
• direct conversion from RE to DFA
• minimizing the DFA

51

JLex Lexical Analyzer Generator for Java

Definition of tokens

Regular Expressions

JLex

Java File: Scanner Class

Recognizes Tokens

Writing scanners is a rather
“robotic” activity which can
be automated.

We will look at an example
JLex specification (adopted
from the manual).

Consult the manual for details
on how to write your own
JLex specifications.

52

The JLex tool

user code (added to start of generated file)

%%

options

%{
user code (added inside the scanner class declaration)
%}

macro definitions

%%

lexical declaration

Layout of JFLex file:

User code is copied directly into the output class

JLex directives allow you to include code in the lexical analysis class,
change names of various components, switch on character counting,
line counting, manage EOF, etc.

Macro definitions gives names for useful regexps

Regular expression rules define the tokens to be recognised
and actions to be taken

53

JLex Regular Expressions

• Regular expressions are expressed using ASCII
characters (0 – 127) or UNICODE using the %unicode
directive.

• The following characters are metacharacters.
? * + | () ^ $. [] { } “ \

• Metacharacters have special meaning; they do not
represent themselves.

• All other characters represent themselves.

54

JLex Regular Expressions
• Brackets [] match any single character listed within the

brackets.
– [abc] matches a or b or c.
– [A-Za-z] matches any letter.

• If the first character after [is ^, then the brackets match any
character except those listed.
– [^A-Za-z] matches any non-letter.

• Some escape sequences.
– \n matches newline.
– \b matches backspace.
– \r matches carriage return.
– \t matches tab.
– \f matches formfeed.

• If c is not a special escape-sequence character, then \c matches c.

55

JLex Regular Expressions
• Let r and s be regular expressions.
• r? matches zero or one occurrences of r.
• r* matches zero or more occurrences of r.
• r+ matches one or more occurrences of r.
• r|s matches r or s.
• rs matches r concatenated with s.

• Parentheses are used for grouping.
("+"|"-")?

• Regular expression beginning with ^ is matched only at the
beginning of a line.

• Regular expression ending with $ is matched only at the end
of a line.

• The dot . matches any non-newline character.

Jlex for ac

58

59

JLex generated Lexical Analyser
• Class Yylex

– Name can be changed with %class directive
– Default construction with one arg – the input stream

• You can add your own constructors
– The method performing lexical analysis is yylex()

• Public Yytoken yylex() which return the next token
• You can change the name of yylex() with %function directive

– String yytext() returns the matched token string
– Int yylength() returns the length of the token
– Int yychar is the index of the first matched char (if %char used)

• Class Yytoken
– Returned by yylex() – you declare it or supply one already defined
– You can supply one with %type directive

• Java_cup.runtime.Symbol is useful
– Actions typically written to return Yytoken(…)

Performance considerations
• Performance of scanners is important for production

compilers, for example:
– 30,000 lines per minute (500 lines per second)
– 10,000 characters per second (for an average line of 20 characters)
– For a processor that executes 10,000,000 instructions per second,

1,000 instructions per input character
– Considering other tasks in compilers, 250 instructions per

character is more realistic
• Size of scanner sometimes matters

– Including keyword in scanner increases table size
• E.g. Pascal has 35 keywords, including them increases states from 37 to 165
• Uncompressed this increases table entries from 4699 to 20955

• Note modern scanners use explicit control, not table !
– Why?

Other Scanner Generators
• Flex:

– It produces scanners than are faster than the ones produced by Lex
– Options that allow tuning of the scanner size vs. speed

• JFlex: in Java
• GLA: Generator for Lexical Analyzers

– It produces a directly executable scanner in C
– It’s typically twice as fast as Flex, and it’s competitive with the best

hand-written scanners
• re2c

– It produces directly executable scanners
• Alex, Lexgen, …
• Others are parts of complete suites of compiler development tools

– JavaCC
– Coco/R
– SableCC
– ANTLR

62

Conclusions

• Don’t worry too much about DFAs
• You do need to understand how to specify regular

expressions
• Note that different tools have different notations for

regular expressions.
• You would probably only need to use Lex/Flex resp.

Jlex/JFLex if you also use Yacc resp. CUP

• Sometimes it is easier to develop the scanner by hand
transforming the RE into a case based direct scanner !

• In your project you can define the token grammar and
implement a scanner by hand and/or by JFlex

1

Languages and Compilers
(SProg og Oversættere)

Lecture 7
Top Down Parsing

Bent Thomsen
Department of Computer Science

Aalborg University

Learning goals

• To understand top down parsing
• To understand recursive decent parsers
• To understand the role of LL grammers
• To get an overview of table driven top down parsing
• To get an overview of top down parsing tools

2

3

The “Phases” of a Compiler

Syntax Analysis

Contextual Analysis

Code Generation

Source Program

Abstract Syntax Tree

Decorated Abstract Syntax Tree

Object Code

Error Reports

Error Reports

This lecture

4

Syntax Analysis

• The “job” of syntax analysis is to read the source text
and determine its phrase structure.

• Subphases
– Scanning
– Parsing
– Construct an internal representation of the source text that

reifies the phrase structure (usually an AST)

Note: A single-pass compiler usually does not construct an AST.

Reify - To regard or treat (an abstraction) as if it had concrete or material existence

5

Syntax Analysis

Scanner

Source Program

Abstract Syntax Tree

Error Reports

Parser

Stream of “Tokens”

Stream of Characters

Error Reports

Dataflow chart

This lecture

6

1) Scan: Divide Input into Tokens

An example ac source program:
f b
i a
a = 5
b = a + 3.2
p b

floatdl
f

id
b

intdcl
i

scanner

id
a

id
a

assign
=

id
a

plus
+

...

... fnum
3.2

print
p

id
b

eot

Lexems are “words” in the input, for
example keywords, operators,
identifiers, literals, etc.
Tokens is a datastructure for lexems
and additional information

inum
5

assign
=

7

8

9

Look-Ahead

Derivation

LL-Analyse (Top-Down)
Left-to-Right Left Derivative

Look-Ahead

Reduction

LR-Analyse (Bottom-Up)
Left-to-Right Right Derivative

Top-Down vs. Bottom-Up parsing

10

Top Down Parsing Algorithms

• Example parsing of “Micro-English”

Sentence ::= Subject Verb Object .
Subject ::= I | a Noun | the Noun
Object ::= me | a Noun | the Noun
Noun ::= cat | mat | rat
Verb ::= like | is | see | sees

The cat sees the rat.
The rat sees me.
I like a cat

The rat like me.
I see the rat.
I sees a rat.

11

Left derivations

Sentence

→ Subject Verb Object .

→ The Noun Verb Object.

→ The cat Verb Object.

→ The cat sees Object.

→ The cat sees a Noun .

→ The cat sees a rat .

Sentence ::= Subject Verb Object .
Subject ::= I | a Noun | the Noun
Object ::= me | a Noun | the Noun
Noun ::= cat | mat | rat
Verb ::= like | is | see | sees

12

Top-down parsing

The cat sees a rat .The cat sees rat .

The parse tree is constructed starting at the top (root).
Corresponds to following left derivations

Sentence

Subject Verb Object .

Sentence

Noun

Subject

The

Noun

cat

Verb

sees a

Noun

Object

Noun

rat .

13

Recursive Descent Parsing

• Recursive descent parsing is a straightforward top-down
parsing algorithm.

• We will now look at how to develop a recursive descent
parser from an EBNF specification for a simple LL(1)
grammar.

• Idea: the parse tree structure corresponds to the “call
graph” structure of parsing procedures that call each
other recursively.

14

Recursive Descent Parsing

Sentence ::= Subject Verb Object .
Subject ::= I | a Noun | the Noun
Object ::= me | a Noun | the Noun
Noun ::= cat | mat | rat
Verb ::= like | is | see | sees

Define a procedure parseN for each non-terminal N

private void parseSentence() ;
private void parseSubject();
private void parseObject();
private void parseNoun();
private void parseVerb();

15

Recursive Descent Parsing: Auxiliary Methods

public class MicroEnglishParser {

private TerminalSymbol currentTerminal

private void accept(TerminalSymbol expected) {
if (currentTerminal matches expected)

currentTerminal = next input terminal ;
else

report a syntax error
}

...
}

16

Recursive Descent Parsing: Parsing Methods

private void parseSentence() {
parseSubject();
parseVerb();
parseObject();
accept(‘.’);

}

Sentence ::= Subject Verb Object .

17

Recursive Descent Parsing: Parsing Methods

private void parseSubject() {
if (currentTerminal matches ‘I’)

accept(‘I’);
else if (currentTerminal matches ‘a’) {

accept(‘a’);
parseNoun();

}
else if (currentTerminal matches ‘the’) {

accept(‘the’);
parseNoun();

}
else
report a syntax error

}

Subject ::= I | a Noun | the Noun

18

Recursive Descent Parsing: Parsing Methods

private void parseNoun() {
if (currentTerminal matches ‘cat’)

accept(‘cat’);
else if (currentTerminal matches ‘mat’)

accept(‘mat’);
else if (currentTerminal matches ‘rat’)

accept(‘rat’);
else
report a syntax error

}

Noun ::= cat | mat | rat

19

Algorithm to convert EBNF into a RD parser

private void parseN() {
parse X

}

N ::= X

• The conversion of an EBNF specification into a Java
implementation for a recursive descent parser is so “mechanical”
that it can easily be automated!

=> JavaCC and Coco/R does that in fact
• We can describe the algorithm by a set of mechanical rewrite rules

20

Algorithm to convert EBNF into a RD parser

// a dummy statement

parse ε

parse N where N is a non-terminal

parseN();

parse t where t is a terminal
accept(t);

parse XY

parse X
parse Y

21

Algorithm to convert EBNF into a RD parser

parse X*

while (currentToken.kind is in first[X]) {
parse X

}

parse X|Y

switch (currentToken.kind) {
cases in first[X]:
parse X
break;

cases in first[Y]:
parse Y
break;

default: report syntax error
}

Note: first[X] is sometimes called starters(X)

22

Systematic Development of RD Parser

(1) Express grammar in EBNF
(2) Grammar Transformations:

Left factorization and Left recursion elimination
(3) Create a parser class with

– private variable currentToken
– methods to call the scanner: accept and acceptIt

(4) Implement private parsing methods:
– add private parseN method for each non terminal N
– public parse method that

• gets the first token form the scanner
• calls parseS (S is the start symbol of the grammar)

23

Recursive Descent Parsing with AST

Sentence ::= Subject Verb Object .
Subject ::= I | a Noun | the Noun
Object ::= me | a Noun | the Noun
Noun ::= cat | mat | rat
Verb ::= like | is | see | sees

Define a procedure parseN for each non-terminal N

private AST parseSentence() ;
private AST parseSubject();
private AST parseObject();
private AST parseNoun();
private AST parseVerb();

24

Recursive Descent Parsing: Parsing Methods

private AST parseSentence() {
AST theAST;
AST subject = parseSubject();
AST verb = parseVerb();
AST object = parseObject();
accept(‘.’);
theAST = new Sentence(subject,verb,object);
return theAST;

}

Sentence ::= Subject Verb Object .

25

Converting EBNF into RD parsers

• The conversion of an EBNF specification into a Java
implementation for a recursive descent parser is so “mechanical”
that it can easily be automated!

=> JavaCC “Java Compiler Compiler”

26

JavaCC

• JavaCC is a parser generator
• JavaCC can be thought of as “Lex and Yacc” for

implementing parsers in Java
• JavaCC is based on LL(k) grammars
• JavaCC transforms an EBNF grammar into an LL(k)

parser
• The lookahead can be change by writing

LOOKAHEAD(…)
• The JavaCC can have action code written in Java

embedded in the grammar
• JavaCC has a companion called JJTree which can be

used to generate an abstract syntax tree

27

JavaCC input format
• One file with extension .jj containing

– Header
– Token specifications
– Grammar

• Example:
TOKEN:
{

<INTEGER_LITERAL: ([“1”-”9”]([“0”-”9”])*|”0”)>
}

void StatementListReturn() :
{}
{

(Statement())* “return” Expression() “;”
}

28

JavaCC token specifications use regular expressions

• Characters and strings must be quoted
– “;”, “int”, “while”

• Character lists […] is shorthand for |
– [“a”-”z”] matches “a” | “b” | “c” | … | “z”
– [“a”,”e”,”i”,”o”,u”] matches any vowel
– [“a”-”z”,”A”-”Z”] matches any letter

• Repetition shorthand with * and +
– [“a”-”z”,”A”-”Z”]* matches zero or more letters
– [“a”-”z”,”A”-”Z”]+ matches one or more letters

• Shorthand with ? provides for optionals:
– (“+”|”-”)?[“0”-”9”]+ matches signed and unsigned integers

• Tokens can be named
– TOKEN : {<IDENTIFIER:<LETTER>(<LETTER>|<DIGIT>)*>}
– TOKEN : {<LETTER: [“a”-”z”,”A”-”Z”] >|<DIGIT:[“0”-”9”]>}
– Now <IDENTIFIER> can be used in defining syntax

ac in BNF and EBNF

prog - > dcls stmts
dcls -> dcl dcls | epsilon
dcl -> floatdcl id

| intdcl id
stmts -> stmt stmts | epsilon
stmt - > id assign val expr

| print id
expr - > plus val expr

| minus val expr
| epsilon

val - > id | fnum | inum

prog - > dcl* stmt*
stmt - > id assign val expr?

| print id
expr - > plus val expr?

| minus val expr?

29

30

JavaCC Grammar for ac

SKIP :
{
" "

| "\r"
| "\t"
| "\n"
}

TOKEN : /* OPERATORS */
{
< PLUS : "+" >

| < MINUS : "-" >
| < FLOATDCL : "f" >
| < INTDCL : "i" >
| < PRINT : "p" >
| < ASSIGN : "=" >
}

TOKEN :
{
< INUM : (< DIGIT >)+ >

| < FNUM : (< DIGIT >)+ (".") (< DIGIT >)+ >
| < #DIGIT : ["0"-"9"] >
| < ID : ["a"-"e"]|["g"-"h"]|["j"-"o"]|["q"-"z"] >
}

void prog() :
{}
{(dcl())+ (stmt())*
}

void dcl() :
{}
{
< FLOATDCL > <ID > | < INTDCL > <ID >

}

void stmt() :
{}
{
< ID ><ASSIGN > val() (expr())?

| < PRINT > <ID >
}

void val() :
{}
{
< INUM > | < FNUM > | < ID >

}

void expr() :
{}
{

< PLUS > val() (expr())?
| < MINUS > val() (expr())?

}

Adding AST actions for ac
AST prog() :
{Prog itsAST = new Prog(new ArrayList<AST >());
AST dcl;
AST stm;
}
{(
dcl = dcl()
{itsAST.prog.add(dcl);}
)+
(stm = stmt()
{itsAST.prog.add(stm);}
)*
{return itsAST;}

}

AST dcl() :
{Token t;}
{
(< FLOATDCL > t = <ID >)
{return new FloatDcl(t.image);}
| (< INTDCL > t = <ID >)
{return new IntDcl(t.image);}

}

AST stmt() :
{Boolean b = true;
AST v;
Computing e = null;
Token t;
}
{
(t = < ID ><ASSIGN > v = val() ((e = expr()){b = false;})?)
{if (b) return v; else { e.child1 = v; return e;}}

| (< PRINT > t = <ID >)
{return new Printing(t.image);}

}

31

32

Generating a parser with JavaCC

• javacc filename.jj
– generates a parser with specified name
– Lots of .java files

• javac *.java
– Compile all the .java files

• There is a plug-in for eclipse

• Note the parser doesn’t do anything on its own.
• You have to either

– Add actions to grammar by hand
– Use JJTree to generate actions for building AST
– Use JBT to generate AST and visitors

33

JavaCC and JJTree

• JavaCC is a parser generator
– Inputs a set of token definitions, grammar and actions
– Outputs a Java program which performs syntatic analysis

• Finding tokens
• Parses the tokens according to the grammar
• Executes actions

• JJTree is a preprocessor for JavaCC
– Inputs a grammar file
– Inserts tree building actions
– Outputs JavaCC grammar file with actions

• From this you can add code to traverse the tree to do
static analysis, code generation or interpretation.

34

JavaCC and JJTree

35

Using JJTree
• JJTree is a preprocessor for JavaCC
• JTree transforms a bare JavaCC grammar into a grammar with

embedded Java code for building an AST
– Classes Node and SimpleNode are generated
– Can also generate classes for each type of node

• All AST nodes implement interface Node
– Useful methods provided include:

• Public void jjtGetNumChildren()- returns the number of children
• Public void jjtGetChild(int i) - returns the i’th child

– The “state” is in a parser field called jjtree
• The root is at Node rootNode()
• You can display the tree with
• ((SimpleNode)parser.jjtree.rootNode()).dump(“ “);

• JJTree supports the building of abstract syntax trees which can be
traversed using the visitor design pattern

36

JBT

• JBT – Java Tree Builder is an alternative to JJTree
• It takes a plain JavaCC grammar file as input and automatically

generates the following:
– A set of syntax tree classes based on the productions in the grammar,

utilizing the Visitor design pattern.
– Two interfaces: Visitor and ObjectVisitor. Two depth-first visitors:

DepthFirstVisitor and ObjectDepthFirst, whose default methods simply
visit the children of the current node.

– A JavaCC grammar with the proper annotations to build the syntax tree
during parsing.

• New visitors, which subclass DepthFirstVisitor or
ObjectDepthFirst, can then override the default methods and
perform various operations on and manipulate the generated
syntax tree.

37

The Visitor Pattern
For object-oriented programming the visitor pattern enables the

definition of a new operator on an object structure without changing
the classes of the objects

When using visitor pattern
• The set of classes must be fixed in advance
• Each class must have an accept method
• Each accept method takes a visitor as argument
• The purpose of the accept method is to invoke the visitor which can

handle the current object.
• A visitor contains a visit method for each class (overloading)
• A method for class C takes an argument of type C

• The advantage of Visitors: New methods without recompilation!

Pause

38

39

LL(1) Grammars

• The presented algorithm to convert EBNF into a parser
does not work for all possible grammars.

• It only works for so called simple LL(1) grammars.
• What grammars are LL(1)?
• Basically, an LL(1) grammar is a grammar which can

be parsed with a top-down parser with a lookahead (in
the input stream of tokens) of one token.

How can we recognize that a grammar is (or is not) LL(1)?
⇒There is a formal definition
⇒We can deduce the necessary conditions from the parser

generation algorithm.

40

Formal definition of LL(1)

A grammar G is LL(1) iff
for each set of productions X ::= X1 | X2 | … | Xn :
1. first[X1], first[X2], …, first[Xn] are all pairwise disjoint
2. If Xi =>* ε then first[Xj]∩ follow[X]=Ø, for 1≤j≤ n.i≠j

If G is ε-free then 1 is sufficient

NOTE: first[X1] is sometimes called starters[X1]

first[X] = {t in Terminals | X =>* t β }
Follow[X] = {t in Terminals | S =>+ α X t β }

41

LL(1) Grammars

parse X*

while (currentToken.kind is in first[X]) {
parse X

}

parse X|Y

switch (currentToken.kind) {
cases in first[X]:
parse X
break;

cases in first[Y]:
parse Y
break;

default: report syntax error
}

Condition: first[X] and first[Y]
must be disjoint sets.

Condition: first[X] must be disjoint
from the set of tokens that can
immediately follow X *

42

First Sets

Informal Definition:
The starter set of a RE X is the set of terminal symbols that can
occur as the start of any string generated by X

Example :
first[(+|-|ε)(0|1|…|9)*] = {+,-, 0,1,…,9}

Formal Definition:
first[ε] ={}
first[t] ={t} (where t is a terminal symbol)
first[X Y] = first[X] ∪ first[Y] (if X generates ε)
first[X Y] = first[X] (if not X generates ε)
first[X | Y] = first[X] ∪ first[Y]
first[X*] = first[X]

43

´First Sets (ctd)

Informal Definition:
The starter set of RE can be generalized to extended BNF

Formal Definition:
first[N] = first[X] (for production rules N ::= X)

Example :
first[Expression] = first[PrimaryExp (Operator PrimaryExp)*]

= first[PrimaryExp]
= first[Identifiers] ∪ first[(Expression)]
= first[a | b | c | ... |z] ∪ {(}
= {a, b, c,…, z, (}

A variant on First and Follow sets

Source: https://www.jambe.co.nz/UNI/FirstAndFollowSets.html

https://www.jambe.co.nz/UNI/FirstAndFollowSets.html

First and Follow in KfG Edit

Recursive Decent Parser for ac

53

Recursive Decent Parser for ac

54

Recursive Decent Parser for ac with AST

55

Recursive Decent Parser for ac with AST

56

Recursive Decent Parser for ac with AST

57

Table-Driven LL(1) Parsers

• Creating recursive-descent parsers can be
automated, but
– Size of parser code
– Inefficiency: overhead of method calls and returns

• To create table-driven parsers, we use stack to
simulate the actions by MATCH() and calls to
nonterminals’ procedures
– Terminal symbol: MATCH
– Nonterminal symbol: table lookup
– (Fig. 5.8)

59

Model of a table-driven
predictive parser

How to Build LL(1) Parse Table

62

ANTLR
• ANTLR is a popular lexer and parser generator in Java.
• Regexp FSM (lexer machine) for tokens
• It allows LL(*) grammars.

– Does top-down parsing
– Uses lookahead tokens to decide which path to take
– Is table driven
– Each match could

– invoke a custom action
– write some text via StringTemplate,
– generate a Parse tree (or an Abstract Syntax Tree ANTLR v.3)

– Note LL(*) means that ANTLR uses a parse algorithm that uses k
lookahead (usually k=1) as often as possible, but can use regular
expressions or even backtracking when making decision. Theory
elaborated in 2011 PLDI paper

What can you do in your projects now?

• You should now be able to define the lexical grammar
for your langauge

• Implement the Lexer (scanner) by hand or using JLex

• Define the CFG for your language
• Check it is LL(1) or LL(n) for some n
• If it is LL(n) you should be able to implement a parser

– Recursive decent by hand
– Recursive decent by using a tool like JavaCC or CoCo/R
– Table driven by using a tool like ANTLR

64

Remarks

• Tools
– Many different tools
– Downloading and installing them is part of the exercises
– Judging if a tool is worthwhile using include judging how

difficult it is to install and how difficult it is to use
– Sometimes it is easier to do things by hand than using a tool
– But if you haven’t tried you don’t know when

– Try out the different tools and techniques on a small language
or a subset of your own language.

– Write down proc and cons for each.
– Lo and behold – you have a section for your report!

65

66

Error Reporting
• A common technique is to print the offending line with a pointer

to the position of the error.
• The parser might add a diagnostic message like “semicolon

missing at this position” if it knows what the likely error is.
• The way the parser is written may influence error reporting is:

private void parseAorB () {
switch (currentToken.kind) {
case Token.A: {

acceptIT();
…

}
break;
case Token.B: {

acceptIT();
…

}
break;
default:

report a syntax error
}

}

67

Error Reporting

private void parseAorB () {
if (currentToken.kind == Token.A) {

acceptIT();
…

} else {
acceptIT();
…

}
}

68

How to handle Syntax errors

• Error Recovery : The parser should try to recover from an error
quickly so subsequent errors can be reported. If the parser doesn’t
recover correctly it may report spurious errors.

• Possible strategies:
– Panic-mode Recovery
– Phase-level Recovery
– Error Productions

69

Panic-mode Recovery

• Discard input tokens until a synchronizing token (like; or end) is
found.

• Simple but may skip a considerable amount of input before
checking for errors again.

• Will not generate an infinite loop.

70

Phrase-level Recovery

• Perform local corrections
• Replace the prefix of the remaining input with some string to

allow the parser to continue.
– Examples: replace a comma with a semicolon, delete an

extraneous semicolon or insert a missing semicolon. Must be
careful not to get into an infinite loop.

71

Recovery with Error Productions

• Augment the grammar with productions to handle common errors

• Example:
param_list
::= identifier_list : type

| param_list, identifier_list : type

| param_list; error identifier_list : type

(“comma should be a semicolon”)

1

Languages and Compilers
(SProg og Oversættere)

Lecture 8
Bottom Up Parsing

Bent Thomsen
Department of Computer Science

Aalborg University

Learning goals

• Get an overview of bottom up parsing
• Understand what shift/reduce and reduce/reduce

conflicts are
• Get an overview of JavaCUP
• Get an overview of SableCC

2

3

Syntax Analysis

Scanner

Source Program

Abstract Syntax Tree

Error Reports

Parser

Stream of “Tokens”

Stream of Characters

Error Reports

Dataflow chart

This lecture

4

Generation of parsers

• We have seen that recursive decent parsers can be
constructed by hand or automatically, e.g. JavaCC

• However, recursive decent parsers only work for LL(k)
grammars
– No Left-recursion
– No Common prefixes (*)

– (*) Note that the LL(*) approach used by ANTLR can deal with
common prefixes, but not left recursion in general, though
ANTLR4 can do some left recursion elimination.

ACTOR

8

Look-Ahead

Derivation

LL-Analyse (Top-Down)
Left-to-Right Left Derivative

Look-Ahead

Reduction

LR-Analyse (Bottom-Up)
Left-to-Right Right Derivative

Top-Down vs. Bottom-Up parsing

9

Generation of parsers
• Sometimes we need a more powerful language
• The LR languages are more powerful

– Can recognize LR(0), SLR(1), LALR(1), LR(k) grammars
• bigger class of grammars than LL

– Can handle left recursion!
– Usually more convenient because less need to rewrite the grammar.

• LR parsing methods are the most commonly used for
automatic tools today (LALR in particular)
– Parsers for LR languages use a bottom-up parsing strategy
– Harder to implement than LL parsers

• but tools exist (e.g. JavaCUP, Yacc, C#CUP and SableCC)

• Bottom-up parsers can handle the largest class of grammars
that can be parsed deterministically

10

Hierarchy

11

Bottom Up Parsers: Overview of Algorithms
• LR(0) : The simplest algorithm

– theoretically important but rather weak (not practical)
• SLR(1) : An improved version of LR(0)

– more practical but still rather weak.
• LR(1) : LR(0) algorithm with extra lookahead token.

– very powerful algorithm. Not often used because of large
memory requirements (very big parsing tables)

– Note: LR(0) and LR(1) use 1 lookahead taken when operating
• 0 resp. 1 refer to token used in table construction.

• LR(k) for k>0, k tokens are use for operation and table
• LALR : “Watered down” version of LR(1)

– still very powerful, but has much smaller parsing tables
– most commonly used algorithm today

12

Fundamental idea

• Read through every construction and recognize the
construction at the end

• LR:
– Left – the string is read from left to right
– Right – we get a right derivation (in reverse)

• The parse tree is build from bottom up
– Corresponds to a right derivation in reverse

13

Bottom up parsing

The cat sees a rat .The cat

Noun

Subject

sees

Verb

a rat

Noun

Object

.

Sentence

The parse tree “grows” from the bottom (leafs) up to the top (root).

14

Right derivations

Sentence

→ Subject Verb Object .

→ Subject Verb a Noun .

→ Subject Verb a rat .

→ Subject sees a rat .

→ The Noun sees a rat .

→ The cat sees a rat .

Sentence ::= Subject Verb Object .
Subject ::= I | a Noun | the Noun
Object ::= me | a Noun | the Noun
Noun ::= cat | mat | rat
Verb ::= like | is | see | sees

15

Bottom up parsing

The cat sees a rat .The cat

Noun

Subject

sees

Verb

a rat

Noun

Object

.

Sentence

The parse tree “grows” from the bottom (leafs) up to the top (root).
Just read the right derivations backwards Sentence

→ Subject Verb Object .

→ Subject Verb a Noun .

→ Subject Verb a rat .

→ Subject sees a rat .

→ The Noun sees a rat .

→ The cat sees a rat .

Some Terminology

16

17

handles and reductions

The cat sees a rat .

→ the Noun sees a rat .

→ Subject sees a rat .

→ Subject Verb a rat .
→ Subject Verb a Noun .

→ Subject Verb Object .

→ Sentence

Sentence ::= Subject Verb Object .
Subject ::= I | a Noun | the Noun
Object ::= me | a Noun | the Noun
Noun ::= cat | mat | rat
Verb ::= like | is | see | sees

Handles:
Noun ::= cat
Subject ::= the Noun
Verb ::= sees
Noun ::= rat
Object ::= a Noun
Sentence ::=
Subject Verb Object.

18

Shifting and reducing

Shift → ← the cat sees a rat .
Shift the → ← cat sees a rat .
Reduce the cat → ← sees a rat .
Shift the → ← Noun sees a rat .
Reduce the Noun → ← sees a rat .
Reduce → ← Subject sees a rat .
Shift Subject → ← sees a rat .
Reduce Subject sees → ← a rat .
Shift Subject → ← Verb a rat .
Shift Subject Verb → ← a rat .
Shift Subject Verb a → ← rat .
Reduce Subject Verb a rat → ←.
Shift Subject Verb → ← Noun.
Reduce Subject Verb a Noun → ←.
Shift Subject Verb → ← Object.
Shift Subject Verb Object → ←.
Shift Subject Verb Object . → ←
Reduce → ← Sentence
Finish Sentence → ←

Sentence ::= Subject Verb Object .
Subject ::= I | a Noun | the Noun
Object ::= me | a Noun | the Noun
Noun ::= cat | mat | rat
Verb ::= like | is | see | sees

19

Shifting and reducing

Shift → ← the cat sees a rat .
Shift the → ← cat sees a rat .
Reduce the cat → ← sees a rat .
Reduce the Noun → ← sees a rat .
Reduce Subject → ← sees a rat .
Shift Subject sees → ← a rat .
Shift Subject Verb a → ← rat .
Shift Subject Verb a rat → ←.
Reduce Subject Verb a Noun → ←.
Reduce Subject Verb Object → ←.
Shift Subject Verb Object . → ←
Reduce Sentence → ←

Sentence ::= Subject Verb Object .
Subject ::= I | a Noun | the Noun
Object ::= me | a Noun | the Noun
Noun ::= cat | mat | rat
Verb ::= like | is | see | sees

The knitting games

21

Bottom Up Parsing

• The main task of a bottom-up parser is to find the
leftmost node in the parse tree that has not yet been
constructed but all of whose children have been
constructed.

• The sequence of children is the handle.
• Creating a parent node N and connecting the children in

the handle to N is called reducing to N.

(1,6,2) is a handle

22

Bottom Up Parsers

• All bottom up parsers have similar algorithm:
– A loop with these parts:

• try to find the leftmost node of the parse tree which has not
yet been constructed, but all of whose children have been
constructed.

– This sequence of children is called a handle
– The sequence of children is built by pushing also called

shifting elements on a stack
• construct a new parse tree node.

– This is called reducing
• The difference between different algorithms is only in

the way they find a handle.

23

The LR-parse algorithm

• A stack
– with objects (symbol, state)

• A finite automaton
– With transitions and states

• A parse table

24

Bottom-up Parsing

• Shift-Reduce Algorithms
– Shift is the action of moving the next token to the top of the

parse stack (and record the state)
– Reduce is the action of replacing the handle on the top of the

parse stack with its corresponding LHS

– Note: In Fischer et. al. the reduce action is a two step process
where the LHS is prepended the input stream first and next is
shifted to the parse stack (remember the knitting game)

Copyright © 2004 Pearson Addison-Wesley. All rights reserved.

25

The parse table

• For every state and every terminal
– either shift x

Put next input-symbol on the stack and go to state x
– or reduce production

On the stack we now have symbols to go backwards in the
production – afterwards do a goto

• For every state and every non-terminal
– Goto x

Tells us, in which state to be in after a reduce-operation
(Note as Fischer et. al. prepends non-terminals to input, they

have a shift/goto action in their tables)
• Empty cells in the table indicate an error

27

Example Grammar

• (0) S’ → S$
– This production augments the grammar

• (1) S → (S)S
• (2) S → ε

• This grammar generates all expressions of matching
parentheses

28

Example - parse table

() $ S' S

0 s2 r2 r2 g1

1 s3 r0

2 s2 r2 r2 g3

3 s4

4 s2 r2 r2 g5

5 r1 r1

By reduce we indicate the number of the production
r0 = accept
Never a goto by S'

29

Example – parsing
Stack Input Action
$0 ()()$ shift 2
$0(2)()$ reduce S→ε
$0(2S3)()$ shift 4
$0(2S3)4 ()$ shift 2
$0(2S3)4(2)$ reduce S→ε
$0(2S3)4(2S3)$ shift 4
$0(2S3)4(2S3)4 $ reduce S→ε
$0(2S3)4(2S3)4S5 $ reduce S→(S)S
$0(2S3)4S5 $ reduce S→(S)S
$0S1 $ reduce S’→S

30

The resultat

• Read the productions backwards and we get a right
derivation:

• S’ ⇒ S ⇒ (S)S ⇒(S)(S)S
⇒(S)(S) ⇒ (S)() ⇒()()

31

LR(0)-DFA

• How do we get the parse table?
• We build a DFA and encode it in a table!

– Every state is a set of items

– Transitions are labeled by symbols

– States must be closed

– New states are constructed from states and transitions

32

LR(0)-items

Item :
A production with a selected position marked by a point
X →α.β indicates that on the stack we have α and the first of the

input can be derived from β
Our example grammar has the following items:

S’ →.S$ S’ →S.$ (S’ →S$.)
S →.(S)S S→(.S)S S→(S.)S
S→(S).S S→(S)S. S→.

Rules with . at the end are the handles

33

The DFA for our grammar

S' .S$→.
S' S $→ .S S S→.()

S S S→().

S S S→ ().

S S S→().

S S S→() .

S→.

S

(

)
S

S

S S S→.()

S→.

(

(

S S S→.()

S→.

0
1

2

3

4
5

Pause

37

38

Shift-reduce-conflicts

• What happens, if there is a shift and a reduce in the
same cell
– so we have a shift-reduce-conflict
– and the grammar is not LR(0)

• Our example grammar is not LR(0)

39

Shift-reduce-conflicts

() $ S' S

0 s2/r2 r2 r2 g1

1 r0 s3/r0 r0

2 s2/r2 r2 r2 g3

3 s4

4 s2/r2 r2 r2 g5

5 r1 r1 r1

http://smlweb.cpsc.ucalgary.ca/

40

http://smlweb.cpsc.ucalgary.ca/

41

42

LR(0) Conflicts
The LR(0) algorithm doesn’t always work. Sometimes there are
“problems” with the grammar causing LR(0) conflicts.

An LR(0) conflict is a situation (DFA state) in which there is more
than one possible action for the algorithm.

More precisely there are two kinds of conflicts:
Shift-reduce

When the algorithm cannot decide between a shift action or
a reduce action

Reduce-reduce
When the algorithm cannot decide between two (or more)
reductions (for different grammar rules).

43

LR(0) vs. SLR(1)

• LR(0) - when constructing the parse table, we do not
look at the next symbol in the input before we decide
whether to shift or to reduce
– Note that we do use the next symbol in the input when

looking up in the parse table

• SLR(1) - here we do look at the next symbol
• the parse table is a bit different:

– shift and goto as with LR(0)
– reduce X→α only in cells (X,w) with w∈follow(X)
– this means fewer reduce-actions and therefore this rule

removes at lot of potential s/r- or r/r-conflicts

45

LR(1)

• Items are now pairs (A→α.β , t)
– t is a terminal such that t∈follow(A)
– means that the top of the stack is α and the input can be

derived from βt

– The initial state is generated from (S' →.S$, ?)
– Closure-operation is different
– Shift and Goto is (more or less) the same
– state I with item (A→α., z) gives a reduce A→α in cell (I,z)

– LR(1)-parse tables are very big

47

Example

0: S' → S$
1: S → V=E
2: S → E
3: E → V
4: V → x
5: V → *E

48

LR(1)-DFA

49

LR(1)-parse table

x * = $ S E V x * = $ S E V

1 s8 s6 g2 g5 g3 8 r4 r4

2 acc 9 r1

3 s4 r3 10 r5 r5

4 s11 s13 g9 g7 11 r4

5 r2 12 r3 r3

6 s8 s6 g10 g12 13 s11 s13 g14 g7

7 r3 14 r5

50

LALR(1)

• A variant of LR(1) - gives smaller parse tables

• We allow ourselves in the DFA to combine states,
where the items are the same except the x.

• In our example we combine the states
– 6 and 13
– 7 and 12
– 8 and 11
– 10 and 14

52

LALR(1)-parse-table

x * = $ S E V

1 s8 s6 g2 g5 g3

2 acc

3 s4 r3

4 s8 s6 g9 g7

5

6 s8 s6 g10 g7

7 r3 r3

8 r4 r4

9 r1

10 r5 r5

53

4 kinds of parsers

• 4 ways to generate the parse table
• LR(0)

– Easy, but only a few grammars are LR(0)

• SLR(1)
– Relativey easy, a few more grammars are SLR

• LR(1)
– Expensive, but alle common languages are LR(1)

• LALR(1)
– A bit difficult, but simpler and more efficient than LR(1)
– In practice allmost all grammars are LALR(1)

54

Parser Conflict Resolution

Most programming language grammars are LR(1). But, in practice, you
still encounter grammars which have parsing conflicts.

=> a common cause is an ambiguous grammar

Ambiguous grammars always have parsing conflicts (because they are
ambiguous this is just unavoidable).

In practice, parser generators still generate a parser for such grammars,
using a “resolution rule” to resolve parsing conflicts deterministically.

=> The resolution rule may or may not do what you want/expect

=> You will get a warning message. If you know what you are doing
this can be ignored. Otherwise => try to solve the conflict by
disambiguating the grammar.

55

Parser Conflict Resolution

Example: (from Mini Triangle grammar)

single-Command
::= if Expression then single-Command
| if Expression then single-Command

else single-Command

if a then if b then c1 else c2

single-Command

single-Command

This parse tree?

56

Parser Conflict Resolution

Example: (from Mini Triangle grammar)

single-Command
::= if Expression then single-Command
| if Expression then single-Command

else single-Command

if a then if b then c1 else c2

single-Command

single-Command

or this one ?

57

Parser Conflict Resolution

Example: “dangling-else” problem (from Mini Triangle grammar)

single-Command
::= if Expression then single-Command
| if Expression then single-Command

else single-Command

sC ::= CsC
| OsC

CsC ::= if E then CsC else CsC
CsC ::= …
OsC ::= if E then sC

| if E then CsC else OsC

Rewrite Grammar:

58

Parser Conflict Resolution

Example: “dangling-else” problem (from Mini Triangle grammar)

single-Command
::= if Expression then single-Command
| if Expression then single-Command

else single-Command

sC ::= if E then sC • {… else …}
sC ::= if E then sC • else sC {…}

LR(1) items (in some state of the parser)
Shift-reduce

conflict!

Resolution rule: shift has priority over reduce.

Q: Does this resolution rule solve the conflict? What is its effect
on the parse tree?

59

Parser Conflict Resolution

There is usually also a default resolution rule for shift-reduce
conflicts, for example the rule which appears first in the grammar
description has priority.

Reduce-reduce conflicts usually mean there is a real problem with
your grammar.

=> You need to fix it! Don’t rely on the resolution rule!

60

Enough background!

• All of this may sound a bit difficult (and it is)
• But it can all be automated!
• Now lets talk about tools

– CUP (or Yacc for Java)
– SableCC

61

Java Cup

• Accepts specification of a CFG and produces an
LALR(1) parser (expressed in Java) with action routines
expressed in Java

• Similar to yacc in its specification language, but with a
few improvements (better name management)

• Usually used together with JLex (or JFlex)

62

java_cup_spec ::= package_spec
import_list
code_part
init_code
scan_code
symbol_list
precedence_list
start_spec
production_list

Java Cup Specification Structure

• What does it mean?
– Package and import control Java naming
– Code and init_code allow insertion of code in generated output
– Scan code specifies how scanner (lexer) is invoked
– Symbol list and precedence list specify terminal and non-terminal names and

their precedence
– Start and production specify grammar and its start point

63

Calculator JavaCup Specification (calc.cup)
terminal PLUS, MINUS, TIMES, DIVIDE, LPAREN, RPAREN;
terminal Integer NUMBER;
non terminal Integer expr;
precedence left PLUS, MINUS;
precedence left TIMES, DIVIDE;
expr ::= expr PLUS expr

| expr MINUS expr
| expr TIMES expr
| expr DIVIDE expr
| LPAREN expr RPAREN
| NUMBER

;
• Is the grammar ambiguous?
• How can we get PLUS, NUMBER, ...?

– They are the terminals returned by the scanner.
• How to connect with the scanner?

64

Ambiguous Grammar Error

• If we enter the grammar
Expression ::= Expression PLUS Expression;

• without precedence JavaCUP will tell us:
Shift/Reduce conflict found in state #4

between Expression ::= Expression PLUS Expression .

and Expression ::= Expression . PLUS Expression

under symbol PLUS

Resolved in favor of shifting.

• The grammar is ambiguous!
• Telling JavaCUP that PLUS is left associative helps.

65

Evaluate the expression

• The previous specification only indicates the success or
failure of a parser. No semantic action is associated with
grammar rules.

• To calculate the expression, we must add java code in
the grammar to carry out actions at various points.

• Form of the semantic action:
expr:e1 PLUS expr:e2
{: RESULT = new Integer(e1.intValue()+ e2.intValue()); :}

– Actions (java code) are enclosed within a pair {: :}
– Labels e2, e2: the objects that represent the corresponding terminal or non-

terminal;
– RESULT: The type of RESULT should be the same as the type of the

corresponding non-terminals. e.g., expr is of type Integer, so RESULT is of
type integer.

66

Change the calc.cup

terminal PLUS, MINUS, TIMES, DIVIDE, LPAREN, RPAREN;
terminal Integer NUMBER;
non terminal AST expr;
precedence left PLUS, MINUS;
precedence left TIMES, DIVIDE;
expr ::= expr:e1 PLUS expr:e2 {: RESULT = new Computing(“+”,e1,e2); :}

| expr:e1 MINUS expr:e2 {: RESULT = new Computing(“-”,e1,e2); :}
| expr:e1 TIMES expr:e2 {: RESULT = new Computing(“*”,e1,e2); :}
| expr:e1 DIVIDE expr:e2 {: RESULT = new Computing(“\”,e1,e2); :}
| LPAREN expr:e RPAREN {: RESULT = e; :}
| NUMBER:e {: RESULT= new IntConsting(e.intValue()); :}

67

SableCC

• Object Oriented compiler framework written in Java
– There are also versions for C++ and C#

• Front-end compiler compiler like JavaCC and
JLex/CUP

• Lexer generator based on DFA
• Parser generator based on LALR(1)
• Object oriented framework generator:

– Strictly typed Abstract Syntax Tree
– Tree-walker classes
– Uses inheritance to implement actions
– Provides visitors for user manipulation of AST

• E.g. type checking and code generation

68

Steps to build a compiler with SableCC
1. Create a SableCC

specification file
2. Call SableCC
3. Create one or more

working classes,
possibly inherited
from classes
generated by
SableCC

4. Create a Main class
activating lexer,
parser and working
classes

5. Compile with Javac

69

SableCC Example

Package Prog
Helpers
digit = ['0' .. '9'];
tab = 9; cr = 13; lf = 10;
space = ' ';
graphic = [[32 .. 127] + tab];

Tokens
blank = (space | tab | cr | lf)* ;
comment = '//' graphic* (cr | lf);
while = 'while';
begin = 'begin';
end = 'end';
do = 'do';
if = 'if';
then = 'then';
else = 'else';
semi = ';';
assign = '=';
int = digit digit*;
id = ['a'..'z'](['a'..'z']|['0'..'9'])*;

Ignored Tokens
blank, comment;

Productions
prog = stmlist;

stm = {assign} [left:]:id assign [right]:id|
{while} while id do stm |
{begin} begin stmlist end |
{if_then} if id then stm;

stmlist = {stmt} stm |
{stmtlist} stmlist semi stm;

70

SableCC output

• The lexer package containing the Lexer and
LexerException classes

• The parser package containing the Parser and
ParserException classes

• The node package contains all the classes defining typed
AST

• The analysis package containing one interface and three
classes mainly used to define AST walkers based on the
visitors pattern

JLex/CUP vs. SableCC
• SableCC advantages

– Automatic AST builder for
multi-pass compilers

– Compiler generator out of
development cycle when
grammar is stable

– Easier debugging
– Access to sub-node by name,

not position
– Clear separation of user and

machine generated code
– Automatic AST pretty-

printer
– Version 3.0 allows

declarative grammar
transformations

71

What can you do now in your projects?

• Extract a core of your language
• Define CFG for this core

– Transform into LL(1)
– Transform into LALR (probably not necessary)

• Build:
– Recursive decent parser (and lexer) by hand
– Try JavaCC and/or ANTLR
– Try JFlex/CUP
– Try SableCC
– (Try other parser tools, e.g. Coco/R, Gold Parser)

• Conclude which one is most appropriate for your project

72

1

Languages and Compilers
(SProg og Oversættere)

Lecture 9
Abstract Syntax Trees

Bent Thomsen
Department of Computer Science

Aalborg University

Learning goals

• To understand the role of the AST in modern compilers
• Knowledge of Attribute Grammars
• Knowledge about single pass vs. multi pas
• Knowledge of different approaches to AST design
• Understand the interplay between CFG and AST
• Be able to design an AST structure
• Knowledge of AST traversal approaches

2

Remember exercises 2 and 3 from before lecture 1 ?

• Write a Java program that implements a data structure
for the following tree

• Extend your Java program to traverse the tree depth-first
and print out information in nodes and leaves as it goes
along.

• Today we shall see several ways of solving this exercise

3

4

The “Phases” of a Compiler

Syntax Analysis

Contextual Analysis

Code Generation

Source Program

Abstract Syntax Tree

Decorated Abstract Syntax Tree

Object Code

Error Reports

Error Reports

This lecture

Ac in JavaCC with AST
AST prog() :
{Prog itsAST = new Prog(new ArrayList<AST >());
AST dcl;
AST stm;
}
{(

dcl = dcl()
{itsAST.prog.add(dcl);}
)+
(stm = stmt()
{itsAST.prog.add(stm);}
)*
{return itsAST;}

}

AST dcl() :
{Token t;}
{

(< FLOATDCL > t = <ID >)
{return new FloatDcl(t.image);}
| (< INTDCL > t = <ID >)
{return new IntDcl(t.image);}

}

AST stmt() :
{Boolean b = true;
AST v;
Computing e = null;
Token t;
}
{

(t = < ID ><ASSIGN > v = val() ((e = expr()){b = false;})?)
{if (b) return v; else { e.child1 = v; return e;}}

| (< PRINT > t = <ID >)
{return new Printing(t.image);}

}

AST val() :
{Token t;}
{

t = < INUM >
{return new IntConsting(t.image);}

| t = < FNUM >
{return new FloatConsting(t.image);}

| t= < ID >
{return new SymReferencing(t.image);}

}

Computing expr() :
{Boolean b = true;
AST v;
Computing e = null;
}
{

< PLUS > v = val() (e = expr(){b = false;})?
{if (b) return new Computing("+",null,v);
else { e.child1 = v; return new Computing("+",null,e);}}

| < MINUS > v = val() (e = expr(){b = false;})?
{if (b) return new Computing("-",null,v);
else { e.child1 = v; return new Computing("-",null,e);}}

}

5

6

Action Routines and Attribute Grammars

• Automatic tools can construct lexer and parser for a given
context-free grammar
– E.g. JavaCC and JLex/CUP (and Lex/Yacc)

• CFGs cannot describe all of the syntax of programming
languages
– An ad hoc technique is to annotate the grammar with executable

rules
– These rules are known as action routines

• Action routines can be formalized Attribute Grammars

Semantic Actions and Values

• Semantic actions
– Associated code sequence that will execute

when the production is applied
• Semantic values

– For production A -> X1…Xn, a semantic value
for each symbol

• Terminals: values originate from the scanner
• Nonterminals: to compute a value for A based on

the values assigned to X1…Xn
– For yacc Xi: $i A: $0
– For JavaCUP X:val 7

Synthesized and Inherited
Attributes

• Synthesized attributes
– Attributes flow from the leaves of a derivation

tree toward its root
– Ex.: evaluating expressions (Fig. 7.1)
– Better ex.: Inferred Type

• Inherited attributes
– Attribute values pass from parent to child
– Ex.: counting the position of each x in a string
– Better ex.: expected Type

8

9

Example: 4 3 1 $
• Semantic values for nonterminal symbols:

computed by semantic actions
• Semantic values for terminal symbols:

established by the scanner

10

• Example: o 4 3 1 $ i.e. Base-8 (octal)
– Problem: the information required

at a semantic action is not available
from below

• Semantic actions allowed only on
reductions (in bottom up parsers)

11

Rule Cloning

• A similar sequence of
input symbols should
be treated differently
depending on the
context
– Ex.: (Fig. 7.5)
– Redundancy in

productions

12

Forcing Semantic Actions

• Introducing unit
productions of the
form AX
– Semantic actions can

be associated with the
reduction of AX

– If a semantic action is
desired between two
symbols Xm and Xn,

• a production of the
form Aλ can be
introduced

– Ex.: (Fig. 7.6) 13

Aggressive Grammar
Restructuring

• Reasons to avoid using
global variables
– Grammar rules are often

invoked recursively, and
the global variables can
introduce unwanted
interactions

– Global variables can
make semantic actions
difficult to write and
maintain

– Global variables may
require setting or
resetting

• More robust solution
– Sketch the parse tree without

global variables
– Revise the grammar to

achieve the desired parse
tree

– Verify the revised grammar
is still suitable for parser
construction (e.g. LALR(1))

– Verify the revised grammar
still generates the same
language

– (Fig. 7.8)
• Keep the base in the semantic

values
• Propagate the value up the

parse tree

14

15

Top-Down Syntax-Directed
Translation

• Using the recursive-descent parsers
• Semantic actions can be written directly

into the parser
– Ex.: Lisp-like expressions (Fig. 7.9)

• (plus 31 (prod 10 2 20)) $
• Inherited values: parameters passed into a

method
• Synthesized values: returned by methods

– (Fig. 7.10)

16

17

General structure

18

Production: X -> a Y Z

19

Single Pass Compiler

Compiler Driver

Syntactic Analyzer

calls

calls

Contextual Analyzer Code Generator

calls

Dependency diagram of a typical Single Pass Compiler:

A single pass compiler makes a single pass over the source text,
parsing, analyzing and generating code all at once.

Ac Single Pass Compiler

20

CODE include code for typechecking, codegeneration, …

Production: X -> a Y Z

Ac Parser (without action code)

21

22

Ac Parser for Single Pass Comp.

23

Multi Pass Compiler

Compiler Driver

Syntactic Analyzer

calls
calls

Contextual Analyzer Code Generator

calls

Dependency diagram of a typical Multi Pass Compiler:

A multi pass compiler makes several passes over the program. The
output of a preceding phase is stored in a data structure and used by
subsequent phases.

input

Source Text

output

AST

input output

Decorated AST

input output

Object Code

Abstract Syntax Trees

• The central data structure for all post-
parsing activities
– AST must be concise
– AST must be sufficiently flexible

• Concrete vs. abstract trees
– (Fig. 7.3 & 7.4)
– (Fig. 7.11)

24

25

Abstract Syntax Trees

• Like a parse tree, but with some details
omitted

• Note we could use the parse tree
– but often, the parse tree keeps unnecessary

details
– E.g. SableCC AST is equivalent to the parse

tree if you do not specify grammar
transformation rules!

– ANTLR4 gives you the parse tree !
• You have to convert this to an AST yourself 26

An Efficient AST Data Structure

• Considering
– AST is typically constructed bottom-up
– Lists of siblings are typically generated by

recursive rules
– Some AST nodes have a fixed number of

children, but some may require an arbitrarily
large number of children

• (Fig. 7.12)

27

28

29

30

31

32

33

AST Design and Construction

• Important forces that influence the design
of an AST
– It should be possible to unparse an AST

• i.e. reconstitute the program from an AST
• AST must hold sufficient information

– The implementation of an AST should be
decoupled from the essential information
represented within the AST

– Different views from different phases of a
compiler

34

• Process of the design of an appropriate
AST structure
– An unambiguous grammar for L is devised
– An AST for L is devised
– Semantic actions are placed in the grammar to

construct the AST
– Passes of the compiler are designed using the

visitor design pattern

This is what Fischer et. Al. Says –
however sometimes an ambigous grammer may be the right thing
For devising the AST – just think of SableCC version 3.0

35

36

Pause

37

38

Abstract Syntax Trees

• The examples of AST design and construction in
Fischer et. Al. are some what abstract

• Now we will look at very concrete example taken from
Brown&Watt’s book: Programming Language
Processors in Java:
– MiniTriangle language
– how to represent AST as data structures.
– how to refine a recursive decent parser to construct an AST

data structure.

You may need more than one Grammar
• Concrete Syntax

– The grammar we use as specification for building a parser
– Must be unambiguous
– Usually LL(1), LL(*) or LALR(1)

• Lexical elements (Syntax given as Regular Expressions)
– Identifiers e.g. Id := [a-z]([a-z]|[0-9])*
– Keywords (or reserved words)

• Abstract Syntax
– To communicate the essentials of the language
– To serve in the formal specification of the semantics
– May be ambiguous
– To serve as design pattern for AST

39

40

Concrete Syntax of Commands

single-Command
::= V-name := Expression
| Identifier (Expression)
| if Expression then single-Command

else single-Command
| while Expression do single-Command
| let Declaration in single-Command
| begin Command end

Command ::= single-Command
| Command ; single-Command

41

Abstract Syntax of Commands

Command
::= V-name := Expression AssignCmd
| Identifier (Expression) CallCmd
| if Expression then Command

else Command IfCmd
| while Expression do Command WhileCmd
| let Declaration in Command LetCmd
| Command ; Command SequentialCmd

42

Even more Abstract Syntax of Commands

Command
::= V-name Expression AssignCmd
| Identifier Expression CallCmd
| Expression Command Command IfCmd
| Expression Command WhileCmd
| Declaration Command LetCmd
| Command Command SequentialCmd

The possible form of AST structures can be completely determined
by the AST grammar

43

AST Representation: Possible Tree Shapes

Command ::= VName := Expression AssignCmd
| ...

AssignCmd

V E

44

AST Representation: Possible Tree Shapes

Command ::=
...
| Identifier (Expression) CallCmd
...

CallCmd

Identifier E

Spelling

45

AST Representation: Possible Tree Shapes

Command ::=
...
| if Expression then Command

else Command IfCmd
...

IfCmd

E C1 C2

46

AST

LHS

Tag1 Tag2 …

abstract

concrete

abstract

AST Representation: Java Data Structures

public abstract class AST { ... }

Example: Java classes to represent Mini Triangle AST’s
1) A common (abstract) super class for all AST nodes

2) A Java class for each “type” of node.
• abstract as well as concrete node types

LHS ::= ... Tag1
| ... Tag2

47

Example: Mini Triangle Commands ASTs

public abstract class Command extends AST { ... }

public class AssignCommand extends Command { ... }
public class CallCommand extends Command { ... }
public class IfCommand extends Command { ... }
etc.

Command
::= V-name := Expression AssignCmd
| Identifier (Expression) CallCmd
| if Expression then Command

else Command IfCmd
| while Expression do Command WhileCmd
| let Declaration in Command LetCmd
| Command ; Command SequentialCmd

48

Example: Mini Triangle Command ASTs

Command ::= V-name := Expression AssignCmd
| Identifier (Expression) CallCmd
| ...

public class AssignCommand extends Command {
public Vname V; // assign to what variable?
public Expression E; // what to assign?
...

}

public class CallCommand extends Command {
public Identifier I; //procedure name
public Expression E; //actual parameter
...

}
...

49

AST Terminal Nodes

public abstract class Terminal extends AST {
public String spelling;
...

}

public class Identifier extends Terminal { ... }

public class IntegerLiteral extends Terminal { ... }

public class Operator extends Terminal { ... }

50

AST Construction

public class AssignCommand extends Command {
public Vname V; // Left side variable
public Expression E; // right side expression
public AssignCommand(Vname V; Expression E) {

this.V = V; this.E=E;
}
...

}

public class Identifier extends Terminal {
public class Identifier(String spelling) {

this.spelling = spelling;
}
...

}

Examples:
First, every concrete AST class needs a constructor.

51

AST Construction

private void parseN() {
parse X

}

N ::= X

We will now show how to refine our recursive descent parser to
actually construct an AST.

Remember:

52

AST Construction
We will now show how to refine our recursive descent parser to actually
construct an AST.

private N parseN() {
N itsAST;
parse X at the same time constructing itsAST
return itsAST;

}

N ::= X

53

private void parseCommand() {
parse single-Command (; single-Command)*

}

Example: “Generation” of parseCommand

Command ::= single-Command (; single-Command)*

private void parseCommand() {
parse single-Command
parse (; single-Command)*

}

private void parseCommand() {
parseSingleCommand();
parse (; single-Command)*

}

private void parseCommand() {
parseSingleCommand();
while (currentToken.kind==Token.SEMICOLON) {

parse ; single-Command
}

}

private void parseCommand() {
parseSingleCommand();
while (currentToken.kind==Token.SEMICOLON) {

parse ;
parse single-Command

}
}

private void parseCommand() {
parseSingleCommand();
while (currentToken.kind==Token.SEMICOLON) {

acceptIt();
parseSingleCommand();

}
}

54

Example: Construction of Mini Triangle ASTs

// old (recognizing only) version:
private void parseCommand() {
parseSingleCommand();
while (currentToken.kind==Token.SEMICOLON) {

acceptIt();
parseSingleCommand();

}
}

Command ::= single-Command (; single-Command)*

// AST-generating version
private Command parseCommand() {
Command itsAST;
itsAST = parseSingleCommand();
while (currentToken.kind==Token.SEMICOLON) {

acceptIt();
Command extraCmd = parseSingleCommand();
itsAST = new SequentialCommand(itsAST,extraCmd);

}
return itsAST;

}

55

Contextual Analysis
Identification and type checking are combined into a depth-first traversal of the AST.

Ident Ident Ident Ident Ident CharLit Ident Ident Op IntLit

n Integer c Char c ‘&’ n n + 1

SimpleT SimpleT SimpleV SimpleV SimpleV

VarDec VarDec VnameExpr IntExpr

BinaryExpression

AssignCommand

CharExpr

AssignCommand

SequentialCommandSequentialDeclaration

LetCommand

Program

56

Depth-First Traversal
Depth-first traversal depends on the structure of the AST - it depends
on the number and kind of descendants of each node. Organize it as a
collection of functions: analyzeNodeType

analyzeProgram(Program P) {
… analyzeCommand(P.C) … }

analyzeIfCommand(IfCommand C) {
… analyzeExpression(C.E) …
… analyzeCommand(C.C1)… analyzeCommand(C.C2)… }

57

Depth-First Traversal
It turns out (later in the course) that code generation also requires a
traversal of the AST. So we expect the code generator to be
organized similarly:

generateProgram(Program P) {
… generateCommand(P.C) … }

generateIfCommand(IfCommand C) {
… generateExpression(C.E) …
… generateCommand(C.C1)… generateCommand(C.C2)… }

58

Implementing Tree Traversal

• “Traditional” OO approach
• Visitor approach

– GOF
– Using static overloading
– Reflective
– (dynamic)
– (SableCC style)

• “Functional” approach
• Active patterns in Scala (or F#)
• (Aspect oriented approach)

59

Implementing Tree Traversal: Traditional

• “Traditional” OO approach add a method to each class,
so for each node in the AST we have a method that
knows how to traverse its children.

• Note the AST is a composit
– thus we can use the composit pattern
– Composite lets clients treat individual objects and

compositions of objects uniformly
•

ac traditional OO AST traversal

60

61

Implementing Tree Traversal: Traditional

• “Traditional” OO approach add a method to each class,
so for each node in the AST we have a method that
knows how to traverse its children.

• Note the AST is a composit, thus we can use the
composit pattern

• Scatters code over a large number of classes
• Requires recompilation of AST classes each time a

method needs changing
• Could be preferable as long as we are changing the AST

often.
• Solution could later be refactored to Visitor pattern

62

Implementing Tree Traversal: Visitor

• Solution using Visitor:
– Visitor is an interface or an abstract class that has a different

method for each type of object on which it operates
– Each operation is a subclass of Visitor and overloads the type-

specific methods
– Objects that are operated on, accept a Visitor and call back

their type-specific method passing themselves as operands
– Object types are independent of the operations that apply to

them
– New operations can be added without modifying the object

types

63

Visitor Solution

NodeVisitor

VisitAssignment(AssignmentNode)
VisitVariableRef(VariableRefNode)

TypeCheckingVisitor

VisitAssignment(AssignmentNode)
VisitVariableRef(VariableRefNode)

CodeGeneratingVisitor

VisitAssignment(AssignmentNode)
VisitVariableRef(VariableRefNode)

Node

Accept(NodeVisitor v)

VariableRefNode

Accept(NodeVisitor v)
{v->VisitVariableRef(this)}

AssignmentNode

Accept(NodeVisitor v)
{v->VisitAssignment(this)}

• Nodes accept visitors and call
appropriate method of the visitor

• Visitors implement the operations
and have one method for each type
of node they visit

Double Dispatch

64

http://en.wikipedia.org/wiki/File:VisitorClassDiagram.svg
http://en.wikipedia.org/wiki/File:Visitor_pattern_in_LePUS3.gif

65

Flavours of the Visitor Pattern

• GOF style as on previous slides
– acASTGOFVisitor

• Reflective Visitor
– acASTreflective

• Exploiting static overloading
– acASTVisitor

66

67

Implementing Tree Traversal: instanceof
Another possibility is to use a “functional” approach and
implement a case-analysis on the class of an object.

Type check(Expr e) {
if (e instanceof IntLitExpr)

return representation of type int
else if (e instanceof BoolLitExpr)

return representation of type bool
else if (e instanceof EqExpr) {

Type t = check(((EqExpr)e).left);
Type u = check(((EqExpr)e).right);
if (t == representation of type int &&

u == representation of type int)
return representation of type bool

...

ac with functional AST traversal

68

69

Implementing Tree Traversal: instanceof

This approach leads to a messy nested if, which can’t be
converted into a switch because Java has no mechanism for
switching on the class of an object.

Also this technique is not very object-oriented: instead of
explicitly using instanceof, we prefer to arrange for analysis
of an object’s class to be done via the built-in mechanisms of
overloading and dynamic method dispatch.

Scala active patterns

sealed abstract class AST
case class Prog(prog:List[AST]) extends AST
case class Assigning(id:String,child1:AST) extends AST
case class Computing(operation:String,child1:AST,child2:AST) extends AST
case class ConvertingToFloat(child:AST) extends AST
case class Printing(id:String) extends AST
case class FloatConsting(v:String) extends AST
case class FloatDcl(id:String) extends AST
case class Intconsting(v:String) extends AST
case class IntDcl(id:String) extends AST
case class SymDeclaring(id:String) extends AST
case class SymReferencing(id:String) extends AST

def prettyprint(t: AST): void = t match {
case Prog(prog) => prog.map(prettyprint)
case Assigning(id,child1) => print(id + " = ");prettyprint(child1);print(" ")
case Computing(op, ch1,ch2) => prettyprint(ch1);print(" " + op + " ")
case Converting(ch) => print(" i2f ");prettyprint(ch)
case Printing(id) => print("p " + id + " ")
case FloatConsting(v) => print(v)
case FloatDcl(id) => print("f " + id + " ")
case IntConsting(v) => print(v)
case IntDcl(id) => print("f " + id + " ")
case SymReferencing(id) => print(id)
}

70

Summary

• The AST is a central data structure in modern compilers
– Generic very general AST structure
– Designed based on (Abstract) grammar

• Parser builds AST
– Action code, e.g. JavaCC, CUP/Yacc/C#CUP (, ANTLR)
– Done by tool, e.g. SableCC, JavaCC+JJT or JBT (, ANTLR)

• AST traversal
– Traditional OO
– Visitor Pattern
– Functional style

71

What can you do in your project now?

• Start deciding on an AST design for your compiler
– Generic vs. Abstract Syntax based (classic OOP)
– Experiment with AST traversal strategies

• Compare approaches
– By hand
– By tool

72

1

Languages and Compilers
(SProg og Oversættere)

Lecture 10
Scopes and Symbol Tables

Bent Thomsen
Department of Computer Science

Aalborg University

Learning Goals

• Understand the purpose of the Contextual Analysis
phase of the compiler

• Knowledge about scope and type rules
• Knowledge about Symbol Tables
• Knowledge about strategies for implementing this phase

2

3

The “Phases” of a Compiler

Syntax Analysis

Contextual Analysis

Code Generation

Source Program

Abstract Syntax Tree

Decorated Abstract Syntax Tree

Object Code

Error Reports

Error Reports

4

Programming Language Specification

– A language specification has (at least) three parts:
• Syntax of the language: usually formal: EBNF
• Contextual constraints:

– scope rules
» often written in English, but can be formal
» (see chapter 6 on p. 86-93 in Transitions and Trees)

– type rules
» formal or informal
» See chapter 13 on p.185-210 in Transitions and Trees)

• Semantics:
– defined by the implementation
– informal descriptions in English
– formal using operational or denotational semantics

» See Transitions and Trees

5

Contextual Constraints

Syntax rules alone are not enough to specify the format of
well-formed programs.

Example 1:
let const m~2;
in m + x

Example 2:
let const m~2 ;

var n:Boolean
in begin

n := m<4;
n := n+1

end

Undefined! Scope Rules

Type error! Type Rules

6

Scope Rules

Scope rules regulate visibility of identifiers. They relate
every applied occurrence of an identifier to a binding
occurrence
Example 1
let const m~2;

var r:Integer
in

r := 10*m

Binding occurrence

Applied occurrence

Terminology:

Static binding vs. dynamic binding

Static scope/block structured scope vs. dynamic scope

Implicit vs. explicit binding (see p. 86-93 in Transitions and Trees)

Example 2:
let const m~2
in m + x

?

7

Type Rules

• In order to "tame" the behaviour of programs we can
make more or less restrictive type rules

• The validity of these rules is controlled by the type
cheking algorithm

• Details depend upon the type system
– Type systems can be very complicated

• Lets look at them later
– Simple type system (next lecture)
– More complex type systems (later lecture)

8

Type Rules

Type rules regulate the expected types of arguments and
types of returned values for the operations of a language.

Examples

Terminology:

Static typing vs. dynamic typing

Type rule of < :
E1 < E2 is type correct and of type Boolean
if E1 and E2 are type correct and of type Integer

Type rule of while:
while E do C is type correct
if E of type Boolean and C type correct

See Chapter 13 in Trans. & Trees

9

10

Typechecking
• Static typechecking

– All type errors are detected at compile-time
– Pascal and C are statically typed
– Most modern languages have a large emphasis on static typechecking

• Dynamic typechecking
– Scripting languages such as JavaScript, PhP, Perl and Python do run-time

typechecking
• Mix of Static and Dynamic

– object-oriented programming requires some runtime typechecking: e.g.
Java has a lot of compile-time typechecking but it is still necessary for
some potential runtime type errors to be detected by the runtime system

• Static typechecking involves calculating or inferring the types of
expressions (by using information about the types of their
components) and checking that these types are what they should
be (e.g. the condition in an if statement must have type Boolean).

11

Contextual Analysis Phase

• Purposes:
– Finish syntax analysis by deriving context-sensitive

information
• Scoping
• (static) type checking

– Start to interpret meaning of program based on its syntactic
structure

– Prepare for the final stage of compilation: Code generation

12

Contextual Analyzer

• Which contextual constraints might the compiler add?
– Is identifier x declared before it is used?
– Which declaration of x does an occurrence of x refer to?
– Is x an Integer, Boolean, array or a function?
– Is an expression type-consistent?
– Are any names declared but not used?
– Has x been initialized before it is being accessed?
– Is an array reference out of bounds?
– Does a function bar produce a constant value?
– Where can x be stored? (heap, stack, …)

13

Why contextual analysis can be hard

• Questions and answers involve non-local information
• Answers mostly depend on values, not syntax
• Answers may involve computations

Solution alternatives:
• Abstract syntax tree

– specify non-local computations by walking the tree
• Identification tables (sometimes called symbol tables)

– central store for facts + checking code
• Language design

– simplify language

14

To simplify the language design or not?

• Syntax vs. types
– Bool expressions and Int expressions as syntactic categories
– One syntactic category of Expressions with types

• Psychology of syntax errors vs. type errors
– Most C programmers accept syntax errors as their fault, but

regard typing errors as annoying constraints imposed on them

Bexp := true
| false
| Bexp Bop Bexp

Bop := & | or | …

IntExp := Literal
| IntExp Iop IntExp

Iop := + | - | * | / | …

Exp := Literal
| Exp op Exp

Op := & | or | + | - | * | / | …vs

15

Language Issues

Example Pascal:
Pascal was explicitly designed to be easy to implement

with a single pass compiler:
– Every identifier must be declared before its first use.

var n:integer;

procedure inc;
begin

n:=n+1
end

Undeclared Variable!

procedure inc;
begin

n:=n+1
end;

var n:integer;

?

16

Language Issues

Example Pascal:
– Every identifier must be declared before it is used.
– How to handle mutual recursion then?

procedure ping(x:integer)
begin

... pong(x-1); ...
end;

procedure pong(x:integer)
begin

... ping(x); ...
end;

C was designed for a single pass compiler

Mutual recursion problem:
– Every identifier must be declared

before it is used.
– How to handle mutual recursion

then?

17

void ping(int x)
{

pong(x-1); ...
}

void pong(int x)
{

ping(x); ...
}

void pong(int x);

void ping(x:integer)

{
pong(x-1); ...

}

Void pong(int x)

{
ping(x); ...

}

OK!

18

Language Issues

Example Pascal:
– Every identifier must be declared before it is used.
– How to handle mutual recursion then?

forward procedure pong(x:integer)

procedure ping(x:integer)
begin

... pong(x-1); ...
end;

procedure pong(x:integer)
begin

... ping(x); ...
end;

OK!

19

Language Issues

Example SML:
– Every identifier must be declared before it is used.
– How to handle mutual recursion then?

fun ping(x:int)=
... pong(x-1) ...

fun pong(x:int)=
... ping(x) ...

;

OK!and

20

Language Issues

Example Java:
– identifiers can be declared before they are used.
– thus a Java compiler needs at least two passes

Class Example {

void inc() { n = n + 1; }

int n;

void use() { n = 0 ; inc(); }

}

21

Scope of Variable
• Range of program that can reference that variable (ie

access the corresponding data object by the variable’s
name)

• Variable is local to program or block if it is declared
there

• Variable is non-local to program unit if it is visible there
but not declared there

• Static vs. Dynamic scope

22

Static Scoping
• Scope computed at compile time, based on program text
• To determine the name of a used variable we must find statement

declaring variable
• Subprograms and blocks generate hierarchy of scopes

– Subprogram or block that declares current subprogram or
contains current block is its static parent

• General procedure to find declaration:
– First see if variable is local; if yes, done
– If non-local to current subprogram or block recursively search

static parent until declaration is found
– If no declaration is found this way, undeclared variable error

detected

23

Example
program main;

var x : integer;

procedure sub1;

var x : integer;

begin { sub1 }

… x …

end; { sub1 }

begin { main }

… x …

end; { main }

Example (from p. 88 in Transitions and Trees)
begin

var x:= 0;
var y:= 42

proc p is x:= x+3;
proc q is call p;

begin
var x:=9;
proc p is x := x+1;
call q;
y := x

end
end

24

Value of y is 9, assuming static scope for procedures and variables

Assuming static scope for procedures and variables,
What is the value assigned to y ?

25

Dynamic Scope

• Now generally thought to have been a mistake
• Main example of use: original versions of LISP

– APL, PostScript
– (Note: Scheme uses static scope)
– Perl allows variables to be declared to have dynamic scope

• Determined by the calling sequence of program units,
not static layout

• Name bound to corresponding variable most recently
declared among still active subprograms and blocks

26

Example

program main;

var x : integer;

procedure sub1;

begin { sub1 }

… x …

end; { sub1 }

procedure sub2;
var x :

integer;

begin { sub2
}

… call sub1 …

end; { sub2 }

… call sub2…

end; { main }

Example (from p. 88 in Transitions and Trees)
begin

var x:= 0;
var y:= 42

proc p is x:= x+3;
proc q is call p;

begin
var x:=9;
proc p is x := x+1;
call q;
y := x

end
end

27

Value of y is 10, assuming dynamic scope for procedures and variables

Value of y is 12, assuming static scope for procedures and dynamic of variables

Assuming dynamic scope for procedures and variables,
What is the value assigned to y ?

Formal rules
(from p. 89-93 in Transitions and Trees)

28

Pause

29

Organization of a Compiler

30

31

Identification Table

• The identification table (also often called symbol table)
is a dictionary-style data structure in which we somehow
store identifier names and relate each identifier to its
corresponding attributes.

• Typical operations:
– Empty the table
– Add an entry (Identifier -> Attribute)
– Find an entry for an identifier
– (open and close scope)

32

Identification Table

• The organization of the identification table depends on
the programming language.

• Different kinds of “block structure” in languages:
– Monolithic block structure: e.g. ac, BASIC, COBOL
– Flat block structure: e.g. Fortran (and functions in C)
– Nested block structure => Modern “block-structured” PLs (e.g.

Algol, Pascal, C, C++, Scheme, Java,…)

a block = an area of text in the program that corresponds to some
kind of boundary for the visibility of identifiers.

block structure = the textual relationship between blocks in a
program.

C# scope definition

33

34

Different kinds of Block Structure... a picture

Monolithic Flat Nested

35

Monolithic Block Structure

A language exhibits monolithic block structure if
the only block is the entire program.

=> Every identifier is visible throughout the entire
program

Very simple scope rules:

• No identifier may be declared more than once

• For every applied occurrence of an identifier I
there must be a corresponding declaration.

Monolithic

36

Flat Block Structure

A language exhibits flat block structure if the
program can be subdivided into several disjoint
blocks

There are two scope levels: global or local.
Typical scope rules:

• a globally defined identifier may be redefined
locally

• several local definitions of a single identifier
may occur in different blocks (but not in the
same block)

• For every applied occurrence of an identifier
there must be either a local declaration within
the same block or a global declaration.

Flat

37

Nested Block Structure

A language exhibits nested block structure if
blocks may be nested one within another (typically
with no upper bound on the level of nesting that is
allowed).

There can be any number of scope levels (depending
on the level of nesting of blocks):
Typical scope rules:

• no identifier may be declared more than once
within the same block (at the same level).

• for any applied occurrence there must be a
corresponding declaration, either within the
same block or in a block in which it is nested.

Nested

38

Identification Table
For a typical programming language, i.e. statically scoped language
and with nested block structure we can visualize the structure of all
scopes within a program as a kind of tree.
Global
A

B

A1

A2

A3

Global

A B

A1 A2 A3
= “direction” of identifier lookup

Lookup path for an applied
occurence in A3

At any one time (in analyzing the program) only a single
path on the tree is accessible.
=> We don’t necessarily need to keep the whole “scope”
tree in memory all the time.

A Symbol Table Interface

• Methods
– OpenScope()
– CloseScope()
– EnterSymbol(name, type)
– RetreiveSymbol(name)
– DeclaredLocally(name)

• Ex.
– (Fig. 8.2) Code to build the symbol table for

the AST in Fig. 8.1

39

40

Ac SymbolTableFilling

41

One Symbol Table or Many?

• Two common approaches to
implementing block-structured symbol
tables
– A symbol table associated with each scope
– Or a single, global table

42

An Individual Table for Each Scope

• Because name scope are opened and closed in a
last-in first-out (LIFO) manner, a stack is an
appropriate data structure for a search
– The innermost scope appears at the top of stack
– OpenScope(): pushes a new symbol table
– CloseScope(): pop

• Disadvantage
– Need to search a name in a number of symbol tables
– Cost depending on the number of nonlocal references

and the depth of nesting

43

44

Individual Table for each scope

Global
A

B

A1

A2

A3

Global

A B

A1 A2 A3
= “direction” of identifier lookup

Lookup path for an applied
occurence in A3

At any one time (in analyzing the program) only a single
path on the tree is accessible.
=> We can keep a stack of identification tables, one for
each “active” scope.

One Symbol Table

• All names in the same table
– Uniquely identified by the scope name or

depth
• RetrieveSymbol() need not chain through scope

tables to locate a name

45

Entering and Finding Names
• Examine the time needed to insert symbols, retrieve

symbols, and maintain scopes
– In particular, we pay attention to the cost of retrieving symbols
– Names can be declared no more than once in each scope, but

typically referenced multiple times

• Various approaches
– Unordered list

• Insertion: fast, Retrieval: linear scan, Impractically slow
– Ordered list

• Fast retrieval , but expensive insertion
– Binary search trees

• Insert, search: O(log n),
– Balanced trees

• Insert, search: O(log n) – avoids worst case for binary trees
– Hash tables

• Insert, search: O(1), given sufficiently large table, a good hash function
and appropriate collision-handling techniques

46

Advanced Features

• Extensions of the simple symbol table
framework to accommodate advanced
features of modern programming
languages
– Name augmentation (overloading)
– Name hiding and promotion
– Modification of search rules

47

Implicit Declarations

• In some languages, the appearance of a name in
a certain context serves to declare the name as
well
– E.g.: labels in C
– In Fortran: inferred from the identifier’s first letter
– In Ada: an index is implicitly declared to be of the

same type as the range specifier
– A new scope is opened for the loop so that the loop

index cannot clash with an existing variable
• E.g. for (int i=1; i<10; i++) { … }

– Variables in dynamic languages like Python
48

Symbol Table Summary

• The symbol table organization in this
chapter efficiently represents scope-
declared symbols in a block-structured
language

• Most languages include rules for symbol
promotion to a global scope

• Issues such as inheritance, overloading,
and aggregate data types must be
considered
– Records, objects and classes

49

Declaration Processing
Fundamentals

• Attributes in the symbol table
– Internal representations of declarations
– Identifiers are used in many different ways in a

modern programming language
• Variables, constants, types, procedures, classes, and fields
• Every identifier will not have the same set of attributes

– We need a data structure to store the variety of
information

• Using a struct that contains a tag, and a union for each
possible value of the tag

• Using object-based approach, Attributes and appropriate
subclasses

50

Type Descriptor Structures

51

52

Attributes as pointers to Declaration AST’s
Program

LetCommand

Ident

VarDecl

x int

Ident

SequentialDecl

VarDecl

a bool

Ident

LetCommand

VarDecl

y int

IdentIdent
Id table

Level Ident Attr
1 x •
1 a •
2 y •

Ident

53

The Standard Environment

• Most programming languages have a set of predefined
functions, operators etc.

• We call this the standard environment
At the start of identification the ID table is not empty but...

needs to be initialized with entries representing the
standard environment.

54

Scope for Standard Environment
Should the scope level for the standard environment be the same as

the globals (level 1) or outside the globals (level 0)?
– C: level 1
– Mini Triangle: level 0

• Consequence:
1 let
2 var false : Integer
3 in
4 begin
5 false := 3;
6 putint (false)
7 end

is a perfectly correct Mini Triangle program
• Similar with Integer or putint. . .

55

Contextual Analysis -> Decorated AST

Contextual Analysis

Decorated Abstract Syntax Tree

Error Reports

Abstract Syntax Tree

Contextual analysis:
• Scope checking: verify that all applied occurrences of

identifiers are declared
• Type checking: verify that all operations in the program are

used according to their type rules.
Annotate AST:

• Applied identifier occurrences => declaration
• Expressions => Type

56

Contextual Analysis
Identification and type checking are combined into a depth-first traversal of the AST.

Ident Ident Ident Ident Ident CharLit Ident Ident Op IntLit

n Integer c Char c ‘&’ n n + 1

SimpleT SimpleT SimpleV SimpleV SimpleV

VarDec VarDec VnameExpr IntExpr

BinaryExpression

AssignCommand

CharExpr

AssignCommand

SequentialCommandSequentialDeclaration

LetCommand

Program

57

Implementing Tree Traversal

• “Traditional” OO approach
• Visitor approach

– GOF
– Using static overloading
– Reflective
– (dynamic)
– (SableCC style)

• “Functional” approach
• Active patterns in Scala (or F#)
• (Aspect oriented approach)

What can you do in your project now?

• Start designing and defining:
– Scope rules for your language

• Informal (in structured English)
• Formally (when you have read chapter 6 in Trans. & Trees)

• Start thinking about designing and defining
– the type system for your language

• Informal (in structured English)
• Formally (when you have read chapter 13 in Trans. &

Trees)
• Start thinking about implementing

– Symbol table(s)
– Scope cheking
– (simple) type cheking

58

1

Languages and Compilers
(SProg og Oversættere)

Lecture 11
Type Checking

Bent Thomsen
Department of Computer Science

Aalborg University

Learning Goals

• Understand how (simpel) type checking is implemented
• Understand that type checking is language dependent

and thus different from language to language
• Understand that similar principles apply to many

different languages

2

3

Programming Language Specification

– A language specification has (at least) three parts:
• Syntax of the language: usually formal: EBNF
• Contextual constraints:

– scope rules
» often written in English, but can be formal
» (see p. 86-93 in Transitions and Trees)

– type rules
» formal or informal
» See p.185-210 in Transitions and Trees)

• Semantics:
– defined by the implementation
– informal descriptions in English
– formal using operational or denotational semantics

» See Transitions and Trees

4

The “Phases” of a Compiler

Syntax Analysis

Contextual Analysis

Code Generation

Source Program

Abstract Syntax Tree

Decorated Abstract Syntax Tree

Object Code

Error Reports

Error Reports

5

Contextual Analysis -> Decorated AST

Contextual Analysis

Decorated Abstract Syntax Tree

Error Reports

Abstract Syntax Tree

Contextual analysis:
• Scope checking: verify that all applied occurrences of

identifiers are declared
• Type checking: verify that all operations in the program are

used according to their type rules.
Annotate AST:

• Applied identifier occurrences => Type or ref to declaration
• Expressions => Type

6

Type Checking

• In a statically typed language every expression E either:
– Is ill-typed
– Or has a static type that can be computed without actually evaluating E

• When an expression E has static type T this means that when E is
evaluated then the returned value will always have type T

• => This makes static type checking possible!

• Note in languages with subtyping the value returned by E with
static type T maybe of type T´ where T’ is a subtype of T,
written T’ < T

7

Type Checking: How Does It Work

For most statically typed programming languages, type
checking is a bottom up algorithm over the AST:

• Types of expression AST leaves are known
immediately:
– literals => obvious
– variables => from the ID table
– named constants => from the ID table

• Types of internal nodes are inferred from the type of the
children and the type rule for that kind of expression

8

Type Checking: How Does It Work
Example: the type of < operation

4

BinOp

Operator

Type rule of < :
E1 < E2 is type correct and of type Boolean
if E1 and E2 are type correct and of type Integer

<3

Int.Expr Int.Expr
int Int x int->bool int

bool

9

Type Checking: How Does It Work
Example: the type of + operation

4

BinOp

Operator

Type rule of + :
E1 + E2 is type correct and of type Integer
if E1 and E2 are type correct and of type Integer

<3

Int.Expr Int.Expr
int int x int->int int

int

10

Type Checking: How Does It Work
General: the type of a binary operation expression

Lit2

BinOp

Operator

Type rule:
If op is an operation of type T1xT2->R then
E1 op E2 is type correct and of type R if E1 and E2
are type correct and have types compatible with T1 and
T2 respectively

<Lit1

Expr Expr
T1 T1 x T2 -> R T2

R

11

Type Checking: How Does It Work
Example: Type of a variable (applied occurrence)

VarDecl

x

Ident type

SimpleVName

x

Ident
type

During Identification/SymbolTableFilling:
EnterSymbol(x,type)

During typeChecking:
RetreiveSymbol(x) -> type

12

Attributes as pointers to Declaration AST’s
Program

LetCommand

Ident

VarDecl

x int

Ident

SequentialDecl

VarDecl

a bool

Ident

LetCommand

VarDecl

y int

IdentIdent
Id table

Level Ident Attr
1 x •
1 a •
2 y •

Ident

13

Type Checking: How Does It Work
Example: Type of a variable (applied occurrence)

VarDecl

x

Ident type

SimpleVName

x

Ident
type

14

Type checking
Commands which contain expressions:

IfCommand

Expression Command Command
check that this
has type Boolean

typecheck typecheck

deduce that this command is correctly typed

WhileCommand is similar.

Type rule of IfCommand:
if E do C1 else C2 is type correct
if E of type Boolean and C1 and C2 are type correct

15

Type checking
Function applications:

FunctionApp

Name Expression
after identification,
we know the type of
this function: e.g.
f : Integer → Boolean

deduce that this has type Boolean,
and record the type in the AST

check that this
has type Integer

16

Type checking
Function definitions:

func f(x : ParamType) : ResultType ~ Expression

Typecheck the function body and
calculate its type.
Check that the type is ResultType.
Then deduce
f : ParamType → ResultType
e.g.
f : Integer → Boolean

17

Type checking
Operators in expressions (again):

For each operator we know that the operands must have certain
types, and that the result has a certain type. This information can
be represented by giving the operators function types:

+ : Integer × Integer → Integer

< : Integer × Integer → Boolean

<

check that this
has type Integer

check that this
has type Integer

deduce that this has type Boolean,
and record the type in the AST

18

Contextual Analysis
Identification and type checking are combined into a depth-first traversal of the AST.

Ident Ident Ident Ident Ident CharLit Ident Ident Op IntLit

n Integer c Char c ‘&’ n n + 1

SimpleT SimpleT SimpleV SimpleV SimpleV

VarDec VarDec VnameExpr IntExpr

BinaryExpression

AssignCommand

CharExpr

AssignCommand

SequentialCommandSequentialDeclaration

LetCommand

Program

An example using GOF visitor

• Implementation of Mini Triangle
Contextual Analyzer
– Programming Language Processors in Java

Compilers and Interpreters

• Full working example in Java
– http://www.dcs.gla.ac.uk/~daw/books/PLPJ/Tr

iangle-tools-2.1.zip
– Full working version in C# in General Course

Materials on Moodle 19

http://www.dcs.gla.ac.uk/%7Edaw/books/PLPJ/Triangle-tools-2.1.zip

20

Example: Implementation of Mini Triangle
Contextual Analyzer

Mini Triangle Abstract Syntax

• Expression: Compute its type, make annotation, return type.

• Commands: Check. Returns void.

• Declaration: Check and enter into id-table, returns void.

• Identifier: (applied occurrence) make annotation, return
corresponding declaration.

Program ::= Command Program
Command
::= V-name := Expression AssignCmd
| Identifier (Expression) CallCmd
| if Expression then Command

else Command IfCmd
| while Expression do Command WhileCmd
| let Declaration in Command LetCmd
| Command ; Command SequentialCmd

V-name ::= Identifier SimpleVName
…

21

RECAP: Mini Triangle Abstract Syntax (ctd)

Declaration
::= const Identifier ~ Expression ConstDecl
| var Identifier : TypeDenoter VarDecl
| Declaration ; Declaration SequentialDecl

TypeDenoter ::= Identifier SimpleTypeDenoter

Expression
::= Integer-Literal IntegerExpression
| V-name VnameExpression
| Operator Expression UnaryExpression
| Expression Op Expression BinaryExpression

22

RECAP: AST representation (ctd)

Declaration
::= const Identifier ~ Expression ConstDecl
| var Identifier : TypeDenoter VarDecl
| Declaration ; Declaration SequentialDecl

AST

Declaration Expression

ConstDecl VarDecl SequentialDecl

23

RECAP: AST representation (ctd)

Declaration
::= const Identifier ~ Expression ConstDecl
| var Identifier : TypeDenoter VarDecl
| Declaration ; Declaration SequentialDecl

public class ConstDecl extends Declaration {
public Identifier I; // constant name
public Expression E; // constant value
...

}
public class VarDecl extends Declaration {
...

...

24

Representing the Decorated AST (in Java)

public abstract class Expression extends AST {
// Every type-correct expression has a static type
public Type type;
...

}

1) We add some instance variables to some of the AST node classes.

public class Identifier extends Token {
// For applied occurrences only: where was this id declared?
public Declaration decl;
...

}

...

25

Attributes as pointers to Declaration AST’s
Program

LetCommand

Ident

VarDecl

x int

Ident

SequentialDecl

VarDecl

a bool

Ident

LetCommand

VarDecl

y int

IdentIdent
Id table

Level Ident Attr
1 x •
1 a •
2 y •

Ident

26

Representing the Decorated AST (in Java)

public abstract class VName extends AST {
// The type of this variable or constant name
public Type type;
// Is it a variable? (otherwise it is a constant)
public boolean variable;

}

...

27

Traversal over the AST: Visitor Design Pattern

public interface Visitor {
// Programs
public Object visitProgram(Program p,Object arg);

// Commands
public Object visitAssignCommand

(AssignCommand c,Object arg);
public Object visitCallCommand

(CallCommand c,Object arg);
...
// Expressions
public Object visitVnameExpression

(VnameExpression e,Object arg);
public Object visitUnaryExpression

(UnaryExpression e,Object arg);
...

For passing
extra

arguments/info
to a traversal

Traversal may compute a value

28

Traversal over the AST: Visitor Design Pattern
public abstract class AST {
...
public abstract Object visit(Visitor v,Object arg);

}

public class AssignCommand extends AST {
...
public Object visit(Visitor v,Object arg) {

return v.visitAssignCommand(this,arg);
}

}
public class IfCommand extends AST {
...
public Object visit(Visitor v,Object arg) {

return v.visitIfCommand(this,arg);
}

}

In every concrete AST class add:

29

Example: Implementation of Mini Triangle
Contextual Analyzer

public class Type {
private byte kind; // INT, BOOL or ERROR
public static final byte
BOOL=0, INT=1, ERROR=-1;

private Type(byte kind) { ... }

public boolean equals(Object other) { ... }

public static Type boolT = new Type(BOOL);
public static Type intT = new Type(INT);
public static Type errorT = new Type(ERROR);

}

Mini Triangle Types

30

Example: Implementation of Mini Triangle
Contextual Analyzer

public class Checker implements Visitor {

private IdentificationTable idTable;

public void check(Program prog) {
idTable = new IdentificationTable();
// initialize with standard environment
idTable.enter(“false”,...);
...
idTable.enter(“putint”,...);
prog.visit(this,null);

}

...

Contextual Analyzer as an AST visitor

Checker is a traversal of AST

Start AST traversal with this checker

31

What the Checker Visitor Does
visitProgram Check whether program is well-formed and

return null.
visit…Command Check whether the command is well-formed and

return null.
visit…Expression Check expression, decorate it with its type and

return the type.
visitSimpleVName Check whether name is declared. Decorate it

with its type and a flag whether it is a variable.
Return its type.

visit…Declaration Check that declaration is well-formed. Enter
declared identifier into ID table. Return null.

visitSimpleTypeDen Check that type denoter is well-formed. Decorate
with its type. Return the type.

visitIdentifier Check whether identifier is declared. Decorate
with link to its declaration. Return declaration.

32

Example: Implementation of Mini Triangle
Contextual Analyzer

public class Checker implements Visitor {
...

//Checking commands

public Object visitAssignCommand (AssignCommand com,Object arg)
{

Type vType = (Type) com.V.visit(this,null);
Type eType = (Type) com.E.visit(this,null);
if (! com.V.variable)

report error: v is not a variable
if (! eType.equals(vType))

report error incompatible types in assignCommand
return null;

}

...

33

Example: Implementation of Mini Triangle
Contextual Analyzer

...

public Object visitIfCommand (IfCommand com,Object arg)
{

Type eType = (Type)com.E.visit(this,null);
if (! eType.equals(Type.boolT))

report error: expression in if not boolean
com.C1.visit(this,null);
com.C2.visit(this,null);
return null;

}

...

34

Example: Implementation of Mini Triangle
Contextual Analyzer

...
public Object visitSequentialCommand

(SequentialCommand com,Object arg)
{

com.C1.visit(this,null);
com.C2.visit(this,null);

}

public Object visitLetCommand (LetCommand com,Object arg)
{

idTable.openScope();
com.D.visit(this,null); // enters declarations into idTable
com.C.visit(this,null);
idTable.closeScope();
return null;

}

...

35

Example: Implementation of Mini Triangle
Contextual Analyzer

// Expression Checking
public Object visitIntegerExpression

(IntegerExpression expr,Object arg)
{

expr.type = Type.intT; // decoration
return expr.type;

}

public Object visitVnameExpression
(VnameExpression expr,Object arg)

{
Type vType = (Type) expr.V.visit(this,null);
expr.type = vType; // decoration
return expr.type;

}

36

Example: Implementation of Mini Triangle
Contextual Analyzer

public Object visitBinaryExpression
(BinaryExpression expr,Object arg) {

Type e1Type = expr.E1.visit(this,null);
Type e2Type = expr.E2.visit(this,null);
OperatorDeclaration opdecl =

(OperatorDeclaration) expr.O.visit(this,null);
if (opdecl==null) {

// error: operator not defined
expr.type = Type.error;

} else if (opdecl instanceof BinaryOperatorDecl) {
// check binary operator

} else {
// error: operator not binary
expr.type = Type.errorT;

}
return expr.type;

}

37

Example: Implementation of Mini Triangle
Contextual Analyzer

public Object visitBinaryExpression
(BinaryExpression expr,Object arg) {

...
} else if (opdecl instanceof BinaryOperatorDecl) {

BinaryOperatorDecl bopdecl =
(BinaryOperatorDecl) opdecl;

if (! e1Type.equals(bopdecl.operand1Type))
// error: first argument wrong type

if (! e2Type.equals(bopdecl.operand2Type))
// error: second argument wrong type

expr.type = bopdecl.resultType;
} else {
// error: operator not binary
...

}
return expr.type;

}

38

Example: Implementation of Mini Triangle
Contextual Analyzer

// Declaration checking
public Object visitVarDeclaration

(VarDeclaration decl,Object arg) {
decl.T.visit(this,null);
idTable.enter(decl.I.spelling,decl);
return null;

}

public Object visitConstDeclaration
(ConstDeclaration decl,Object arg) {

decl.E.visit(this,null);
idTable.enter(decl.I.spelling,decl);
return null;

}

...

39

Implementing type checking from type rules

(conditional)

Γ |- Ε: bool, Γ |- C1: T, Γ |− C2: T
Γ |- if E then C1 else C2: T

public Object visitIfExpression (IfExpression com,Object arg)
{

Type eType = (Type)com.E.visit(this,null);
if (! eType.equals(Type.boolT))

report error: expression in if not boolean
Type c1Type = (Type)com.C1.visit(this,null);
Type c2Type = (Type)com.C2.visit(this,null);
if (! c1Type.equals(c2Type))

report error: type mismatch in expression branches
return c1Type;

}

40

Implementing type checking from type rules

(conditional)
Γ |- Ε: TE, TE=bool, Γ |- C1: T1, Γ |− C2: T2 , T1=T2

Γ |- if E then C1 else C2: T1

public Object visitIfExpression (IfExpression com,Object arg)
{

Type eType = (Type)com.E.visit(this,null);
if (! eType.equals(Type.boolT))

report error: expression in if not boolean
Type c1Type = (Type)com.C1.visit(this,null);
Type c2Type = (Type)com.C2.visit(this,null);
if (! c1Type.equals(c2Type))

report error: type mismatch in expression branches
return c1Type;

}

Pause

41

42

Implementing Tree Traversal

• “Traditional” OO approach
• Visitor approach

– GOF
– Using static overloading
– Reflective
– (dynamic)
– (SableCC style)

• “Functional” approach
• Active patterns in Scala (or F#)
• (Aspect oriented approach)

43

44

45

46

47

48

Consequences of using Visitor

• Addition of new operations is easy
– New operations can be created by simply adding a new visitor

• Gathers related operations together
– All operation related code is in the visitor
– Code for different operations are in different sub-classes of

visitor
– Unrelated operations are not mixed together in the object classes

• Adding a new concrete type in the object structure is hard
– Each Visitor has to be recompiled with an appropriate method

for the new type

Flavours of the Visitor Pattern
• Traditional OO style

– actASTtraditionalOO

• GOF style
– acASTGOFVisitor

• Exploiting static overloading
– acASTVisitor

• Reflective Visitor
– acASTreflective

49

Full working versions in
General Course Materials
On Moodle

Type Checking Using Reflective
Visitor

• Using the visitor pattern (in Chap. 7)
– SemanticsVisitor: a subclass of Visitor

• The top-level visitor for processing declarations
and doing semantic checking on the AST nodes

– TopDeclVisitor
• A specialized visitor invoked by SemanticsVisitor

for processing declarations
– TypeVisitor

• A specialized visitor used to handle an identifier
that represents a type or a syntactic form that
defines a type (such as an array)

50

An abstract java like OO language
Program -> ClassDeclaration *

ClassDeclaration -> class Modifiers Name extends Parent { Fields* Constructor* Method* }

Fields -> Type Name*

Constructor -> ..

Method -> Modifiers Type Name (Parameter*){ Statement* }

Statement -> Assignment
| ..
| IfTesting
| WhileLooping
| DoWhileLooping
| ForLooping
| Continuing | Breaking | Returning | Switching | Label Statement

IfTesting -> if Exp then Statement else Statement

51

52

Variable and Type Declarations

• Simple variable declarations
– A type name and a list of identifiers

• Visitor actions: (Fig. 8.13)

53

54

Handling Type Names

55

Type Declarations

• A name and a description of the type to be
associated with it
– Visit method: (Fig. 8.16)

56

57

58

59

60

61

62

63

64

65

Other Semantic Analysis

• Reachability
– …; return; a = a+1; ..
– Adds a isReachable instance variable to AST
– Warning issued if set to false
– Also adds terminatesNormally

• Throws analysis
– In Java exceptions are part of the type system

• Checked/unchecked exceptions
– modifiers return-type method-name (param-list) throws-clause

66

67

68

69

Semantic Checking Summary
• This phase of the compiler implements

algorithms for checking the language scope and
type rules
– Define your scope and type rules

• If compiler is implemented in an OO language
and use an AST choose between:
– Traditional OO
– (Traditional) Visitor
– Reflective Visitor

70

What can you do in your project now?

• Start defining the type system for your
language
– Informal now
– Formalize later

• Start implementing the type checker for your
language

• Recommendation:
– Start with simple types
– Add composit and complex types later

71

1

Languages and Compilers
(SProg og Oversættere)

Lecture 12
Types

Bent Thomsen
Department of Computer Science

Aalborg University

With acknowledgement to Simon Gay, Elsa Gunter and Elizabeth White whose slides this lecture is based on.

Learning goals
• Understand primitive and composit types

– How implementations may affect types in languages
– Pointer and references
– Constructed datatypes:

• Arrays
• Records/structs
• Unions or variant records

– Structural and Name Equivalence
– Recursive Types
– E.g.: List = Unit + (Int × List)
– Implicit versus explicit type conversions

• Understand some of the principles behind more advanced
type systems
– Polymorphism
– Subtyping

2

3

Types revisited
• Fisher et al. and Sebesta, to some extent, may leave you with the

impression that types in languages are simple and type checking
is a minor part of the compiler

• However, type system design and type checking and/or
inferencing algorithms is one of the hottest topics in programming
language research at present!

• Types:
– Have to be an integral part of the language design

• Syntax
• Contextual constraints (static type checking)
• Code generation (space allocation and dynamic type checking)

– Provides a precise criterion for safety and sanity of a design.
• Language level
• Program level

– Close connections with logics and semantics.
• The Curry–Howard correspondence

4

Typechecking
• Static typechecking

– All type errors are detected at compile-time
– Mini Triangle is statically typed
– Most modern languages have a large emphasis on static typechecking

• Dynamic typechecking
– Scripting languages such as JavaScript, PhP, Perl and Python do run-time

typechecking
• Mix of Static and Dynamic

– object-oriented programming requires some runtime typechecking: e.g.
Java has a lot of compile-time typechecking but it is still necessary for
some potential runtime type errors to be detected by the runtime system

• Static typechecking involves calculating or inferring the types of
expressions (by using information about the types of their
components) and checking that these types are what they should
be (e.g. the condition in an if statement must have type Boolean).

5

Static Typechecking

• Static (compile-time) or dynamic (run-time)
– static is often desirable: finds errors sooner, doesn’t degrade

performance
• Verifies that the programmer’s intentions (expressed by

declarations) are observed by the program
• A program which typechecks is guaranteed to behave

well at run-time
– at least: never apply an operation to the wrong type of value

more: eg. security properties
• A program which typechecks respects the high-level

abstractions
– eg: public/protected/private access in Java

6

Why are Type declarations important?

• Organize data into high-level structures
essential for high-level programming

• Document the program
basic information about the meaning of
variables and functions, procedures or methods

• Inform the compiler
example: how much storage each value needs

• Specify simple aspects of the behaviour of functions
“types as specifications” is an important idea

7

Why type systems are important
• Economy of execution

– E.g. no null pointer checking is needed in SML
• Economy of small-scale development

– A well-engineered type system can capture a large number of trivial programming
errors thus eliminating a lot of debugging

• Economy of compiling
– Type information can be organised into interfaces for program modules which

therefore can be compiled separately
• Economy of large-scale development

– Interfaces and modules have methodological advantages allowing separate teams to
work on different parts of a large application without fear of code interference

• Economy of development and maintenance in security areas
– If there is any way to cast an integer into a pointer type (or object type) the whole

runtime system is compromised – most vira and worms use this method of attack
• Economy of language features

– Typed constructs are naturally composed in an orthogonal way, thus type systems
promote orthogonal programming language design and eliminate artificial
restrictions

8

Why study type systems and programming languages?

The type system of a language has a strong effect on the “feel”
of programming.

Examples:
• In original Pascal, the result type of a function cannot be an
array type. In Java, an array is just an object and arrays can
be used anywhere.

• In SML, programming with lists is very easy; in Java it is
much less natural.

To understand a language fully, we need to understand its type
system. The underlying typing concepts appearing in
different languages in different ways, help us to compare
and understand language features.

9

Java Example

Type definitions and declarations are essential aspects of
high-level programming languages.

class Example {
int a;
void set(int x) {a=x;}
int get() {return a;}

}

Example e = new Example();

Where are the type definitions and declarations in the above code?

10

SML example

Type definitions and declarations are essential aspects of
high-level programming languages.

Where are the type definitions and declarations in the above code?

datatype ’a tree =
INTERNAL of {left:’a tree,right:’a tree}

| LEAF of {contents:’a}

fun sum(tree: int tree) =
case tree of
INTERNAL{left,right} => sum(left) + sum(right)

| LEAF{contents} => contents

• Types are either primitive or constructed.
• Primitive types are atomic with no internal structure as

far as the program is concerned
– Integers, float, char, …

• Arrays, unions, structures, functions, … can be treated
as constructor types

• Pointers (or references) and String are treated as basic
types in some languages and as constructed types in
other languages

Types

12

Specification of Primitive Data Types
• Basic attributes of a primitive type usually used by the compiler

and then discarded
• Some partial type information may occur in data object
• Values usually match with hardware types:

– 8 bits, 16 bits, 32 bits, 64 bits
• Operations: primitive operations with hardware support, and user-

defined/library operations built from primitive ones
• But there are design choices to be made!

13

Integers – Specification
• The set of values of type Integer is a finite set

– {-maxint … maxint }
– typically -2^31 through 2^31 – 1
– –2^30 through 2^30 - 1
– not the mathematical set of integers (as operations may overflow).

• Standard collection of operators:
– +, -, *, /, mod, ~ (negation)

• Standard relational operators:
– =, <, >, <=, >=, =/=

• The language designer has to decide
– which representation to use
– The collection of operators and relations

14

Integers - Implementation

• Implementation:
– Binary representation in 2’s complement arithmetic
– Three different standard representations:

• First kind:

15

Floating Points
• IEEE standard 754 specifies both a 32- and 64-bit standard
• At least one supported by most hardware
• Some hardware also has proprietary representations
• Numbers consist of three fields:

– S (sign), E (exponent), M (mantissa)

• Every non-zero number may be uniquely written as

(-1)S * 2 E * M

where 1 ≤ M < 2 and S is either 0 or 1

S E M

16

Language design issue

• Should my language support floating points?
• Should it support IEEE standard 754

– 32 bit, 64 bits or both
• Should my language support native floating points?
• Should floating points be the only number

representation in my language?

17

Other Primitive Data

• Short integers (C) - 16 bit, 8 bit
• Long integers (C) - 64 bit
• Boolean or logical - 1 bit with value true or false

(often stored as bytes)
• Byte - 8 bits
• Java has

– byte, short, int, long, float, double, char, boolean
• C# also has

– sbyte, ushort, uint, ulong

18

Characters

• Character - Single 8-bit byte - 256 characters
• ASCII is a 7 bit 128 character code
• Unicode is a 16-bit character code (Java)
• In C, a char variable is simply 8-bit integer numeric data

19

Enumerations

• Motivation: Type for case analysis over a small number of
symbolic values

• Example: (Ada)
Type DAYS is {Mon, Tues, Wed, Thu, Fri, Sat, Sun}

• Implementation: Mon 0; … Sun 6
• Treated as ordered type (Mon < Wed)
• In C, always implicitly coerced to integers
• Java didn’t have enum until Java 1.5

20

Java Type-safe enum
Remember

private void parseSingleCommand() {
switch (currentToken.kind) {

case Token.IDENTIFIER : ...
case Token.IF : ...
... more cases ...
default: report a syntax error

}
}

public class Token {
byte kind; String spelling;
final static byte

IDENTIFIER = 0; INTLITERAL = 1; OPERATOR = 2;
BEGIN = 3; CONST = 4; ...
...

...
}

21

Java Type-safe enum

Can now be written as
public class Token {

String spelling;
enum kind {IDENTIFIER, INTLITERAL, OPERATOR,

BEGIN, CONST, ... }
...

...
}

private void parseSingleCommand() {
switch (currentToken.kind) {

case IDENTIFIER : ...
case IF : ...
... more cases ...
default: report a syntax error

}
}

22

Pointers

• A pointer type is a type in which the range of values
consists of memory addresses and a special value, nil (or
null)

• Each pointer can point to an object of another data
structure
– Its l-value is its address; its r-value is the address of another

object
• Accessing r-value of r-value of pointer called

dereferencing
• Use of pointers to create arbitrary data structures

23

Pointer Aliasing

• A:= B
– Numeric assignment

A: A:
B: B:

– Pointer assignment
A: A:
B: B:

7.2 0.4
0.4 0.4

7.2

0.4 0.4

24

Problems with Pointers

• Dangling Pointer
A: Delete A
B:

• Garbage (lost heap-dynamic variables)

A: A:
B: B:

7.2

0.4 0.4

7.2

0.4

25

SML references
• An alternative to allowing pointers directly
• References in SML can be typed
• … but they introduce some abnormalities

• SML reference cells
– Different types for location and contents

x : int non-assignable integer value
y : int ref location whose contents must be integer
!y the contents of location y
ref x expression creating new cell initialized to x

– SML assignment
operator := applied to memory cell and new contents

– Examples
y := x+3 place value of x+3 in cell y; requires x:int
y := !y + 3 add 3 to contents of y and store in location y

•

26

References in Java and C#

• Similar to SML both Java and C# use references to heap
allocated objects

class Point {
int x,y;
public Point(int x, int y) {

this.x=x; this.y=y;
}

public void move(int dx, int dy) {
x=x+dx; y=y+dy;

}
}
…
Point p = new Point(2,3);
p.move(5,6);
Point q = new Point(0,0);
p = q;
p.move(3,7);
q = null;

27

Nullable Types in C#

• T? same as System.Nullable<T>

• null literal conversions

• Nullable conversions

int? x = 123;
double? y = 1.25;

int? x = null;
double? y = null;

int i = 123;
int? x = i; // int --> int?
double? y = x; // int? --> double?
int? z = (int?)y; // double? --> int?
int j = (int)z; // int? --> int

28

Strings
• Can be implemented as

– a primitive type as in SML
– an object as in Java
– an array of characters (as in C and C++)

• If primitive, operations are built in
• If object or array of characters, string operations

provided through a library

• String implementations:
– Fixed declared length
– Variable length with declared maximum
– Unbounded length

• Linked list of fixed length strings
• null terminated contiguous array

29

Arrays
An array is a collection of values, all of the same type, indexed by
a range of integers (or sometimes a range within an enumerated type).

In Ada: a : array (1..50) of Float; (static arrays)
In Java: float[] a; (dynamic arrays)

Most languages check at runtime that array indices are within the
bounds of the array: a(51) is an error. (In C you get the contents of the
memory location just after the end of the array!)

If the bounds of an array are viewed as part of its type, then array
bounds checking can be viewed as typechecking, but in general it is
impossible to do it statically: consider a(f(1)) for an arbitrary function f.
Static typechecking is a compromise between expressiveness and
computational feasibility. More about this later

30

Array Layout and Component Access
• Component access through subscripting, both for lookup

(r-value) and for update (l-value)

• Component access should take constant time (ie.
looking up the 5th element takes same time as looking up
100th element)

• L-value of A[i] = VO + (E * i)
= α + (E * (i – LB))

• Computed at compile time
• VO = α - (E * LB)

• More complicated for multiple dimensions

Pause

31

32

Composite Data Types
• Composite data types are sets of data objects built from

data objects of other types

• Data type constructors are arrays, structures, unions,
lists, …

• It is useful to consider the structure of types and type
constructors independently of the form which they take
in particular languages.

33

Products and Records
If T and U are types, then T × U (written (T * U) in SML) is the type
whose values are pairs (t,u) where t has type T and u has type U.

Mathematically this corresponds to the cartesian product of sets. More
generally we have tuple types with any number of components. The
components can be extracted by means of projection functions.

Product types more often appear as record types, which attach a label
or field name to each component. Example in Ada and C:

type T is
record

x : Integer;
y : Float

end record

struct T {
int x;
float y;

}

34

Products and Records

type T is
record

x : Integer;
y : Float

end record

If v is a value of type T then v contains
an Integer and a Float. Writing v.x and v.y
can be more readable than fst(v) and snd(v).

Record types are mathematically equivalent to
products.

An object can be thought of as a record in which some fields are
functions, and a class definition as a record type definition in which
some fields have function types. Object-oriented languages also
provide inheritance, leading to subtyping relationships between
object types.

35

Variant Records
In Pascal, the value of one field of a record can determine the presence
or absence of other fields. Example: type T = record

x : integer;
case b : boolean of

false : (y : integer);
true : (z : boolean)

end

It is not possible for static
type checking to eliminate all type
errors from programs which use
variant records in Pascal:
the compiler cannot check consistency between the tag field and the
data which is stored in the record. The following code passes the
type checker in Pascal: var r : T, a : integer;

begin
r.x := 1; r.b := true; r.z := false;
a := r.y * 5

end

36

Variant Records in Ada
Ada handles variant records safely. Instead of a tag field, the type
definition has a parameter, which is set when a particular record is
created and then cannot be changed.

type T(b : Boolean) is record
x : Integer;
case b is

when False => y : Integer;
when True => z : Boolean

end case
end record;

declare r : T(True), a : Integer;
begin

r.x := 1; r.z := False;
a := r.y * 5;

end;

r does not have field y, and never will

this type error can be detected statically

37

Disjoint Unions
The mathematical concept underlying variant record types is the
disjoint union. A value of type T+U is either a value of type T or a
value of type U, tagged to indicate which type it belongs to:

T+U = { left(x) | x ∈ T } ∪ { right(x) | x ∈ U }
SML and other functional languages support disjoint unions by
means of algebraic datatypes, e.g.

datatype X = Alpha String | Numeric Int
The constructors Alpha and Numeric can be used as functions to build
values of type X, and pattern-matching can be used on a value of type
X to extract a String or an Int as appropriate.
An enumerated type is a disjoint union of copies of the unit type (which
has just one value). Algebraic datatypes unify enumerations and disjoint
unions (and recursive types) into a convenient programming feature.

38

Variant Records and Disjoint Unions

The Ada type: type T(b : Boolean) is record
x : Integer;
case b is

when False => y : Integer;
when True => z : Boolean

end case
end record;

can be interpreted as

(Integer × Integer) + (Integer × Boolean)

where the Boolean parameter b plays the role of the left or right tag.

Note C also has union types
but they are unsafe as no check is performed on field selection

39

Functions
In a language which allows functions to be treated as values, we need
to be able to describe the type of a function, independently of its
definition.
In Ada, defining function f(x : Float) return Integer is …

produces a function f whose type is
function (x : Float) return Integer

the name of the parameter is insignificant (it is a bound name) so this
is the same type as function (y : Float) return Integer

In SML this type is written Float → Int

In Scala this type is written Float => Int

40

Functions and Procedures

Float × Int → Int

A function with several parameters can be viewed as a function with
one parameter which has a product type:

function (x : Float, y : Integer) return Integer

In Ada, procedure types are different from function types:
procedure (x : Float, y : Integer)

whereas in Java a procedure is simply a function whose result type
is void. In SML, a function with no interesting result could be
given a type such as Int → () where () is the empty product type
(also known as the unit type) although in a purely functional language
there is no point in defining such a function.

41

Structural and Name Equivalence
At various points during type checking, it is necessary to check that two
types are the same. What does this mean?

structural equivalence: two types are the same if they have the same
structure: e.g. arrays of the same size and type, records with the same
fields.

name equivalence: two types are the same if they have the same name.

Example: if we define type A = array 1..10 of Integer;
type B = array 1..10 of Integer;
function f(x : A) return Integer is …
var b : B;

then f(b) is correct in a language which uses structural equivalence,
but incorrect in a language which uses name equivalence.

42

Structural and Name Equivalence
Different languages take different approaches, and some use both kinds.

Ada uses name equivalence.
Triangle uses structural equivalence.
Haskell uses structural equivalence for types defined by type (these are viewed as
new names for existing types) and name equivalence for types defined by data
(these are algebraic datatypes; they are genuinely new types).

Structural equivalence is sometimes convenient for programming, but
does not protect the programmer against incorrect use of values whose
types accidentally have the same structure but are logically distinct.

Name equivalence is easier to implement in general, especially in a
language with recursive types.

43

Recursive Types
Example: a list is either empty, or consists of a value (the head)

and a list (the tail)

SML: datatype List = Nil
| Cons (Int * List)

Cons 2 (Cons 3 (Cons 4 Nil)) represents [2,3,4]

Abstractly: List = Unit + (Int × List)

In SML, the implementation uses pointers, but the programmer does
not have to think in terms of pointers.

44

Recursive Types

Java: class List {
int head;
List tail;

}

The Java definition does not mention pointers,
but we use the explicit null pointer null to represent the empty list.

45

Equivalence of Recursive Types

In the presence of recursive types, defining structural equivalence is
more difficult.

We expect List = Unit + (Int × List)

and NewList = Unit + (Int × NewList)

to be equivalent, but complications arise from the (reasonable)
requirement that List = Unit + (Int × List)

and NewList = Unit + (Int × (Unit + (Int × NewList)))

should be equivalent.
It is usual for languages to avoid this issue by using name equivalence
for recursive types, but recent research on co-inductive types show it is
Possible and (sometimes) useful to have structural equivalence on recursive types

46

Other Practical Type System Issues

• Implicit versus explicit type conversions
– Explicit user indicates (Ada, SML)
– Implicit built-in (C int/char) -- coercions

• Overloading – meaning based on context
– Built-in
– Extracting meaning – parameters/context

• Polymorphism
• Subtyping

47

Coercions Versus Conversions

• When A has type real and B has type int, many
languages allow coercion implicit in

A := B
• In the other direction, often no coercion allowed;

must use explicit conversion:
– B := round(A); Go to integer nearest B
– B := trunc(A); Delete fractional part of B

48

Explicit vs. Implicit conversion
Autoboxing/Unboxing

• In Java 1.4 you had to write:
Integer x = Integer.valueOf(6);
Integer y = Integer.valueOf(2 * x.IntValue);

• In Java 1.5 you can write:
Integer x = 6; //6 is boxed
Integer y = 2*x + 3; //x is unboxed, 15 is boxed
– Autoboxing wrap ints into Integers
– Unboxing extract ints from Integers

Explicit vs. Implicit conversion
Autoboxing/Unboxing

• Extending a language can imply difficult design
compromises. In Java 1.5 we can write:

• Integer x = 3; (an integer object)
• int y = 3; (an integer)
• Integer z = 3; (an integer)
• .. x==y .. (true due to auto unboxing)
• .. y == z .. (true due to auto unboxing)
• .. x == z .. (false due to object comparisson)

• I.e. the convenience of autoboxing/unboxing leads to the ==
operator no longer being transitive

• Note: Not a problem in C# as autoboxing/unboxing is
handled by the run-time system.

49

50

Polymorphism
Polymorphism describes the situation in which a particular operator or
function can be applied to values of several different types. There is a
fundamental distinction between:
• ad hoc polymorphism, usually called overloading, in which a single

name refers to a number of unrelated operations.
• Examples: + and static overloading of methods

•bounded or Subtype polymorphism (inheritance polymorphism)
•parametric polymorphism (generics), in which the same computation
can be applied to a range of different types which have structural
similarities.

Most languages have some support for overloading.
Parametric polymorphism is familiar from functional programming,
but less common (or less well developed) in imperative languages.
Generics (or Parametric Polymorphism) has recently had a lot of
attention in OO languages.

51

Parametric polymorphism (generics)

datatype ’a tree =
INTERNAL of {left:’a tree,right:’a tree}

| LEAF of {contents:’a}

fun tw(tree: ‘a tree, comb: ‘a*‘a->’a) =
case tree of
INTERNAL{left,right} => comb(tw(left),tw(right))

| LEAF{contents} => contents

52

public class List
{

private object[] elements;
private int count;

public void Add(object element) {
if (count == elements.Length) Resize(count * 2);
elements[count++] = element;

}

public object this[int index] {
get { return elements[index]; }
set { elements[index] = value; }

}

public int Count {
get { return count; }

}
}

Parametric polymorphism (generics)

public class List<ItemType>
{

private ItemType[] elements;
private int count;

public void Add(ItemType element) {
if (count == elements.Length) Resize(count * 2);
elements[count++] = element;

}

public ItemType this[int index] {
get { return elements[index]; }
set { elements[index] = value; }

}

public int Count {
get { return count; }

}
}

List intList = new List();

intList.Add(1);
intList.Add(2);
intList.Add("Three");

int i = (int)intList[0];

List intList = new List();

intList.Add(1); // Argument is boxed
intList.Add(2); // Argument is boxed
intList.Add("Three"); // Should be an error

int i = (int)intList[0]; // Cast required

List<int> intList = new List<int>();

intList.Add(1); // No boxing
intList.Add(2); // No boxing
intList.Add("Three"); // Compile-time error

int i = intList[0]; // No cast required

Implementing generic types

• Type erasure, e.g:
– <T extends Addable> T add(T a, T b) { … }
– can be compiled, type-checked, and called the same

way as:
– Addable add(Addable a, Addable b) { … }

• Template:
• Apply the template to the provided template

arguments. E.g calling template
– <class T> T add(T a, T b) { … }
– as add<int>(1, 2)
– actual function int __add__T_int(int a, int b)

53

The Hindley-Milner Type inference Algorithm

• First used in SML
• A Theory of Type

Polymorphism in
Programming
– Robin Milner (1977)

• Algoritmn basically
builds and solves
equations over type
expressions

• Now in use in:
– Haskell, C#, F#, Visual

Basic .Net 9.0

54

55

Subtyping
The interpretation of a type as a set of values, and the fact that one set
may be a subset of another set, make it natural to think about when
a value of one type may be considered to be a value of another type.

Example: the set of integers is a subset of the set of real numbers.
Correspondingly, we might like to consider the type Integer to be a
subtype of the type Float. This is often written Integer <: Float.

The subtype relation enjoys the following properties:
X <: X (indempotent)
X<:Y and Y<:Z then X<:Z (transitivity)

Different languages provide subtyping in different ways, including
(in some cases) not at all. In object-oriented languages, subtyping
arises from inheritance between classes.

56

Subtyping and Polymorphism

abstract class Shape {
abstract float area(); }

the idea is to define several classes of Shape,
all of which define the area function

class Square extends Shape {
float side;
float area() {return (side * side); } }

class Circle extends Shape {
float radius;
float area() {return (PI * radius * radius); } }

Square <: Shape

Circle <: Shape

Objects can be thought of as (extendible) records of fields and methods.
That is why Square <: Shape and Circle <: Shape

57

Subtyping and Polymorphism
float totalarea(Shape[] s) {

float t = 0.0;
for (int i = 0; i < s.length; i++) {

t = t + s[i].area(); };
return t;

}

totalarea can be applied to any array whose elements are subtypes
of Shape. (This is why we want Square[] <: Shape[] etc.)

This is an example of a concept called bounded polymorphism.

58

Subtyping for Product Types
The rule is:

if A <: T and B <: U then A × B <: T × U

This rule, and corresponding rules for other structured types, can be
worked out by following the principle:

T <: U means that whenever a value of type U is expected, it is
safe to use a value of type T instead.

What can we do with a value v of type T × U ?
• use fst(v) , which is a value of type T
• use snd(v) , which is a value of type U
If w is a value of type A × B then fst(w) has type A and can be used
instead of fst(v). Similarly snd(w) can be used instead of snd(v).
Therefore w can be used where v is expected.

59

Subtyping for Function Types

if T <: A and B <: U then A → B <: T → U

Suppose we have f : A → B and g: T → U and we want to use
f in place of g.

It must be possible for the result of f to be used in place of the result
of g , so we must have B <: U.

It must be possible for a value which could be a parameter of g to be
given as a parameter to f , so we must have T <: A.

Therefore:

Compare this with the rule for product types, and notice the
contravariance: the condition on subtyping between A and T is the
other way around.

60

Correctness of Type Systems

How does a language designer (or a programmer) know that
correctly-typed programs really have the desired run-time
properties?

To answer this question we need to see how to specify type
systems, and how to prove that a type system is sound.

To do this we can use techniques similar to those from SOS

To prove soundness we also need to specify the semantics
(meaning) of programs - what happens when they are run.

So studying types will lead us to a deeper understanding of
the meaning of programs.

61

Connection with Semantics
• Type system is part of the static semantics

– Static semantics: the well-formed programs
– Dynamic semantics: the execution model

• Safety theorem: types predict behaviour.
– Types describe the states of an abstract machine model.
– Execution behaviour must cohere with these descriptions.
– Theorem: If Γ |- E:τ and E→ E’ then Γ |- E’:τ
– See Theorem 13.9 p. 196 in Transitions and Trees

• Thus a type is a specification and a type checker is a
theorem prover.

• Type checking is the most successful formal method!
– In principle there are limits.
– In practice there is no end in sight.

• Examples:
– Using types for low-level languages, say inside a compiler.
– Extending the expressiveness of type systems for high-level

languages.

62

Summary

• Static typing is important
• Type system has to be an integral part of the

language design
• There are a lot of nitty-gritty decisions about

primitive data types
• Composite types are best understood

independently of language manifestation to ensure
correctness of implementation

• Type systems can (and should) be formalised

1

Languages and Compilers
(SProg og Oversættere)

Lecture 13
Programming Language Design

Expressions and Statements
Bent Thomsen

Department of Computer Science
Aalborg University

With acknowledgement to Simon Gay, John Mitchell and Elsa Gunter who’s slides this lecture is based on.

Learning goals

• Overview of common language constructs and design
questions

• Understand
– Explicit sequence control vs. Implicit sequence control

• Evaluation of expressions
• Statements

– Structured sequence control vs. unstructured sequence control
• Conditional Selection
• Loop constructs
• Jumps

2

3

Syntactic Elements

• Declarations and Definitions
– Scopes and visibility
– always before use or not, initialization or not,

• Expressions
• Statements
• Subprograms

• Separate subprogram definitions (Module system)
• Separate data definitions
• Nested subprogram definitions
• Separate interface definitions

4

Sequence control

• Implicit and explicit sequence control
– Expressions

• Precedence rules
• Associativity

– Statements
• Sequence
• Conditionals
• Loop constructs
• unstructured vs. structured sequence control

5

Expression Evaluation

• Determined by
– operator evaluation order
– operand evaluation order

• Operators:
– Most operators are either infix or prefix (some

languages have postfix)
– Order of evaluation determined by operator

precedence and associativity

6

Example

• What is the result of:
3 + 4 * 5 + 6

• Possible answers:
– 41 = ((3 + 4) * 5) + 6
– 47 = 3 + (4 * (5 + 6))
– 29 = (3 + (4 * 5)) + 6 = 3 + ((4 * 5) + 6)
– 77 = (3 + 4) * (5 + 6)

• In most languages, 3 + 4 * 5 + 6 = 29
• … but it depends on the precedence of operators

7

An Ambiguous Expression Grammar

How to parse 3+4*5?

<expr> → <expr> <op> <expr> | const
<op> → + | *

<expr>

<expr> <expr>

<expr> <expr>

<op><op>

<op>

const const const+ *

<expr>

<expr> <expr>

<expr> <expr><op>

const const const+ *

<op>

8

Expressing Precedence in grammar

• We can use the parse tree to indicate precedence levels
of the operators

<expr> → <expr> + <term> | <term>
<term> → <term> * const | const

<expr>

<expr> <term>

<term> <term>

const const

const*

+

In LALR parsers we can specify
Precedence which translates into
Solving shift-reduce conflicts

Note in LL(1) parsers we have to use
Left recursion elimination

Expr → Term Expr1 .
Expr1 →+ Term Expr1
| .
Term → const Term1 .
Term1 →* const Term1
| .

9

Operator Precedence

• Operators of highest
precedence evaluated
first (bind more tightly).

• Precedence for operators
usually given in a table,
e.g.:

• In APL, all infix
operators have same
precedence

Level Operator Operation

Highest ** abs not Exp, abs,
negation

* / mod rem

+ - Unary

+ - & Binary

= <= < > => Relations

Lowest And or xor Boolean

Precedence table for ADA

10

C precedence levels
• Precedence Operators Operator names
• 17 tokens, a[k], f() Literals, subscripting, function call
• .,-> Selection
• 16 ++, -- Postfix increment/decrement
• 15* ++, -- Prefix inc/dec
• ∼, -, sizeof Unary operators, storage
• !,&,* Logical negation, indirection
• 14 typename Casts
• 13 *, /, % Multiplicative operators
• 12 +,- Additive operators
• 11 <<, >> Shift
• 10 <,>,<=, >= Relational
• 9 ==, != Equality
• 8 & Bitwise and
• 7 ∧ Bitwise xor
• 6 | Bitwise or
• 5 && Logical and
• 4 || Logical or
• 3 ?: Conditional
• 2 =, +=, -=, *=, Assignment
• /=, %=, <<=, >>=,
• &=, ∧=, |=
• 1 , Sequential evaluation

Programming Language design and Implementation -4th Edition
Copyright©Prentice Hall, 2000

11

Associativity

• When we have sorted precedence we need to
sort associativity!

• What is the value of:
7 – 5 – 2

• Possible answers:
– In Pascal, C++, SML associate to the left
7 – 5 – 2 = (7 – 5) – 2 = 0

– In APL, associate to the right
7 – 5 – 2 = 7 – (5 – 2) = 4

12

Again we can use syntax
• Operator associativity can also be indicated by a grammar

<expr> -> <expr> + <expr> | const (ambiguous)

<expr> -> <expr> + const | const (unambiguous)

<expr><expr>

<expr>

<expr> const

const

const

+

+

In LALR parsers we can specify
Associativity which translates into
Solving shift-reduce conflicts

13

Operand Evaluation Order

• Example:
A := 5;
f(x) = {A := x+x; return x};
B := A + f(A);

• What is the value of B?
• 10 or 15?

14

Example

• If assignment returns the assigned value, what is the
result of

x = 5;
y = (x = 3) + x;

• Possible answers: 6 or 8
• Depends on language, and sometimes compiler

– C allows compiler to decide
– SML forces left-to-right evaluation

• Note assignment in SML returns a unit value
• .. but we could define a derived assignment operator in

SML as fn (x,v)=>(x:=v;v)

15

Solution to Operand Evaluation Order
• Disallow all side-effects

– “Purely” functional languages try to do this – Miranda,
Haskell

– It works!
– Consequence

• No two-way parameters in functions
• No non-local references in functions

– Problem:
• I/O, error conditions such as overflow are inherently side-

effecting
• Programmers want the flexibility of two-way parameters

(what about C?) and non-local references

16

Solution to Operand Evaluation Order

• Disallow all side-effects in expressions but allow
in statements
– Problem: not applicable in languages with nesting of

expressions and statements

17

Solution to Operand Evaluation Order

• Fix order of evaluation
– SML does this – left to right
– Problem: makes some compiler optimizations hard or

impossible
• Leave it to the programmer to be sure the order

doesn’t matter
– Problem: Usually requires lots of brackets
– Problem: error prone

– Fortress: Parallel evaluation unless specified to be
sequential

18

Short-circuit Evaluation

• Boolean expressions:
• Example: x <> 0 andalso y/x > 1
• Problem: if andalso is ordinary operator and

both arguments must be evaluated, then y/x will
raise an error when x = 0

• Similar problem for conditional expressions
• Example (x == 0)?0:sum/x

19

Boolean Expressions

• Most languages allow (some version of)
if…then…else, andalso, orelse
not to evaluate all the arguments

•if true then A else B
– doesn’t evaluate B

•if false then A else B
– doesn’t evaluate A

•if b_exp then A else B
– Evaluates b_exp, then applies previous rules

20

Boolen Expressions

• Bexp1 andalso Bexp2
– If Bexp1 evaluates to false, doesn’t evaluate Bexp2

• Bexp1 orelse Bexp2
– If Bexp1 evaluates to true, doesn’t evaluate Bexp2

21

Short-circuit Evaluation – Other Expressions

• Example: 0 * A = 0
• Do we need to evaluate A?

• In general, in f(x,y,…,z) are the arguments to f
evaluated before f is called and the values are passed?
Or are the unevaluated expressions passed as arguments
to f allowing f to decide which arguments to evaluate
and in which order?

22

Eager Evaluation

• If a language requires all arguments to be evaluated
before a function is called, the language does eager
evaluation and the arguments are passed using pass by
value (also called call by value) or pass by reference

23

Lazy Evaluation

• If a language allows a function to determine
which arguments to evaluate and in which order,
the language does lazy evaluation and the
arguments are passed using pass by name (also
called call by name)

24

Lazy Evaluation

• Lazy evaluation is mainly done in purely
functional languages

• Some languages support a mix
• The effect of lazy evaluation can be implemented

in functional languages with eager evaluation
– Use thunking fn()=>exp and pass function instead

of exp
• C# 2.0 has a Lazy evaluation construct:

– yield return which can be used with Iterators

Call by name
• In call-by-name evaluation, the arguments to a function are not

evaluated before the function is called — rather, they are
substituted directly into the function body (using capture-avoiding
substitution) and then left to be evaluated whenever they appear
in the function.

• If an argument is not used in the function body, the argument is
never evaluated

• If it is used several times, it is re-evaluated each time it appears
– (in Pure lazy functional languages memorization can be used – why?)

• Algol 60 introduced call-by-name.
• Long consider too expensive and weird

– but now in Scala
– Can be simulated in C# using Expression<T> parameters

• The classical use case for call-by-name is Jensens device

25

26

Arithmetic Expressions

• Design issues for arithmetic expressions:
1. What are the operator precedence rules?
2. What are the operator associativity rules?
3. What is the order of operand evaluation?
4. Are there restrictions on operand evaluation side effects?
5. Does the language allow user-defined operator overloading?

• C++, Ada, C# allow user defined overloading
• Can lead to readability problems

6. What mode mixing is allowed in expressions?
• Are operators of different types, e.g. int and float allowed
• How is type conversion done

Pause

27

28

Syntactic Elements

• Definitions
• Declarations
• Expressions
• Statements
• Subprograms

• Separate subprogram definitions (Module system)
• Separate data definitions
• Nested subprogram definitions
• Separate interface definitions

29

Control of Statement Execution

• Sequential
• Conditional Selection
• Looping Construct
• Must have all three to provide full power of a

Computing Machine

30

Basic sequential operations

• Skip (in C it is just a blanck statement with ;)
• Assignments

– Most languages treat assignment as a basic operation
– Some languages have derived assignment operators such as:

• += and *= in C

• I/O
– Some languages treat I/O as basic operations
– Others like, C, SML, Java treat I/O as functions/methods

• Sequencing
– C;C

• Blocks
– begin …end
– {…}
– let .. in .. end

31

Assignment Statements

• Simple assignments:
– A = 10 or A := 10 or A is 10 or =(A,10)
– In SML assignment is just another (infix) function

•:= : ‘‘a ref * ‘‘a -> unit

• More complicated assignments:
1. Multiple targets (PL/I)
A, B = 10

2. Conditional targets (C, C++, and Java)
(first==true)? total : subtotal = 0

3. Compound assignment operators (C, C++, and Java)
sum += next;

32

Assignment Statements

• More complicated assignments (continued):
4. Unary assignment operators (C, C++, and Java)

a++; (increment a with one but return a)
++a; (increment a with one but return a+1)
What does ++a–- evaluate to?

C, C++, and Java treat = as an arithmetic binary operator
e.g.
a = b * (c = d * 2 + 1) + 1

This is inherited from ALGOL 68
– = Can be bad if it is overloaded for the relational operator for

equality e.g. (PL/I) A = B = C;
– Note difference from C

33

Assignment Statements

• Assignment as an Expression
– In C, C++, and Java, the assignment statement produces a

result
– So, they can be used as operands in expressions

e.g.
while ((ch = getchar())!=EOF){…}

– Disadvantage
• Another kind of expression side effect

34

Conditional Selection

• Design Considerations:
– What controls the selection
– What can be selected:

• FORTRAN IF: IF (boolean_expr) statement
IF (.NOT. condition) GOTO 20

...

...
20 CONTINUE

• Modern languages allow any kind of
program block

– What is the meaning of nested selectors

35

Conditional Selection

• Single-way
– IF … THEN …

– Controlled by boolean expression
• Two-way

– IF … THEN … ELSE

– Controlled by boolean expression
– IF … THEN … usually treated as degenerate form

of
IF … THEN … ELSE

– IF…THEN together with IF..THEN…ELSE require
disambiguating associativity

36

Two-Way Selection Statements

• Nested Selectors
• e.g. (Java) if ...

if ...
...

else ...
• Which if gets the else?
• Java's static semantics rule: else goes with the nearest
if

37

Two-Way Selection Statements

• ALGOL 60's solution - disallow direct nesting

if ... then if ... then
begin begin
if ... if ... then ...
then ... end
else ... else ...

end

38

Two-Way Selection Statements
• FORTRAN 90 and Ada solution – closing special words

– e.g. (Ada)
if ... then if ... then

if ... then if ... then
... ...

else end if
... else

end if ...
end if end if

– Advantage: readability

• ELSEIF
– Equivalent to nested if…then…else…

39

Multi-Way Conditional Selection

• SWITCH

– Typically controlled by scalar type
– Each selection has own block of statements it

executes
– What if no selection is given?

• Language gives default behavior
• Language forces total coverage, typically with

programmer-defined default case
– One block of code for whole switch
– Selection specifies program point in block
– break used for early exit from block

40

Switch on String in C#
Color ColorFromFruit(string s) {

switch(s.ToLower()) {
case "apple":

return Color.Red;
case "banana":

return Color.Yellow;
case "carrot":

return Color.Orange;
default:

throw new InvalidArgumentException();

}
}

41

Switch on Type in F#

Pattern matching in C# 7.0

42

43

Loops

• Main types:
• Counter-controlled iterators (For-loops)
• Logical-test iterators
• Iterations based on data structures
• Recursion

44

For-loops

• Controlled by loop variable of scalar type with
bounds and increment size

• Scope of loop variable?
– Extends beyond loop?
– Within loop?

• When are loop parameters calculated?
– Once at start
– At beginning of each pass

45

Iterative Statements

ALGOL 60 Design choices:

1. Control expression can be int or real; its scope is whatever
it is declared to be

2. Control variable has its last assigned value after loop
termination

3. The loop variable cannot be changed in the loop, but the
parameters can, and when they are, it affects loop control

4. Parameters are evaluated with every iteration, making it very
complex and difficult to read

46

Iterative Statements

Pascal:
• Syntax:

for variable := initial (to | downto) final do statement
• Design Choices:

1. Loop variable must be an ordinal type of usual scope
2. After normal termination, loop variable is undefined
3. The loop variable cannot be changed in the loop; the loop parameters can

be changed, but they are evaluated just once, so it does not affect loop
control

4. Just once

47

Iterative Statements

Ada:
• Syntax:

for var in [reverse] discrete_range loop ...
end loop

• Design choices:
1. Type of the loop variable is that of the discrete range; its scope

is the loop body (it is implicitly declared)
2. The loop variable does not exist outside the loop
3. The loop variable cannot be changed in the loop, but the

discrete range can; it does not affect loop control
4. The discrete range is evaluated just once

48

Iterative Statements

C:
• Syntax:

for ([expr_1] ; [expr_2] ; [expr_3]) statement
– The expressions can be whole statements, or even statement sequences,

with the statements separated by commas
– The value of a multiple-statement expression is the value of the last

statement in the expression
e.g.,
for (i = 0, j = 10; j == i; i++) …

– If the second expression is absent, it is an infinite loop

49

Iterative Statements

• C Design Choices:
1. There is no explicit loop variable
2. Loop variable, if there is one, has whatever was assigned last
3. Everything can be changed in the loop
4. The first expression is evaluated once, but the other two are

evaluated with each iteration
• This loop statement is the most flexible
• But also rather difficult to analyze ..

50

Iterative Statements

C++:
• Differs from C in two ways:

1. The control expression can also be Boolean
2. The initial expression can include variable definitions (scope

is from the definition to the end of the loop body)
Java:
• Differs from C++ in that the control expression must be

Boolean

51

Logic-Test Iterators

• While-loops
– Test performed before entry to loop

• repeat…until and do…while
– Test performed at end of loop
– Loop always executed at least once

• Design Issues:
1. Pretest or posttest?
2. Should this be a special case of the counting loop statement

(or a separate statement)?

52

Iterative Statements

C , C++, and Java – break:
• Unconditional; for any loop or switch; one level only

(except Java’s can have a label)
• There is also a continue statement for loops; it skips

the remainder of this iteration, but does not exit the loop

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-53

Counter-Controlled Loops: Examples

• Python
for loop_variable in object:
- loop body

[else:
- else clause]

– The object is often a range, which is either a list of values
in brackets ([2, 4, 6]), or a call to the range function
(range(5), which returns 0, 1, 2, 3, 4

– The loop variable takes on the values specified in the
given range, one for each iteration

– The else clause, which is optional, is executed if the loop
terminates normally

54

Iterative Statements

• Iteration Based on Data Structures
– Concept: use order and number of elements of some data

structure to control iteration
– Control mechanism is a call to a function that returns the next

element in some chosen order, if there is one; else exit loop
– C's for can be used to build a user-defined iterator
– e.g. for (p=hdr; p; p=next(p))

{ ... }

– Perl has a built-in iterator for arrays and hashes
e.g.,
foreach $name (@names)
{ print $name }

55

C# Foreach Loops

foreach (T x in C) S

is implemented as

IEnumerable<T> c = C;
IEnumerator<T> e = c.GetEnumerator();
while (e.MoveNext())
{ T x = e.Current; S }

Recursion

• Recursion can simplify the solution of a problem, often
resulting in shorter, more easily understood source code
– i.e. Recursion is a technique that solves a problem by solving a

smaller problem of the same type
– How do I write recursive functions?

• Determine the base case(s)
– the one for which you know the answer

• Determine the general case(s)
– the one where the problem is expressed as a smaller

version of itself
• Iteration can be used in place of recursion and visa versa

– An iterative algorithm uses a looping construct
– A recursive algorithm uses a branching structure

56

Recursion vs. iteration

• Recursive implementation

int Factorial(int n)
{
if (n==0)
return 1;

else
return n * Factorial(n-1);

}

• Iterative implementation

int Factorial(int n)
{
int fact = 1;

for(int count = 2;
count <= n;
count++)

fact = fact * count;

return fact;
}

57

Counter-Controlled Loops: Examples

• F#
– Because counters require variables, and functional

languages do not have variables, counter-controlled
loops must be simulated with recursive functions
let rec forLoop loopBody reps =

if reps <= 0 then ()

else
loopBody()

forLoop loopBody, (reps – 1)

- This defines the recursive function forLoop with the
parameters loopBody (a function that defines the
loop’s body) and the number of repetitions

- () means do nothing and return nothing

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-58

Recursion vs. iteration

• Recursion can simplify the solution of a problem, often
resulting in shorter, more easily understood source code

• Recursive solutions are often less efficient, in terms of
both time and space, than iterative solutions
– Well this is what the literature says …
– This is usually true for languages such as C, Java and C# as

method calls can be expensive and deep recursions can take up
a lot of stack space

– However, on modern hardware, functions calls call, especially
tail recursive calls can be cheap. Thus modern functional
languages like Haskell, SML, Scala and F# encourage
recursion

59

60

Gotos

• Requires notion of program point
• Transfers execution to given program point
• Basic construct in machine language
• Implements loops
• Makes programs hard to read and reason about
• Hard to know how a program got to a given point
• Generally thought to be a bad idea in a high level

language

61

Fortran Control Structure
10 IF (X .GT. 0.000001) GO TO 20
11 X = -X

IF (X .LT. 0.000001) GO TO 50
20 IF (X*Y .LT. 0.00001) GO TO 30

X = X-Y-Y
30 X = X+Y

...
50 CONTINUE

X = A
Y = B-A
GO TO 11
…

62

Historical Debate

• Dijkstra, Go To Statement Considered Harmful
– Letter to Editor, C ACM, March 1968
– Now on web: http://www.acm.org/classics/oct95/

• Knuth, Structured Prog. with go to Statements
– You can use goto, but do so in structured way …

• Continued discussion
– Welch, GOTO (Considered Harmful)n, n is Odd

• General questions
– Do syntactic rules force good programming style?
– Can they help?

63

Spaghetti code

Programming Language design and Implementation -4th Edition
Copyright©Prentice Hall, 2000

64

Structured programming

• Issue in 1970s: Does this limit what programs can be written?
• Resolved by Structure Theorem of Böhm-Jacobini.
• Here is a graph version of theorem originally developed by

Harlan Mills:

Programming Language design and Implementation -4th Edition
Copyright©Prentice Hall, 2000

65

Advance in Computer Science

• Standard constructs that structure jumps
if … then … else … end
while … do … end
for … { … }
case …

• Modern style
– Group code in logical blocks
– Avoid explicit jumps except for function return
– Cannot jump into middle of block or function body

• But there may be situations when “jumping” is the right
thing to do!

66

Exceptions: Structured Exit

• Terminate part of computation
– Jump out of construct
– Pass data as part of jump
– Return to most recent site set up to handle exception
– Unnecessary activation records may be deallocated

• May need to free heap space, other resources
• Two main language constructs

– Declaration to establish exception handler
– Statement or expression to raise or throw exception

Often used for unusual or exceptional condition, but not necessarily.

67

Summary of Control of Statement Execution

• Sequential
• Conditional Selection
• Looping Construct
• Must have all three to provide full power of a

Computing Machine
• Sometimes jumps are needed!

What can you do in your projects now?

• Revisit your token grammer and CFG
• Test front end implementation techniques:

– Recursive decent by hand
– JavaCC, ANTLR, Jflex/CUP, SableCC
– Use a toy language or a subset of your own language

• Generate AST
• Make a pretty printing tree walker

– Composit, Visitor (GOF, static overloading, reflexsive)
– Test that programs you input come out roughly the same!

• Make a scope and type checking tree walker

68

1

Languages and Compilers
(SProg og Oversættere)

Lecture 14-1
Programming Language Design – Subprograms

Bent Thomsen
Department of Computer Science

Aalborg University

Learning Goals

• Gain insigt into abstractions in programming languages
– The principle of Abstraction

• Programming language design evaluation methods

2

3

Syntactic Elements

• Declarations and Definitions
– Scopes and visibility
– always before use or not, initialization or not,

• Expressions
• Statements
• Subprograms

• Separate subprogram definitions (Module system)
• Separate data definitions
• Nested subprogram definitions
• Separate interface definitions

4

Subprograms
1. A subprogram has a single entry point

2. The caller is suspended during execution of the
called subprogram

3. Control always returns to the caller when the called
subprogram’s execution terminates

Functions or Procedures?

• Procedures provide user-defined statements
• Abstractions over statements

• Functions provide user-defined operators
• Abstractions over expressions

• Methods used for both functions and procedures

5

Subprograms

• Specification: name, signature, actions
– C/C++: typ0 f(typ1 para1, typ2 para2, ...) { ... }
– SML: fun f para1 para2 = ...
– Pascal: function f(para1 : typ1, para2 : typ2, ...) : retval;

var retval : typ0;
begin ... end

• Signature: number and types of input arguments, number and
types of output results
– Sometimes this is called the subprogram protocol

• Actions: direct function relating input values to output values;
side effects on global state and subprogram internal state

• May depend on implicit arguments in form of non-local
variables

Copyright © 2009 Addison-Wesley. All rights reserved.

1-6

Local Referencing Environments

• Local variables can be stack-dynamic
- Advantages

• Support for recursion
• Storage for locals is shared among some subprograms

– Disadvantages
• Allocation/de-allocation, initialization time
• Indirect addressing
• Subprograms cannot be history sensitive

• Local variables can be static
– Advantages and disadvantages are the opposite of those for stack-

dynamic local variables

7

Subprogram As Abstraction

• Subprograms encapsulate local variables and specifics
of algorithm applied
– Once compiled, programmer cannot access these

details in other programs
– In most languages subprogram definitions are not

executables, but e.g. in Python a function definition is
executed to bind the function name in the current
local namespace to a function object

• Application of subprogram does not require user to
know details of input data layout (just its type)
– Form of information hiding

Copyright © 2009 Addison-Wesley. All rights reserved.
1-8

Basic Definitions

• Function declarations in C and C++ are often called prototypes
• A subprogram declaration provides the protocol, but not

necessarily the body, of the subprogram
• A formal parameter is a (dummy) variable listed in the

subprogram header and used in the subprogram
• An actual parameter represents a value or address used in the

subprogram call statement
• A subprogram definition provides the body, of the subprogram

and may provide the protocol

Copyright © 2009 Addison-Wesley. All rights reserved.

1-9

Actual/Formal Parameter Correspondence

• Positional
– The binding of actual parameters to formal parameters is by position:

the first actual parameter is bound to the first formal parameter and so
forth

– Safe and effective
– E.g. in C# PrintOrderDetails("Gift Shop", 31, "Red Mug");

• Keyword
– The name of the formal parameter to which an actual parameter is to

be bound is specified with the actual parameter
– Advantage: Parameters can appear in any order, thereby avoiding

parameter correspondence errors
– Disadvantage: User must know the formal parameter’s names
– E.g. in C# PrintOrderDetails(orderNum: 31, productName: "Red Mug", sellerName: "Gift Shop");

Copyright © 2009 Addison-Wesley. All rights
reserved.

1-10

Formal Parameter Default Values
• In certain languages (e.g., C++, Python, Ruby, Ada, PHP), formal parameters

can have default values (if no actual parameter is passed)
– In C++, default parameters must appear last because parameters are positionally

associated

• Variable numbers of parameters
– C# methods can accept a variable number of parameters as long as they are of the same

type—the corresponding formal parameter is an array preceded by params
– In Ruby, the actual parameters are sent as elements of a hash literal and the corresponding

formal parameter is preceded by an asterisk.
– In Python, the actual is a list of values and the corresponding formal parameter is a name with

an asterisk
– In Lua, a variable number of parameters is represented as a formal parameter with three

periods; they are accessed with a for statement or with a multiple assignment from the three
periods

11

Subprogram Parameters

• Formal parameters: names (and types) of arguments to
the subprogram used in defining the subprogram body

• Actual parameters: arguments supplied for formal
parameters when subprogram is called

• Actual/Formal Parameter Correspondence:
– attributes of variables are used to exchange information

• Name – Call-by-name
• Memory Location – Call-by reference
• Value

– Call-by-value (one way from actual to formal parameter)
– Call-by-value-result (two ways between actual and formal

parameter)
– Call-by-result (one way from formal to actual parameter)

Copyright © 2009 Addison-Wesley. All rights reserved.
1-12

Pass-by-Value (In Mode)

• The value of the actual parameter is used to initialize the
corresponding formal parameter
– Normally implemented by copying
– Can be implemented by transmitting an access path but not

recommended (enforcing write protection is not easy)
– Disadvantages (if by physical move): additional storage is required

(stored twice) and the actual move can be costly (for large parameters)
– Disadvantages (if by access path method): must write-protect in the

called subprogram and accesses cost more (indirect addressing)

Copyright © 2009 Addison-Wesley. All rights reserved.
1-13

Pass-by-Reference (Inout Mode)

• Pass an access path
• Also called pass-by-sharing
• Advantage: Passing process is efficient (no copying and

no duplicated storage)
• Disadvantages

– Slower accesses (compared to pass-by-value) to formal
parameters

– Potentials for unwanted side effects (collisions)
– Unwanted aliases (access broadened)

Copyright © 2009 Addison-Wesley. All rights reserved.
1-14

Pass-by-Result (Out Mode)

• When a parameter is passed by result, no value is
transmitted to the subprogram; the corresponding
formal parameter acts as a local variable; its value is
transmitted to caller’s actual parameter when control
is returned to the caller, by physical move
– Require extra storage location and copy operation

• Potential problem: sub(p1, p1); whichever
formal parameter is copied back will represent the
current value of p1

Copyright © 2009 Addison-Wesley. All rights reserved.
1-15

Pass-by-Value-Result (inout Mode)

• A combination of pass-by-value and pass-by-
result

• Sometimes called pass-by-copy
• Formal parameters have local storage
• Disadvantages:

– Those of pass-by-result
– Those of pass-by-value

Copyright © 2009 Addison-Wesley. All rights reserved.
1-16

Pass-by-Name (Inout Mode)

• By textual substitution
– (or thunking – i.e. passing a function)

• Formals are bound to an access method at the time of
the call, but actual binding to a value or address takes
place at the time of a reference or assignment

• Allows flexibility in late binding

17

Design Considerations for Parameter Passing

1. Efficiency
2. One-way or two-way

- These two are in conflict with one another!
– Good programming limited access to variables,

which means one-way whenever possible

– Efficiency pass by reference is fastest way to pass
structures of significant size

– Also, functions should not allow reference parameters

Copyright © 2009 Addison-Wesley. All rights reserved.

1-18

Parameters that are Subprograms

• It is sometimes convenient to pass subprogram
names or even subprograms as parameters

• Issues:
1. Are parameter types checked?
2. What is the correct referencing environment for a

subprogram that was sent as a parameter?

• Note this is first class functions or lambdas which is
now becoming part of mainstream languages!!

Copyright © 2009 Addison-Wesley. All rights reserved.

1-19

Parameters that are Subprogram Names:
Parameter Type Checking

• C and C++: functions cannot be passed as parameters but pointers
to functions can be passed and their types include the types of the
parameters, so parameters can be type checked

• FORTRAN 95 type checks
• Ada does not allow subprogram parameters; an alternative is

provided via Ada’s generic facility
• Java until Java 8 did not allow method names to be passed as

parameters
• C# supports functions a parameters through delegates

– Delegates can now be anonymous or lambda expression
– We talk about first class functions

• Functional languages supports functions as first class
functions

Criteria in a good language design

• The criterias from Sebesta’s book are well
established ”rules of thumb”

• But until recently they had litlle or no research
backing.

• Since 2009 a new directions in programming
language design research has emerged
– could be called Evidence based Programming Language

Design
– Use of social science methods

20

Table 1.1
Language
evaluation

criteria and the
characteristics

that affect them

What is orthognality?

• “The number of independent primitive concepts has
been minimized in order that the language be easy to
describe, to learn, and to implement. On the other hand,
these concepts have been applied “orthogonally” in
order to maximize the expressive power of the language
while trying to avoid deleterious superfluities”
– Adriaan van Wijngaarden et al., Revised Report on the

Algorithmic Language ALGOL 68, section 0.1.2, Orthogonal
design

22

What is orthogonality?

• “A precise definition is difficult to produce, but
languages that are called orthogonal tend to have a small
number of core concepts and a set of ways of uniformly
combining these concepts. The semantics of the
combinations are uniform; no special restrictions exist
for specific instances of combinations.” – David
Schmidt
– Ex:

• A[4+(F(X)-1)] OK in Algol but not in Fortran IV
• Pascal, only values from the scalar types can be results

from function procedures. In contrast, ML allows a
function to return a value from any legal type whatsoever.

23

What is lack of orthogonality?

• The C language is somewhat inconsistent in its
treatment of concepts and thus not as orthogonal as it
could be

• Examples of exceptions follow:
– Structures (but not arrays) may be returned from a function.
– An array can be returned if it is inside a structure.
– A member of a structure can be any data type

• (except void, or the structure of the same type).
– An array element can be any data type (except void).
– Everything is passed by value (except arrays).
– Void can be used as a type in a structure, but a variable of this

type cannot be declared in a function.

24

25

Tennent’s Language Design principles

Principle of correspondence

• Example in Pascal:
var i : integer;
begin
i := -j;
write(i)

end

and
procedure p(i : integer);
begin
write(i)

end;
begin p(-j) end

• Are equivalent

26

Example of missing correspondence
In Pascal:

procedure inc(var i : integer);
begin

i := i + 1
end;

var x : integer;
begin

x := 1;
inc(x);
writeln(x);

end

No corresponding declaration

However C has correspondence

void inc(int *i) {
*i = *i + 1;

}

int x = 1;
inc(&x);
printf("%d", x);

int x = 1;
{

int *i = &x;
*i = *i + 1;

}
printf("%d", x);

27

28

The Concept of Abstraction
• The concept of abstraction is fundamental in programming (and

computer science)
• Tennents principle of abstraction

– is based on identifying all of the semantically-meaningful syntactic
categories of the language and then designing a coherent set of abstraction
facilities for each of these.

• Nearly all programming languages support process (or command)
abstraction with subprograms (procedures)

• Many programming languages support expression abstraction
with functions

• Nearly all programming languages designed since 1980 have
supported data abstraction:
– Abstract data types
– Objects
– Modules

Cognitive Dimensions

• Developed by Thomas Green, Univ. of Leeds
• Used to analyze the usability of information artifacts
• Applied to discover useful things about usability

problems that are not easily analyzed using conventional
techniques

• Framework (as opposed to model or theory)

Cognitive Dimensions (2)
• Focused on notations, such as

– Music, Dance
– Programming languages

• And on information handling devices, such as
– Spreadsheets
– Database query systems
– IDEs

• Gives descriptions of aspects, attributes, or ways that a
user thinks about a system, called dimensions

• The 14 dimensions (and more have been added)

Dimensions

• Abstraction
– types and availability of abstraction mechanisms

• Hidden dependencies
– important links between entities are not visible

• Premature commitment
– constraints on the order of doing things

• Secondary notation
– extra information in means other than formal syntax

• Viscosity
– resistance to change

• Visibility
– ability to view components easily

Abstractions

• Types and availability of abstraction mechanisms

• An abstraction is a class of entities or grouping of
elements to be treated as one entity (thereby lowering
viscosity).

• Abstraction barrier:
– minimum number of new abstractions that must be mastered

before using the system (e.g. Z)
• Abstraction hunger:

– require user to create abstractions

Abstraction features

• Abstraction-tolerant systems:
– permit but do not require user abstractions

(e.g. word processor styles)
• Abstraction-hating systems:

– do not allow definition of new abstractions
(e.g. spreadsheets)

• Abstraction changes the notation.

Abstraction implications

• Abstractions are hard to create and use
• Abstractions must be maintained

– useful for modification and transcription
– increasingly used for personalisation

• Involve the introduction of an abstraction manager sub-
device
– including its own viscosity, hidden dependencies,

juxtaposability etc.

Hidden Dependencies

• Important links between entities are not visible
• Examples:

– class hierarchies
– HTML links
– spreadsheet cells

Secondary Notation

• Extra information in means other than formal syntax
• Examples:

– Comments in programming languages
– Pop-up boxes for icons
– Well-designed icons

Viscosity

• Resistance to change
– Fixed mental model
– Hard-coded structure

• Examples:
– Technical literature, with cross-references and section

headings (because introducing a new section requires many
changes to cross-references)

Further Dimmensions

• Closeness of mapping
– closeness of representation to

domain

• Consistency
– similar semantics expressed in

similar forms

• Diffuseness
– verbosity of language

• Error-proneness
– notation invites mistakes

• Hard mental operations
– high demand on cognitive

resources

• Progressive evaluation
– work-to-date checkable any

time

• Provisionality
– degree of commitment to

actions or marks

• Role-expressiveness
– component purpose is readily

inferred

• And more …
– several new dimensions still

under discussion

Supplementary Material

• Cognitive Dimensions of Notations website
www.cl.cam.ac.uk/~afb21/CognitiveDimensions

• 10th Anniversary CD of Notations Workshop
www.cl.cam.ac.uk/~afb21/CognitiveDimensions/works
hop2005/index.html

http://www.cl.cam.ac.uk/%7Eafb21/CognitiveDimensions
http://www.cl.cam.ac.uk/%7Eafb21/CognitiveDimensions/workshop2005/index.html

PLATEAU - ACM SIGPLAN workshop on
Evaluation and usability of

programming languages and tools

40

Programming Language design

• Designing a new programming language or extending an
existing programming language usually follows an
iterative approach:

1. Create ideas for the programming language or
extensions

2. Describe/define the programming language or
extensions

3. Implement the programming language or extensions
4. Evaluate the programming language or extensions
5. If not satisfied, goto 1

41

Discount Method for Evaluating
Programming Languages

1. Create tasks specific to the language being tested - tasks
that the participants of the experiment should solve.
Estimate the time needed for each task (max 1 hour)

2. Create a short sample sheet of code examples in the
language being tested, which the participants can use as a
guideline for solving the tasks.

3. Prepare setup (e.g. use of NotePad++ and recorder) and do
a sample test with 1 person.
– Adjust tasks if needed

4. Perform the test on each participant, i.e. make them solve
the tasks defined in step 1. (Use approx. 5 test persons)

5. Each participant should be interviewed briefly after the test,
where the language and the tasks can be discussed.

6. Analyze the resulting data to produce a list of problems
– Cosmetic problems, Serious problems, Critical problems

42

Discount Method for Evaluating
Programming Languages

• Method inspired by the Discount Usability Evaluation
(DUE) method and Instant Data Analysis (IDA) method

• Reference:
– Svetomir Kurtev, Tommy Aagaard Christensen, and Bent

Thomsen.
– Discount method for programming language evaluation.
– In Proceedings of the 7th International Workshop on

Evaluation and Usability of Programming Languages and
Tools (PLATEAU 2016). ACM, New York, NY, USA, 1-8.
DOI: https://doi.org/10.1145/3001878.3001879

43

What can you do in your project now?

• Design abstractions
– Functions and/or Procedures or ..

• Evaluate your language design
– Revisit Sebesta’s design criteria
– Tennent’s principles
– Cognitive dimmensions
– Discount Method for Evaluating Programming Languages

44

1

Languages and Compilers
(SProg og Oversættere)

Lecture 14 – 2
Interpreters

Bent Thomsen
Department of Computer Science

Aalborg University

With acknowledgement to Norm Hutchinson whose slides this lecture is based on.

Learning goals

• To get an undertanding of interpretation
– Recursive interpretation
– Iterative interpretation

2

3

The “Phases” of a Compiler

Syntax Analysis

Contextual Analysis

Code Generation

Source Program

Abstract Syntax Tree

Decorated Abstract Syntax Tree

Object Code

Error Reports

Error Reports

The rest of the lectures except one

4

What’s next?

• interpretation

• code generation
– code selection
– register allocation
– instruction ordering

Source program

annotated AST

front-end

Object code

Code generationinterpreter

5

What’s next?

• intermediate code

• interpretation

• code generation
– code selection
– register allocation
– instruction ordering

Source program

annotated AST

front-end

Object code

Code generationinterpreter

intermediate
code generation

6

Intermediate code

• language independent
– no (or few) structured types,

only basic types (char, int, float)
– no structured control flow,

only (un)conditional jumps

• linear format
– Java byte code

7

The usefulness of Interpreters

• Quick implementation of new language
– Remember bootstrapping

• Testing and debugging
• Portability via Abstract Machine
• Hardware emulation

8

Interpretation

• recursive interpretation
– operates directly on the AST [attribute grammar]
– simple to write
– thorough error checks
– very slow: speed of compiled code 100 times faster

• iterative interpretation
– operates on intermediate code
– good error checking
– slow: 10x

9

Recursive interpretation

• Two phased strategy
– Fetch and analyze program

• Recursively analyzing the phrase structure of source
• Generating AST
• Performing semantic analysis

– Recursively via visitor
– Execute program

• Recursively by walking the decorated AST

10

Change the calc.cup

terminal PLUS, MINUS, TIMES, DIVIDE, LPAREN, RPAREN;
terminal Integer NUMBER;
non terminal Integer expr;
precedence left PLUS, MINUS;
precedence left TIMES, DIVIDE;
expr ::= expr:e1 PLUS expr:e2

{: RESULT = new Integer(e1.intValue()+ e2.intValue()); :}
| expr:e1 MINUS expr:e2
{: RESULT = new Integer(e1.intValue()- e2.intValue()); :}

| expr:e1 TIMES expr:e2
{: RESULT = new Integer(e1.intValue()* e2.intValue()); :}

| expr:e1 DIVIDE expr:e2
{: RESULT = new Integer(e1.intValue()/ e2.intValue()); :}

| LPAREN expr:e RPAREN {: RESULT = e; :}
| NUMBER:e {: RESULT= e; :}

11

Recursive Interpreter for Mini Triangle

public abstract class Value { }

public class IntValue extends Value {
public short i;

}

public class BoolValue extends Value {
public boolean b;

}

public class UndefinedValue extends Value { }

Representing Mini Triangle values in Java:

12

Recursive Interpreter for Mini Triangle

public class MiniTriangleState {
public static final short DATASIZE = …;

//Code Store
Program program; //decorated AST
//Data store
Value[] data = new Value[DATASIZE];
//Register …
byte status;
public static final byte //status value

RUNNING = 0, HALTED = 1, FAILED = 2;
}

A Java class to represent the state of the interpreter:

13

Recursive Interpreter for Mini Triangle

public class MiniTriangleProcesser
extends MiniTriangleState implements Visitor {

public void fetchAnalyze () {
//load the program into the code store after
//performing syntactic and contextual analysis

}
public void run () {

… // run the program
public Object visit…Command

(…Command com, Object arg) {
//execute com, returning null (ignoring arg)

}
public Object visit…Expression

(…Expression expr, Object arg) {
//Evaluate expr, returning its result

}
public Object visit…

}

14

Recursive Interpreter for Mini Triangle

public Object visitAssignCommand
(AssignCommand com, Object arg) {

Value val = (Value) com.E.visit(this, null);
assign(com.V, val);
return null;

}

public Objects visitCallCommand
(CallCommand com, Object arg) {

Value val = (Value) com.E.visit(this, null);
CallStandardProc(com.I, val);
return null;

}

public Object visitSequentialCommand
(SequentialCommand com, Object arg) {

com.C1.visit(this, null);
com.C2.visit(this, null);
return null;

}

15

Recursive Interpreter for Mini Triangle
public Object visitIfCommand

(IfCommand com, Object arg) {
BoolValue val = (BoolValue) com.E.visit(this, null);
if (val.b) com.C1.visit(this, null);
else com.C2.visit(this, null);
return null;

}

public Object visitWhileCommand
(WhileCommand com, Object arg) {

for (;;) {
BoolValue val = (BoolValue) com.E.visit(this, null)
if (! Val.b) break;
com.C.visit(this, null);

}
return null;

}

16

Recursive Interpreter for Mini Triangle

public Object visitIntegerExpression
(IntegerExpression expr, Object arg){

return new IntValue(Valuation(expr.IL));
}
public Object visitVnameExpression

(VnameExpression expr, Object arg) {
return fetch(expr.V);

}
…
public Object visitBinaryExpression

(BinaryExpression expr, Object arg){
Value val1 = (Value) expr.E1.visit(this, null);
Value val2 = (Value) expr.E2.visit(this, null);
return applyBinary(expr.O, val1, val2);

}

17

Recursive Interpreter for Mini Triangle

public Object visitConstDeclaration
(ConstDeclaration decl, Object arg){

KnownAddress entity = (KnownAddress) decl.entity;
Value val = (Value) decl.E.visit(this, null);
data[entity.address] = val;
return null;

}
public Object visitVarDeclaration

(VarDeclaration decl, Object arg){
KnownAddress entity = (KnownAddress) decl.entity;
data[entity.address] = new UndefinedValue();
return null;

}
public Object visitSequentialDeclaration

(SequentialDeclaration decl, Object arg){
decl.D1.visit(this, null);
decl.D2.visit(this, null);
return null;

}

18

Recursive Interpreter for Mini Triangle
Public Value fetch (Vname vname) {

KnownAddress entity =
(KnownAddress) vname.visit(this, null);

return data[entity.address];
}
Public void assign (Vname vname, Value val) {

KnownAddress entity =
(KnownAddress) vname.visit(this, null);

data[entity.address] = val;
}
Public void fetchAnalyze () {

Parser parse = new Parse(…);
Checker checker = new Checker(…);
StorageAllocator allocator = new StorageAllocator();
program = parser.parse();
checker.check(program);
allocator.allocateAddresses(program);

}
Public void run () {

program.C.visit(this, null);
}

19

Recursive Interpreter and Semantics

• Code for Recursive Interpreter is very close to a
denotational semantics

• (see chapter 14 p. 211-221 in Transitions and Trees)

20

Recursive Interpreter and Semantics

public Object visitBinaryExpression
(BinaryExpression expr, Object arg){

Value val1 = (Value) expr.E1.visit(this, null);
Value val2 = (Value) expr.E2.visit(this, null);
return applyBinary(expr.O, val1, val2);

}

• Code for Recursive Interpreter can be derived from
big step semantics

21

Recursive Interpreter and Semantics

public Object visitAssignCommand
(AssignCommand com, Object arg) {

Value val = (Value) com.E.visit(this, null);
assign(com.V, val);
return null;

}

Public void assign (Vname vname, Value val) {
KnownAddress entity =

(KnownAddress) vname.visit(this, null);
data[entity.address] = val;

}

• Code for Recursive Interpreter can be derived from
big step semantics

22

Recursive Interpreters

• Usage
– Quick implementation of high-level language

• LISP, SML, Prolog, … , all started out as interpreted
languages

– Scripting languages
• If the language is more complex than a simple command

structure we need to do all the front-end and static
semantics work anyway.

• Web languages
– JavaScript, PhP, ASP where scripts are mixed with

HTML or XML tags

23

Iterative interpretation

• Follows a very simple scheme:

• Typical source language will have several instructions
• Execution then is just a big case statement

– one for each instruction

Initialize
Do {

fetch next instruction
analyze instruction
execute instruction

} while (still running)

24

Iterative Interpreters

• Command languages
• Query languages

– SQL
• Simple programming languages

– Basic
• Virtual Machines

25

Mini-Shell

Script ::= Command*
Command ::= Command-Name Argument* end-of-line
Argument ::= Filename

| Literal
Command-Name ::= create

| delete
| edit
| list
| print
| quit
| Filename

26

Mini-Shell Interpreter

Public class MiniShellCommand {
public String name;
public String[] args;

}

Public class MiniShellState {
//File store…
public …

//Registers
public byte status; //Running or Halted or Failed

public static final byte // status values
RUNNING = 0, HALTED = 1, FAILED = 2;

}

27

Mini-Shell Interpreter
Public class MiniShell extends MiniShellState {

public void Interpret () {
… // Execute the commands entered by the user

// terminating with a quit command
}
public MiniShellCommand readAnalyze () {

… //Read, analysze, and return
//the next command entered by the user

}
public void create (String fname) {

… // Create empty file wit the given name
}
public void delete (String[] fnames) {

… // Delete all the named files
}
…
public void exec (String fname, String[] args) {

… //Run the executable program contained in the
… //named files, with the given arguments

}
}

28

Mini-Shell Interpreter
Public void interpret () {

//Initialize
status = RUNNING;
do {

//Fetch and analyse the next instruction
MiniShellCommand com = readAnalyze();

// Execute this instruction
if (com.name.equals(“create”))

create(com.args[0]);
else if (com.name.equals(“delete”))

delete(com.args)
else if …

else if (com.name.equals(“quit”))
status = HALTED;

else status = FAILED;
} while (status == RUNNING);

}

29

Hypo: a Hypothetic Abstract Machine

• 4096 word code store
• 4096 word data store
• PC: program counter, starts at 0
• ACC: general purpose register
• 4-bit op-code
• 12-bit operand
• Instruction set:

30

Hypo Interpreter Implementation (1)

31

Hypo Interpreter Implementation (2)

Other iterative interpreters

• Java Virtual Machine (JVM)
• .Net CLR
• Dalvik VM

• Note: LLVM is not a traditional virtual machine !
– However LLVM provides an IR that can be used for further

compilation

32

33

Interpreters are everywhere on the web

Web-Client
Web-Server

DBMS

Database
Output

SQL
commands

PHP
Script

HTML-Form
(+JavaScript)

Reply

WWW

Submit
Data

Call PHP
interpreter

Response Response

LAN

Web-Browser

Database
Server

34

Interpreters versus Compilers

Q: What are the tradeoffs between compilation and interpretation?

Compilers typically offer more advantages when
– programs are deployed in a production setting
– programs are “repetitive”
– the instructions of the programming language are complex

Interpreters typically are a better choice when
– we are in a development/testing/debugging stage
– programs are run once and then discarded
– the instructions of the language are simple
– the execution speed is overshadowed by other factors

• e.g. on a web server where communications costs are much higher than
execution speed

What can you do in your project now

• Build a recursive interpreter!

35

1

Languages and Compilers
(SProg og Oversættere)

Lecture 15
Intermediate Representations

Bent Thomsen
Department of Computer Science

Aalborg University

2

The “Phases” of a Compiler

Syntax Analysis

Contextual Analysis

Code Generation

Source Program

Abstract Syntax Tree

Decorated Abstract Syntax Tree

Object Code

Error Reports

Error Reports

The rest of the lectures except one

3

What’s next?

• interpretation

• intermediate code

• code generation
– code selection
– register allocation
– instruction ordering

Source program

annotated AST

front-end

Object code

Code generationinterpreter

intermediate
code generation

Last lecture

Next lecture

This lecture

4

The Code generation “Phases” of a Compiler

Analyze/Optimize

Analyze/optimize

Object Code Generation

Annotated ATS
Intermediate Code

Intermediate Code

Intermediate Code

Object Code

Error Reports

Error Reports

Intermediate Representations

• Abstract Syntax Tree
– Convenient for semantic analysis phases
– Convenient for recursive interpretation
– We can generate code directly from the AST, but...
– What about multiple target architectures?

• Intermediate Representation
– "Neutral" architecture
– Easy to translate to native code
– Can abstracts away complicated runtime issues

• Stack Frame Management
• Memory Management
• Register Allocation

5

Overview

• Semantic gap between high-level source languages and
target machine language

• Examples
– Early C++ compilers

• cpp: preprocessor
• cfront: translate C++ into C
• C compiler

6

Another Example

• LaTeX
– TeX: designed by Donald Knuth
– dvi: device-independent intermediate representation
– Ps: PostScript
– pixels

• Portability enhanced

7

Challenges

• Challenges
– An intermediate language (IL) must be precisely defined
– Translators and processors must be crafted for an IL
– Connections must be made between levels so that feedback

from intermediate steps can be related to the source program
• Other concerns

– Efficiency

• Compiler suites that host multiple source languages and
target multiple instruction sets obtain great leverage
from a middle-end
– Ex: s source languages, t target languages

• s*t vs. s+t

• 8

s*t vs. s+t

9

IL Advantages

• An IL simplifies development and testing of system
components
– simplify the pioneering and prototyping of news ideas

• An IL allows various system components to interoperate by
facilitating access to information about the program
– E.g. variable names and types, and source line numbers could be useful in

the debugger
– It allows components and tools to interface with other products

• An IL enables the crafting of a retargetable code generator,
which greatly enhances its portability
– Pascal: P-code
– Ada: DIANA (Descriptive Intermediate Attributed Notation for

Ada)
– C: RTL
– Java: JVM
– C#: CIL
– Python: Python Byte Code

10

11

Code Generation

A compiler translates a program from a high-level language into an
equivalent program in a low-level language.

JVM Program

Java Program

Compile

Run

Result

TAM Program

Triangle Program

Compile

Run

Result

x86 Program

C Program

Compile

Run

Result

We shall look at this in more detail the next couple of lectures
Note that code generation is specific to the target, but we try to generalize

12

What are (some of) the issues

High Level
Program

Low-level Language
Processor

How to model high-level computational structures and data
structures in terms of low-level memory and machine instructions.

Procedures
Expressions

Variables
Arrays

Records

Objects
Methods

Registers

Machine Instructions

Bits and Bytes
Machine Stack

How to model ?

Easy for Java (or Java like) on the JVM

For other Languages on the JVM some thoughts
Are needed on a suitable mapping

13

14

The JVM

We now look at the JVM as an example of a real-world runtime
system for a modern object-oriented programming language.

The material in this lecture is interesting because:

1) it will help understand some things about the JVM

2) JVM is probably the most common and widely used VM in the
world.

3) You’ll get a better idea what a real VM looks like.

4) You may choose the JVM as a target for your own compiler

15

Abstract Machines

An abstract machine implements an intermediate language “in
between” the high-level language (e.g. Java) and the low-level
hardware (e.g. Pentium)

Java

Pentium

Java

Pentium

JVM (.class files)

High level

Low level

Java compiler

Java JVM interpreter
or JVM JIT compiler

Implemented in Java:
Machine independent

16

Class Files and Class File Format

The JVM is an abstract machine in the true sense of the word.

The JVM spec. does not specify implementation details (can be
dependent on target OS/platform, performance requirements etc.)

The JVM spec defines a machine independent “class file format”
that all JVM implementations must support.

.class files

JVM

load

External representation
platform independent

internal representation
implementation dependent

objects

classes

methods

integers
arrays

primitive types

Java Virtual Machine

• Class files:
– binary encodings of the data and instructions in a Java program

• Design principles
– Compactness

• Instructions in nearly zero-address form

• Class file contains:
– Table of constants.
– Tables describing the class

• name, superclass, interfaces
• attributes, constructor

– Tables describing fields and methods
• name, type/signature
• attributes (private, public, etc)

– The code for methods.
17

18

ClassFile {

u4 magic; //always (0xCAFEBABE)
u2 minor_version;
u2 major_version;
u2 constant_pool_count;
cp_info constant_pool[constant_pool_count-1];
u2 access_flags;
u2 this_class;
u2 super_class;
u2 interfaces_count;
u2 interfaces[interfaces_count];
u2 fields_count;
field_info fields[fields_count];
u2 methods_count;
method_info methods[methods_count];
u2 attributes_count;
attribute_info attributes[attributes_count];

}

19

Data Types

JVM (and Java) distinguishes between two kinds of types:

Primitive types:
• boolean: boolean
• numeric integral: byte, short, int, long, char
• numeric floating point: float, double
• internal, for exception handling: returnAddress

• Used by jsr, jsr_w, ret instructions

Reference types:
• class types
• array types
• interface types

Note: Primitive types are represented directly, reference types are
represented indirectly (as pointers to array or class instances)

20

Internal Architecture of JVM

Execution
engine

Class
loader
subsystem

method
area heap Java

stacks
pc
registers

native
method
stacks

Runtime data area

class files

Native
Method
Interface

Native
Method
Libraries

Class Loading

• Classes are loaded lazily when first accessed
– Though some JVMs do eager loading

• Class name must match file name
• Super classes are loaded first (transitively)
• The bytecode is verified
• Static fields are allocated and given default values
• Static initializers are executed

21

22

JVM: Runtime Data Areas

Besides OO concepts, JVM also supports multi-threading. Threads are
directly supported by the JVM.

=> Two kinds of runtime data areas:
1) shared between all threads
2) private to a single thread

Shared Thread 1 Thread 2

pc

Java
Stack

Native
Method
Stack

pc

Java
Stack

Native
Method
Stack

Garbage Collected
Heap

Method area

23

Java Stacks

JVM is a stack based machine

JVM instructions
• implicitly take arguments from the stack top
• put their result on the top of the stack

The stack is used to
• pass arguments to methods
• return result from a method
• store intermediate results in evaluating expressions
• store local variables

24

Expression Evaluation on a Stack Machine

Example 1: Computing (a * b) + (1 - (c * 2))
on a stack machine.

LOAD a //stack: a
LOAD b //stack: a b
MULT //stack: (a*b)
LOAD #1 //stack: (a*b) 1
LOAD c //stack: (a*b) 1 c
LOAD #2 //stack: (a*b) 1 c 2
MULT //stack: (a*b) 1 (c*2)
SUB //stack: (a*b) (1-(c*2))
ADD //stack: (a*b)+(1-(c*2))

Note the correspondence between the instructions and the expression
written in postfix notation: a b * 1 c 2 * - +

25

Expression Evaluation on a Stack Machine

Example 2: Computing (0 < n) && odd(n)
on a stack machine.

LOAD #0 //stack: 0
LOAD n //stack: 0 n
LT //stack: (0<n)
LOAD n //stack: (0<n) n
CALL odd //stack: (0<n) odd(n)
AND //stack: (0<n)&&odd(n)

This example illustrates that calling functions/procedures fits in just
as naturally with the stack machine evaluation model as operations
that correspond to machine instructions.

In register machines this is much more complicated, because a stack
must be created in memory for managing subroutine calls/returns.

26

JVM Interpreter

The core of a JVM interpreter is basically this:
do {

byte opcode = fetch an opcode;
switch (opcode) {

case opCode1 :
fetch operands for opCode1;
execute action for opCode1;
break;

case opCode2 :
fetch operands for opCode2;
execute action for opCode2;
break;

case ...
} while (more to do)

The JVM interpreter loop in the HVM

27

Threaded Code

Control flow behavior:
[based on: James R. Bell. Threaded Code. Communications of the ACM, vol. 16 no. 6,

June 1973, pp. 370–372]

byte code: threaded code:

28

Switch-Cased statement often translated into a jump table
Indexing through a jump table is expensive.
Idea: Use the address of the code for an operation as the
opcode for that operation.

29

Instruction-set: typed instructions!

JVM instructions are explicitly typed: different opCodes for
instructions for integers, floats, arrays and reference types.

This is reflected by a naming convention in the first letter of the
opCode mnemonics:

Example: different types of “load” instructions

iload
lload
fload
dload
aload

integer load
long load
float load
double load
reference-type load

30

Instruction set: kinds of operands

JVM instructions have three kinds of operands:
- from the top of the operand stack
- from the bytes following the opCode
- part of the opCode

One instructions may have different “forms” supporting different kinds
of operands.

Example: different forms of “iload”.

iload_0
iload_1
iload_2
iload_3

Assembly code Binary instruction code layout
26
27
28
29

21 niload n

wide iload n 196 n21

31

Instruction-set: accessing arguments and locals

locals: indexes #args .. #args+#locals-1

args: indexes 0 .. #args-1

arguments and locals area inside a stack frame

Instruction examples:
iload_1
iload_3
aload 5
aload_0

istore_1
astore_1
fstore_3

0:
1:
2:
3:

• A load instruction: loads something
from the args/locals area to the top
of the operand stack.

• A store instruction takes something
from the top of the operand stack
and stores it in the argument/local
area

32

Instruction-set: non-local memory access

In the JVM, the contents of different “kinds” of memory can be
accessed by different kinds of instructions.

accessing locals and arguments: load and store instructions

accessing fields in objects: getfield, putfield

accessing static fields: getstatic, putstatic

Note: static fields are a lot like global variables. They are allocated
in the “method area” where also code for methods and
representations for classes are stored.

Q: what memory area are getfield and putfield accessing?

33

Instruction-set: operations on numbers

add: iadd, ladd, fadd, dadd
subtract: isub, lsub, fsub, dsub
multiply: imul, lmul, fmul, dmul
…

Arithmetic

Conversion

i2l, i2f, i2d
l2f, l2d, f2s

f2i, d2i, …

34

Instruction-set …

Operand stack manipulation
pop, pop2, dup, dup2, dup_x1, swap, …

Control transfer
Unconditional : goto, goto_w, jsr, ret, …
Conditional: ifeq, iflt, ifgt, …

35

Instruction-set …

Method invocation:
invokevirtual

usual instruction for calling a method on an object.
invokeinterface

same as invokevirtual, but used when the called method is declared
in an interface. (requires different kind of method lookup)

invokespecial
for calling things such as constructors. These are not dynamically
dispatched (also known as invokenonvirtual)

invokestatic
for calling methods that have the “static” modifier (these methods
“belong” to a class, rather an object)

Returning from methods:
return, ireturn, lreturn, areturn, freturn, …

36

Instruction-set: Heap Memory Allocation

Create new class instance (object):
new

Create new array:
newarray

for creating arrays of primitive types.
anewarray, multianewarray

for arrays of reference types

37

Example

class Factorial {

int fac(int n) {
int result = 1;
for (int i=2; i<n; i++) {

result = result * i;
}
return result;

}
}

As an example on the JVM, we will take a look at the compiled code
of the following simple Java class declaration.

38

Compiling and Disassembling

% javac Factorial.java
% javap -c -verbose Factorial
Compiled from Factorial.java
public class Factorial extends java.lang.Object {

public Factorial();
/* Stack=1, Locals=1, Args_size=1 */

public int fac(int);
/* Stack=2, Locals=4, Args_size=2 */

}

Method Factorial()
0 aload_0
1 invokespecial #1 <Method java.lang.Object()>
4 return

39

Compiling and Disassembling ...

// address: 0 1 2 3
Method int fac(int) // stack: this n result i
0 iconst_1 // stack: this n result i 1
1 istore_2 // stack: this n result i
2 iconst_2 // stack: this n result i 2
3 istore_3 // stack: this n result i
4 goto 14
7 iload_2 // stack: this n result i result
8 iload_3 // stack: this n result i result i
9 imul // stack: this n result i result i
10 istore_2
11 iinc 3 1
14 iload_3 // stack: this n result i i
15 iload_1 // stack: this n result i i n
16 if_icmple 7 // stack: this n result i
19 iload_2 // stack: this n result i result
20 ireturn

40

JASMIN

• JASMIN is an assembler for the JVM
– Takes an ASCII description of a Java class
– Input written in a simple assembler like syntax

• Using the JVM instruction set
– Outputs binary class file
– Suitable for loading by the JVM

• Running JASMIN
– jasmin myfile.j

• Produces a .class file with the name specified by the
.class directive in myfile.j

41

Example: out.j

.class public out

.super java/lang/Object

.method public <init>()V
aload_0
invokespecial java/lang/Object/<init>()V
return

.end method

.method public static main([Ljava/lang/String;)V
.limit stack 2

getstatic java/lang/System/out Ljava/io/PrintStream;
ldc “Hello World”
invokevirtual java/io/PrintStream/println(Ljava/lang/String;)V

return
.end method

42

The result: out.class

43

Jasmin file format

• Directives
– .catch . Class .end .field .implements .interface .limit .line
– .method .source .super .throws .var

• Instructions
– JVM instructions: ldc, iinc bipush

• Labels
– Any name followed by : - e.g. Foo:
– Cannot start with = : . *
– Labels can only be used within method definitions

44

The JVM as a target for different languages

When we talk about Java what do we mean?
• “Java” isn’t just a language, it is a platform
• The list of languages targeting the JVM is very long!

– (Fortress), Scala, Clojure, Kotlin are currently very hot
– http://en.wikipedia.org/wiki/List_of_JVM_languages

JVM

java.* javax.* org.*

Java Groovy AspectJ Languages

APIs / Libraries

http://en.wikipedia.org/wiki/List_of_JVM_languages

45

• Java has a lot of APIs and libraries
– Core libraries (java[x].*)
– Open source libraries
– Third party commercial libraries

• What is it that we are reusing when we use these tools?
– We are reusing the bytecode
– We are reusing the fact that the JVM has a nice spec

• This means that we can innovate on top of this binary
class file nonsense

Reusability

46

Not just one JVM, but a whole family

• JVM (J2EE & J2SE)
– SUN Classis, SUN HotSpots, Oracle, IBM, BEA, …

• CVM, KVM (J2ME)
– Small devices.
– Reduces some VM features to fit resource-constrained

devices.
• JCVM (Java Card)

– Smart cards.
– It has least VM features.

• And there are also lots of other JVMs
– E.g. HVM (www.icelab.dk)

47

Java Platform & VM & Devices

48

Hardware implementations of the JVM

http://www.jopdesign.com/cyclone/top.jpg

Pause

49

s*t vs. s+t

50

51

The common intermediate format nirvana

• If we have n languages and need to have them running
on m machines we need m*n compilers!

• If we have one common intermediate format we only
need n front-ends and m back-ends, i.e. m+n

• ”Why haven’t you taught us about the common
intermediate language?”

52

Strong et al. “The Problem of Programming Communication with Changing
Machines: A Proposed Solution” C.ACM. 1958

53

Quote

This concept is not particularly new or original. It has
been discussed by many independent persons as long
ago as 1954. It might not be difficult to prove that “this
was well-known to Babbage,” so no effort has been
made to give credit to the originator, if indeed there was
a unique originator.

54

Interlanguage Working

• Smooth interoperability between components written in different
programming languages is a dream with a long history

• Distinct from, more ambitious and more interesting than, UNCOL
– The benefits accrue to users, not to compiler-writers!

• Interoperability is more important than performance, especially
for niche languages, e.g.
– For years we thought nobody used functional languages because they were

too slow
– But a bigger problem was that you couldn’t really write programs that did

useful things (graphics, guis, databases, sound, networking, crypto,...)
– We didn’t notice, because we never tried to write programs which did

useful things...
– However, with languages like F# and Scale, interoperating via .Net resp.

the JVM, things are changing …

55

Interlanguage Working

• Bilateral or Multilateral?
• Unidirectional or bidirectional?
• How much can be mapped?
• Explicit or implicit or no marshalling?
• What happens to the languages?

– All within the existing framework?
– Extended?
– Pragmas or comments or conventions?

• External tools required?
• Work required on both sides of an interface?

56

Calling C bilaterally

• All compilers for high-level languages have some way of calling C
– Often just hard-wired primitives for implementing libraries

• Extensibility by recompiling the runtime system
– Sometimes a more structured FFI
– Typically implementation-specific

• Issues:
– Data representation (31/32 bit ints, strings, record layout,...)
– Calling conventions (registers, stack,..)
– Storage management (especially copying collectors)

• It’s a dirty job, but somebody’s got to do it

57

Is there a better way?

• Well we saw the JVM earlier …
– Most JVM support JNI
– But this only works for calling from Java to C
– Note HVM supports calling Java from C!

• And there are problems with languages which are not
”Java”-like

• What then? …

58

Common Programming Model - .NET

Common Language Runtime
Base Framework Classes

Data and XML Classes

XML Web
Services

Web
Forms Windows

FormsASP.NET

Common Language Runtime
Base Framework Classes

Data and XML Classes

XML Web
Services

Web
Forms Windows

FormsASP.NET

59

Overview of the CLI

• A common type system…
…and a specification for language integration (CLS)
– Execution engine with garbage collector and exception

handling
– Integral security system with verification

• A factored class library
– A “modern” equivalent to the C runtime

• An intermediate language
– CIL: Common Intermediate Language

• A file format
– PE/COFF format, with extensions
– An extensible metadata system

• Access to the underlying platform!

60

Terms to swallow

• CLI (Common Language Infrastructure)

• CLS (Common Language Specification)

• CTS (Common Type System)

• MSIL (Microsoft Intermediate Language)
– CIL (Common Intermediate Language)

• CLR (Common Language Runtime)

• GAC (Global Assembly Cache)

61

Execution model

COBOL VB.NET MC++ C#

MSIL code
(plus

metadata)

Loader/verifier

Managed code
Uncompiled
method call

Execution

Language compilers

.NET languages

JIT compiler

62

Managed Code Execution

PEVerify

NGEN

DEPLOYMENT

GAC,
app. directory,

download cache

public static void Main(String[] args)
{ String usr; FileStream f; StreamWriter w;
try {
usr=Environment.GetEnvironmentVariable("USERNAME");
f=new FileStream(“C:\\test.txt",FileMode.Create);
w=new StreamWriter(f);
w.WriteLine(usr);
w.Close();

} catch (Exception e){
Console.WriteLine("Exception:"+e.ToString());

}
} Compiler

DEVELOPMENT
public static void Main(String[] args)
{ String usr; FileStream f; StreamWriter w;
try {
usr=Environment.GetEnvironmentVariable("USERNAME");
f=new FileStream(“C:\\test.txt",FileMode.Create);
w=new StreamWriter(f);
w.WriteLine(usr);
w.Close();

} catch (Exception e){
Console.WriteLine("Exception:"+e.ToString());

}
}

Source code Assembly
PE header + MSIL +
Metadata + EH Table

EXECUTION
Assembly info

Module
+ Class list

Policy
Manager

Host

Policy
<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<mscorlib>
<security>

<policy>
<PolicyLevel version="1">

<CodeGroup class="UnionCodeGroup"
version="1"
PermissionSetName="Nothing"
Name="All_Code"
Description="Code group

grants no permissio
ns and forms the root of the code group tree.">

<IMembershipCondition clas
s="AllMembershipCondition"

version="1"/>
<CodeGroup class="UnionCodeGroup"

version="1"
PermissionSetName="FullTrust"

Class
Loader

Granted
permissions

Vtable +
Class info

JIT +
verification

Native code
+ GC table

CLR Services
GC
Exception
Class init
Security

(class)

(method)

Assembly
Loader

Evidence

Permission request

63

What is the Common Language Runtime (CLR)?

• The CLR is the execution engine for .NET
• Responsible for key services:

– Just-in-time compilation
– heap management
– garbage collection
– exception handling

• Rich support for component software
• Language-neutral

64

The CLR Virtual Machine
• Stack-based, no registers

– All operations produce/consume
stack elements

– Locals, incoming parameters live
on stack

– Stack is of arbitrary size; stack
elements are “slots”

– May or may not use real stack once
JITted

• Core components
– Instruction pointer (IP)
– Evaluation stack
– Array of local variables
– Array of arguments
– Method handle information
– Local memory pool
– Return state handle
– Security descriptor

• Execution example

Offset Instruction Parameters

IL_0000 ldarg 0

IL_0001 ldarg 1

IL_0002 add

IL_0003 stloc 0

IL_0004 ldloc 0

IL_0005 ret

int add(int a, int b)
{

int c = a + b;
return c;

}

65

CIL Basics

• Data types
– void

– bool

– char, string
– float32, float64
– [unsigned] int8, int16, int32, int64
– native [unsigned] int: native-sized integer value
– object: System.Object reference
– Managed pointers, unmanaged pointers, method pointers(!)

• Names
– All names must be assembly-qualified fully-resolved names

• [assembly]namespace.class::Method
• [mscorlib]System.Object::WriteLine

66

CIL Instructions

• Stack manipulation
– dup: Duplicate top element of stack (pop, push, push)
– pop: Remove top element of stack
– ldloc, ldloc.n, ldloc.s n: Push local variable
– ldarg, ldarg.n, ldarg.s n: Push method arg

• “this” pointer arg 0 for instance methods
– ldfld type class::fieldname: Push instance field

• requires “this” pointer on top stack slot
– ldsfld type class::fieldname: Push static field
– ldstr string: Push constant string
– ldc.<type> n, ldc.<type>.n: Push constant numeric

• <type> is i4, i8, r4, r8

67

CIL Instructions

• Branching, control flow
– beq, bge, bgt, ble, blt, bne, br, brtrue, brfalse

• Branch target is label within code
– jmp <method>: Immediate jump to method (goto, sort of)
– switch (t1, t2, … tn): Table switch on value
– call retval Class::method(Type, …): Call method

• Assumes arguments on stack match method expectations
• Instance methods require “this” on top
• Arguments pushed in right-to-left order

– calli callsite-description: Call method through pointer
– ret: Return from method call

• Return value top element on stack

68

CIL Instructions

• Object model instructions
– newobj ctor: Create instance using ctor method
– initobj type: Create value type instance
– newarr type: Create vector (zero-based, 1-dim array)
– ldelem, stelem: Access vector elements
– isinst class: Test cast (C# “is”)
– castclass class: Cast to type
– callvirt signature: Call virtual method

• Assumes “this” in slot 0--cannot be null
• vtable lookup on object on signature

– box, unbox: Convert value type to/from object instance

69

CIL Instructions

• Exception handling
– .try: Defines guarded block
– Dealing with exception

• catch: Catch exception of specified type
• fault: Handle exceptions but not normal exit
• filter: Handle exception if filter succeeds
• finally: Handle exception and normal exit

– throw, rethrow: Put exception object into exception flow
– leave: Exit guarded block

CIL assembler

• ILAsm (IL Assembly) closest to raw CIL
– Assembly language

• CIL opcodes and operands
• Assembler directives
• Intimately aware of the CLI (objects, interfaces, etc)

– ilasm.exe (like JASMIN for Java/JVM)
– Ships with FrameworkSDK, Rotor, along with a few samples
– Creates a PE (portable executable) file (.exe or .dll)

70

71

Example 1

• Hello, CIL!

.assembly extern mscorlib { }

.assembly Hello { }

.class private auto ansi beforefieldinit App

extends [mscorlib]System.Object

{

.method private hidebysig static void Main() cil managed

{

.entrypoint

.maxstack 1

ldstr "Hello, CIL!"

call void [mscorlib]System.Console::WriteLine(string)

ret

} // end of method App::Main

} // end of class App

72

CLR vs JVM

C# Managed
C/C++

Lots of other
Languages

VB
.Net

CLR
CTS GC Security
Runtime Services

MSIL

Windows OS

Java

JRE (JVM)
GC Security

Runtime Services

Byte Codes

Mac Unix LinuxWin

Both are ‘middle layers’ between an intermediate
language & the underlying OS

73

Java Byte Code and MSIL

• Java byte code (or JVML) is the low-level language of the JVM.
• MSIL (or CIL or IL) is the low-level language of the .NET Common

Language Runtime (CLR).
• Superficially, the two languages look very similar.

• One difference is that MSIL is designed only for JIT compilation.
• The generic add instruction would require an interpreter to track the data

type of the top of stack element, which would be prohibitively expensive.

JVML:
iload 1
iload 2
iadd
istore 3

MSIL:
ldloc.1
ldloc.2
add
stloc.3

74

JVM vs. CLR

• JVM’s storage locations are all 32-bit therefore e.g. a
64-bit int takes up two storage locations

• The CLR VM allows storage locations of different sizes

• In the JVM all pointers are put into one reference type
• CLR has several reference types e.g. valuetype reference

and reference type

75

JVM vs. CLR

• CLR provides ”typeless” arithmetic instructions
• JVM has separate arithmetic instruction for each type

(iadd, fadd, imul, fmul...)

• JVM requires manual overflow detection
• CLR allows user to be notified when overflows occur

• Java has a maximum of 64K branches (if...else)
• No limit of branches in CLR

76

JVM vs. CLR

• JVM distinguishes between invoking methods and
interface (invokevirtual and invokeinterface)

• CLR makes no distinction

• CLR supports tail calls (iteration in Scheme)
• Must resort to tricks in order to make JVM discard stack

frames

Alternatives to JVM and CLR

• C
– (or C++ or Java or C# or ..)

• JavaScript

• WebAssembly

• GENERIC, GIMPLE and RTL for gcc

• Dalvik VM

• LLVM IR

77

Comparison of Various VMs

78

http://en.wikipedia.org/wiki/Comparison_of_application_virtual_machines

Just-In-Time Compilation

• JIT compilers in JRE (JVM) and .NET runtimes

79

Just-In-Time Compilation (cont)

• At the time of code execution, the JIT compiler will
compile some or all of it to native machine code for
better performance.
– Can be done per-file, per-function or even on any arbitrary

code fragment (e.g. tracing JIT)
• The compiled code is cached and reused later

without needing to be recompiled (unlike
interpretation).

80

81

Java Virtual Machine - HotSpot

> Interpreter mode (-Xint)
> server mode (-server)

— aggressive and complex optimizations
— slow startup
— fast execution

> client mode (-client)
— less optimizations
— fast startup
— slower execution

81

What can you do with this in your project ?

• Consider generation code for a VM
– JVM via JASMIN
– CLR via ILASM
– Some other VM

• Python VM
• Smalltalk VM
• BEAM (Erlang)

82

1

Languages and Compilers
(SProg og Oversættere)

Lecture 16
Code Generation for the JVM

Bent Thomsen
Department of Computer Science

Aalborg University

Learning Goals

• Understand intermediate code generation
– In particular IM generation for the JVM

• Understand the distinction between compile time and
run time

2

3

The “Phases” of a Compiler

Syntax Analysis

Contextual Analysis

Code Generation

Source Program

Abstract Syntax Tree

Decorated Abstract Syntax Tree

Object Code

Error Reports

Error Reports

This lecture

4

Programming Language specification

– A Language specification has (at least) three parts:
• Syntax of the language: usually formal: EBNF
• Contextual constraints:

– scope rules (often written in English, but can be formal)
– type rules (formal or informal)

• Semantics:
– defined by the implementation
– informal descriptions in English
– formal using operational or denotational semantics

5

Code Generation

A compiler translates a program from a high-level language into an
equivalent program in a low-level language.

JVM Program

Java Program

Compile

Run

Result
This lecture

6

Issues in Code Generation

• Code Selection:
Deciding which sequence of target machine instructions will be
used to implement each phrase in the source language.

• Storage Allocation
Deciding the storage address for each variable in the source
program. (static allocation, stack allocation etc.)

• Register Allocation (for register-based machines)
How to use registers efficiently to store intermediate results.

This is not an issue for us because we look at
generating code for the JVM
We will look at these issues in later lectures

7

What are (some of) the issues

High Level
Program

Low-level Language
Processor

How to model high-level computational structures and data
structures in terms of low-level memory and machine instructions.

Procedures
Expressions

Variables
Arrays

Records

Objects
Methods

Registers

Machine Instructions

Bits and Bytes
Machine Stack

How to model ?

Easy for Java (or Java like) on the JVM

For other Languages on the JVM some thoughts
Are needed on a suitable mapping

Code Gen: from AST to JVM

• Code Generation refers to translating the
processed/decorated AST to an executable form
– For Java, the target is the Java Virtual Machine

• Translated to Bytecode
– We talk about emitting Bytecode

• Bytecode is "executed" by the JVM interpreter/JIT

• Terminology:
– Compile time vs. Run time

• Compile time AST traversal order
– i.e. the order the compiler goes through the program

• Run time code execution order
– i.e. the order the thread of control goes through the program

9

10

Code Generation from AST
Code Generation in general follows a depth-first traversal of the AST.

Ident Ident Ident Ident Ident CharLit Ident Ident Op IntLit

n Integer c Char c ‘&’ n n + 1

SimpleT SimpleT SimpleV SimpleV SimpleV

VarDec VarDec VnameExpr IntExpr

BinaryExpression

AssignCommand

CharExpr

AssignCommand

SequentialCommandSequentialDeclaration

LetCommand

Program

CodeGenVisitor

• We process the AST with a visitor
– Could also use classic OO composit or a functional approach.

• Code Generation Visitors are usually divided into narrow-
focus visitors for specific tasks
– Class and method declarations
– Statements
– Expressions
– Left-Hand Side processing
– Method Signatures

• Others possible/needed in other languages

• Note Fischer et. Al. uses the reflexive visitor pattern

11

Code Emmision

• Generating the actual instructions is usually called
emission
– a CodeGenVisitor emits instructions

• Example:
– MethodBodyVisitor.visit(Plus n)

• visit(n.E1)
• visit(n.E2)
• emit("iadd\n")

12

+

E1 E2

Code Emmision

• Code generator needs type decorations in AST from
Semantic analysis
– MethodBodyVisitor.visit(Plus n)

if n.type == int
• visit(n.E1)
• visit(n.E2)
• emit("iadd\n")
else if n.type == float
• visit(n.E1)
• visit(n.E2)
• emit(“fadd\n")
else if …

13

+

E1 E2

Code Emmision
• Code generator needs type decorations in AST from

Semantic analysis
– MethodBodyVisitor.visit(Plus n)

… else if n.type == string
• emit (new #4) // class StringBuilder
• emit(dup)
• emit(invokespecial #5) // Method StringBuilder."<init>"
• Visit(n.E1) // String from E1
• emit(invokevirtual #6) // Method StringBuilder.append:(LString;)LStringBuilder;
• Visit(n.E2) // String from E2
• emit(invokevirtual #6) // Method StringBuilder.append:(LString;)LStringBuilder;
• emit(invokevirtual #7) // Method StringBuilder.toString:()LString;

14

+

E1 E2
Note that String is not a primitive type in Java

CodeGenVisitor

• TopVisitor
– Top-level visitor – starts at root of AST
– handles class/method declarations
– calls others for specific needs (E.g., method bodies)

• MethodBodyVisitor
– Generates most of the actual code
– Calls others for specific needs (E.g., assignment LHS)

15

CodeGenVisitor

• SignatureVisitor
– Handles AST subtrees for method definition or invocation

• method name, parameter types, return type
– Used by MethodBodyVisitor for invocations

• LHSVisitor
– Generates code for LHS of assignments
– May call other visitors if LHS contains subexpressions

• Java example: a[x+y] = ...
• Remember that LHS of assignment use the address of a

variable, whereas the RHS uses the value.

17

Postludes

• Sometimes a single emission isn't enough
• Assignments:

– Must visit LHS to find the storage location and type
– Must visit RHS to compute the value
– Must re-visit LHS to emit storage operations

• Inefficient!
• Better:

– LHS visitor builds storage operation
– Saves in a Postlude
– Parent requests postlude emission

18

TopVisitor

• Handles class and method declarations
• visit(ClassDeclaring)

– For jasmin, emits our class skeleton.
– Name, modifiers, superclass, interfaces, fields

• .class public foo
• .super java/lang/Object
• .field public myField I

• Note: no postlude needed

19

20

21

TopVisitor

• visit(MethodDeclaring)
– For jasmin, emits our method skeleton.
– Name, modifiers, parameters, return types, limits

• .method public static bar(S)I
• .limit locals 2
• .limit stack 4

• However, we need a postlude:
– .end method

• How can we get the limits?
– locals: from the method's Symbol Table
– stack: from data flow analysis

22

23

24

25

26

27

MethodBodyVisitor

• Generates code for the majority of nodes
– LocalReferencing
– ConstReferencing
– StaticReferencing
– FieldReferencing
– ArrayReferencing
– Computing – most binary and unary operators
– Assigning – but remember the LHSVisitor!
– Invoking – but remember the SignatureVisitor!
– Control Structures

28

30

Note: loc <- allocLocal() is unnecessary for JVM/stack machines as loc is always top of stack,
but for register machines it is needed. Ficher et. Al. are trying to be general here!

Choice of instructions: bipush (for 8 bit values), sipush, ldc or iconst

31

32

33

34

35

36

37

38

39

Code Templates

40

visit [if E then C1 else C2] =
visit [E]
JUMPIFFALSE fl
visit [C1]
JUMP el

fl: visit [C2]
el:

C1

C2

E

fl:

el:

If

E C1 C2

Pause

41

42

43

Code Templates

visit [while E do C] =
JUMP h

l: visit [C]
h: visit[E]

JUMPIFTRUE l

C
E

While Command:
visit [while E do C] =

l: visit [E]
JUMPIFFALSE d

visit[C]
JUMP l

d:

E

C

Alternative While Command code template:

E C

LHSVisitor

• Generates the correct address and postlude for a LHS
• May need to call other visitors for expressions (e.g., a[5])

– Locals
• No emission
• Postlude: [type]store N

– N from Localreferencing.getRegister()
– Statics:

• No emission
• postlude: putstatic <Type> <name>

– Fields
• Emits object reference
• Postlude: putfield <Type> <name>

– Arrays:
• Emits array reference and index
• postlude: <type>astore

44

46

47

48

49

How to design the CodeVisitor?

• Idea from Brown & Watt
• Start with Code templates

– Each statement and expression generates a sequence of
bytecodes

– A code template shows how to generate bytecodes for a given
language construct and its constituents

• The template ignores the surrounding context
• And it ignores uniqueness of label names

– The given label names are symbolic; you have to make sure
they are unique via some genLabel method

• This yields a simple, recursive strategy for the code
generation

50

51

Code Templates

visit [while E do C] =
JUMP h

l: visit [C]
h: visit [E]

JUMPIFTRUE l

C
E

While Command:
visit [while E do C] =

l: visit [E]
JUMPIFFALSE d

visit [C]
JUMP l

d:

E

C

Alternative While Command code template:

Code Template

• do-while

• For loop

52

visit [do C while E] =

visit [for (C-init ; E ; C-update) C-body] =

Code Template

• do-while

• For loop

53

visit [do C while E] =
l: visit [C]

visit [E]
JUMPIFTRUE l

visit [for (C-init ; E ; C-update) C-body] =
visit [C-init]

l: visit [E]
JUMPIFFALSE e

u: visit [C-body]
visit [C-update]
JUMP l

e:

Examples

54

Code Template Invariants

• A statement and a void expression leaves the stack
height unchanged

• A non-void expression increases the stack height by one
• This is a local property of each template
• The generated code must be verifiable
• This is not a local property, since the verifier performs a

global static analysis

55

Representing Java types

57

58

59

60

61

62

63

64

65

66

67

68

69

An Example

70

71

Code generation summary

• Create code templates inductively
– There may be special case templates generating equivalent, but

more efficient code
– Keep in mind what goes on at compile time

• AST traversal order
– Keep in mind what goes on at run time

• Control flow order
• Use visitors pattern to walk the AST recursively

emitting code as you go along

What can you do in your project now?

• Use the idea of code templates for defining the code
generation phase of your compiler

• Generate code for the JVM
– At least for a (small) part of your language

72

1

Languages and Compilers
(SProg og Oversættere)

Lecture 17
Storage Allocations and Run Time Management

Bent Thomsen
Department of Computer Science

Aalborg University

Learning goals

• Understand
– Data representation (direct vs. indirect)
– Storage allocation strategies:

• static vs. dynamic (stack and heap)
– Activation records (sometimes called frames)
– Why may we need heap allocation

• Gain an overview of
– Garbage collection strategies (Types of GCs)

2

3

Issues in Code Generation

• Code Selection:
Deciding which sequence of target machine instructions will be
used to implement each phrase in the source language.

• Storage Allocation
Deciding the storage address for each variable in the source
program. (static allocation, stack allocation etc.)

• Register Allocation (for register-based machines)
How to use registers efficiently to store intermediate results.

We will look at register allocation in later lectures

4

What are (some of) the issues

High Level
Program

Low-level Language
Processor

How to model high-level computational structures and data
structures in terms of low-level memory and machine instructions.

Procedures
Expressions

Variables
Arrays

Records

Objects
Methods

Registers

Machine Instructions

Bits and Bytes
Machine Stack

How to model ?

Easy for Java (or Java like) on the JVM

For other Languages on the JVM some thoughts
Are needed on a suitable mapping

Back in the olden days....

• No memory organization
• Programs had access to all of memory
• Memory was one big array of bytes
• No distinction between code and data

• Not just so in the old days also so for:
• Low level VMs
• Assember/Machine code
• Connection with the CART and PSS courses:

6

7

Data Representation

• Data Representation: how to represent values of the source
language on the target machine.

Records

Arrays
Strings

Integer

Char

?

00..10
01..00

...

High level data-structures

0:
1:
2:
3:

Low level memory model

word
word

Note: addressing schema and
size of “memory units” may vary

…

8

Data Representation

Important properties of a representation schema:
• non-confusion: different values of a given type should have

different representations
• uniqueness: Each value should always have the same

representation.

These properties are very desirable, but in practice they are not
always satisfied:
Example:
• confusion: approximated floating point numbers.
• non-uniqueness: one’s complement representation of integers

+0 and -0

9

Data Representation

Important issues in data representation:
• constant-size representation: The representation of all values

of a given type should occupy the same amount of space.
• direct versus indirect representation

x bit pattern x bit pattern•
handle

Direct representation
of a value x

Indirect representation
of a value x

10

Indirect Representation

small x
bit pattern

•

Q: What reasons could there be for choosing indirect representations?

To make the representation “constant size” even if representation
requires different amounts of memory for different values.

big x
bit pattern

•

Both are represented
by pointers

=>Same size

11

Indirect versus Direct

The choice between indirect and direct representation is a key
decision for a language designer/implementer.

• Direct representations are often preferable for efficiency:
• More efficient access (no need to follow pointers)
• More efficient “storage class” (e.g stack rather than heap

allocation)
• For types with widely varying size of representation it is almost

a must to use indirect representation (see previous slide)

Languages like Pascal, C, C++ try to use direct representation wherever possible.
Languages like Scheme, ML, Python use mostly indirect representation
everywhere (because of polymorphic higher order functions)
Java: primitive types direct, “reference types” indirect, e.g. objects and arrays.

12

Data Representation

We now survey representation of the data types found in C-like
languages (Triangle), assuming direct representations wherever
possible.

We will discuss representation of values of:
• Primitive Types
• Record Types
• Static Array Types
• Dynamic Array Types

We will use the following notations (if T is a type):
#[T] The cardinality of the type (i.e. the number of possible values)

size[T] The size of the representation (in number of bits/bytes)

13

Data Representation: Primitive Types

What is a primitive type?
The primitive types of a programming language are those types
that cannot be decomposed into simpler types. For example
integer, boolean, char, etc.

Type: boolean
Has two values true and false
=> #[boolean] = 2
=> size[boolean] ≥ 1 bit

Note: In general if #[T] = n then size[T] ≥ log2n bits

Value
false
true

Possible Representation
1bit byte(option 1) byte(option2)
0 00000000 00000000
1 00000001 11111111

14

Data Representation: Primitive Types
Type: integer
Fixed size representation, usually dependent (i.e. chosen based
on) what is efficiently supported by target machine. Typically
uses one word (16 bits, 32 bits, or 64 bits) of storage.

size[integer] = word (= 16 bits)
=> # [integer] ≤ 216 = 65536

Modern processors use two’s complement representation of integers

1 0 0 0 0 1 0 0 1 0 0 1 0 1 1 1

Multiply with -(215) Multiply with 2n

Value = -1.215 +0.214 +…+0.23+1.22 +1.21 +1.20

n = position from left

15

Data Representation: Composite Types

Composite types are types which are not “atomic”, but which are
constructed from more primitive types.

• Records (called structs in C)
Aggregates of several values of several different types

• Arrays
Aggregates of several values of the same type

• Variant Records or Disjoint Unions
• Pointers or References
• (Objects)
• Functions

16

Data Representation: Records

Example: Triangle Records

type Date = record
y : Integer,
m : Integer,
d : Integer

end;
type Details = record

female : Boolean,
dob : Date,
status : Char

end;
var today: Date;
var my: Details

17

Data Representation: Records

Example: Triangle Record Representation

today.m

2002
2

today.y

today.d 5
my.dob.m

1970
5

my.dob.y

my.dob.d 17

false

‘u’

my.female

my.dob

my.status

…1 word:

18

Data Representation: Records

Records occur in some form or other in most programming languages:
Ada, Pascal, Triangle (here they are actually called records)
C, C++, C# (here they are called structs).
The usual representation of a record type is just the concatenation of
individual representations of each of its component types.

r.I1

r.I2

r.In

value of type T1

value of type T2

value of type Tn

19

Data Representation: Records

Example:
size[Date] = 3*size[integer] = 3 words
address[today.y] = address[today]+0
address[today.m] = address[today]+1
address[today.d] = address[today]+2

address[my.dob.m] = address[my.dob]+1 = address[my]+2

Q: How much space does a record take up?
And how to access record elements?

Note: these formulas assume that addresses are
indexes of words (not bytes) in memory
(otherwise multiply offsets by 2)

20

Data Representation: Disjoint Unions

What are disjoint unions?
Like a record, has elements which are of different types. But the
elements never exist at the same time. A “type tag” determines which
of the elements is currently valid.

Example: Pascal variant records

type Number = record
case discrete: Boolean of

true: (i: Integer);
false: (r: Real)

end;
var num: Number

Mathematically we write disjoint union types as: T = T1 | … | Tn

21

Data Representation: Disjoint Unions
Example: Pascal variant records representation
type Number = record

case discrete: Boolean of
true: (i: Integer);
false: (r: Real)

end;
var num: Number

Assuming size[Integer]=size[Boolean]=1 and size[Real]=2, then
size[Number] = size[Boolean] + MAX(size[Integer], size[Real])

= 1 + MAX(1, 2) = 3

num.i

true
15

num.discrete

unused
num.r

falsenum.discrete

3.14

22

Data Representation: Disjoint Unions

type T = record
case Itag: Ttag of

v1: (I1: T1);
v2: (I2: T2);
...
vn: (In: Tn);

end;
var u: T

v1

type T1

v2

type T2

vn

type Tn
or …u.I1 u.I2

u.Itag

u.In

u.Itag u.Itag

or or

size[T] = size[Ttag]
+ MAX(size[T1], ..., size[Tn])

address[u.Itag] = address[u]

address[u.I1] = address[u]+size[Ttag]
...
address[u.In] = address[u]+size[Ttag]

23

Arrays
An array is a composite data type, an array value consists of multiple
values of the same type. Arrays are in some sense like records,
except that their elements all have the same type.

The elements of arrays are typically indexed using an integer value
(In some languages such as for example Pascal, also other “ordinal”
types can be used for indexing arrays).

Two kinds of arrays (with different runtime representation schemas):
• static arrays: their size (number of elements) is known at

compile time.
• dynamic arrays: their size can not be known at compile time

because the number of elements is computed at run-time and
sometimes may vary at run-time (Flex-arrays).

Q: Which are the “cheapest” arrays? Why?

24

Static Arrays
Example:

type Name = array 6 of Char;
var me: Name;
var names: array 2 of Name

‘K’
‘r’
‘i’
‘s’
‘ ’
‘ ’

me[0]
me[1]
me[2]
me[3]
me[4]
me[5]

‘J’
‘o’
‘h’
‘n’
‘ ’
‘ ’

names[0][0]
names[0][1]
names[0][2]
names[0][3]
names[0][4]
names[0][5]

Name

‘S’
‘o’
‘p’
‘h’
‘i’
‘a’

names[1][0]
names[1][1]
names[1][2]
names[1][3]
names[1][4]
names[1][5]

Name

25

Static Arrays
Example:

type Coding = record
Char c, Integer n

end

var code: array 3 of Coding

‘K’
5

code[0].c
code[0].n Coding

‘i’
22

code[1].c
code[1].n Coding

‘d’
4

code[2].c
code[2].n Coding

26

Static Arrays

type T = array n of TE;
var a : T;

a[0]

a[1]

a[2]

a[n-1]

size[T] = n * size[TE]

address[a[0]] = address[a]
address[a[1]] = address[a]+size[TE]
address[a[2]] = address[a]+2*size[TE]
…
address[a[i]] = address[a]+i*size[TE]
…

27

Dynamic Arrays

char[] buffer;

buffer = new char[buffersize];

...
for (int i=0; i<buffer.length; i++)

buffer[i] = ‘ ’;

Example: Java Arrays (all arrays in Java are dynamic)
Dynamic arrays are arrays whose size is not known until run time.

Dynamic array: no size given in declaration

Array creation at runtime determines size

Can ask for size of an array at run time

Q: How could we represent Java arrays?

28

Dynamic Arrays

char[] buffer;

buffer = new char[7];

Java Arrays

‘C’
‘o’

buffer[0]
buffer[1]

‘m’ buffer[2]
buffer[3]‘p’

A possible representation for Java arrays

7
•

buffer[4]‘i’
buffer[5]‘l’
buffer[6]‘e’

buffer.length
buffer.origin

29

Dynamic Arrays

char[] buffer;

buffer = new char[7];

Java Arrays

‘C’
‘o’

buffer[0]
buffer[1]

‘m’ buffer[2]
buffer[3]‘p’

Another possible representation for Java arrays

7•

buffer[4]‘i’
buffer[5]‘l’
buffer[6]‘e’

buffer.length
buffer

Note: In reality Java also stores a
type in its representation for arrays,
because Java arrays are objects
(instances of classes).

Where to put data?
Now we have looked at how program structures are

implemented in a computer memory

Next we look at where to put them

We will cover 3 methods:
1) static allocation,
2) stack allocation, and
3) heap allocation.

Static Allocation

Originally, all data were global.
Correspondingly, all memory allocation was static.
During compilation, data was simply placed at a fixed

memory address for the entire execution of a program.
This is called static allocation.

Examples are all assembly languages, Cobol, and Fortran.

Note: code is (still) usually allocated statically

Static Allocation (Cont.)

Static allocation can be quite wasteful of memory space. To
reduce storage needs, in Fortran, the equivalent statement
overlays variables by forcing two variables to share the same
memory locations. In C,C++, union does this too.

Overlaying hurts program readability, as assignment to one
variable changes the value of another.

In more modern languages, static allocation is used for global
variables and literals (constant) that are fixed in size and
accessible throughout program execution.

It is also used for static and extern variables in C/C++ and for
static fields in C# and Java classes.

Stack Allocation

Recursive languages require dynamic memory allocation. Each
time a recursive method is called, a new copy of local variables
(frame) is pushed on a runtime stack. The number of allocations is
unknown at compile-time.

A frame (or activation record) contains space for all of the local
variables in the method. When the method returns, its frame is
popped and the space reclaimed.
Thus, only the methods that are actually executing are allocated
memory space in the runtime stack. This is called stack allocation.

34

35

Stack Storage Allocation

void Y() {
int d;
... e;
... ; }

void Z() {
int f;
...; Y(); ... }

int main(){
int[3] a;
bool b;
char c;
...; Y(); ...; Z(); }

Example: When do the variables in this program “exist”

as long as the
program is

running

when procedure
Y is active

when procedure
Z is active

Now we will look at allocation of local variables

36

Stack Storage Allocation

Start of program End of program time

call depth

global

Y Z1

2 Y

Z

1) Procedure activation behaves like a stack (LIFO).
2) The local variables “live” as long as the procedure they are
declared in.
1+2 => Allocation of locals on the “call stack” is a good model.

A “picture” of our program running:

Recursion

int fact (int n) {
if (n>1) return n* fact (n-1);
else return 1;

}

38

Recursion: General Idea
Why the stack allocation model works for recursion:
Like other function/procedure calls, lifetimes of local variables and
parameters for recursive calls behave like a stack.

fac(3)

fac(2)

fac(1)

fac(4) fac(4)

fac(3)

fac(2)

fac(4)
fac(4)

fac(3) fac(3)

fac(2)

fac(2)

fac(1)

fac(3)

fac(2)

fac(4)

fac(3)?

?
fac(4)

Dynamic link

Because stackframes may vary in size and because the
stack may contain more than just frames (e.g., registers
saved across calls), dynamic link is used to point to the
preceding frame (Fig. 12.4).

Nested functions/procedures

int p (int a) {
int q (int b) { if (b <0) q (-b) else return a+b; }
return q (-10);

}

Methods cannot nest in C, Java, but in languages like Pascal, ML
and Python they can. How to keep track of static block structure
as above?

A static link points to the frame of the method that statically
encloses the current method. (Fig. 12.6)

An alternative to using static links to access frames of enclosing
methods is the use of a display. Here, we maintain a set of
registers which comprise the display. (see Fig. 12,7)

41

Blocks

void p (int a) {
int b;
if (a>0) {float c,d; //body of block 1//}
else {int e[10]; //body of block 2//}

}

We could view such blocks as parameter-less procedures
and thus use procedure-level-frames to implement
blocks, but because the then and else parts of the if
statement above are mutually exclusive, variables in
block 1 and block 2 can overlay each other. This is
called block-level frame, as contrasted with
procedure-level frame allocation. (Fig. 12.8)

Higher-order functions

• Functions as values (first-class)
– Pass as arguments
– Return as values
– Stored into data structures

• Implementation:
– A code pointer, (i.e., a code address + an environment pointer)
– Such a data structure is called a closure

Higher-order Nested Functions

void->int f(){
int x;
int y;

return g;
}

h = f(); // h==g
h(); // g()

int g (){
int z;
return z+x;

}

frame 0

x
y

f

frame 0

zg

frame 0

Function frames don’t obey LIFO
discipline any more. What one need to do

is to keep frames live long enough!
Heap-allocation!

Heap-allocated Frames

void->int f(){
int x;
int y;

return g;
}

h = f();
// h == cg
h();

int g (){
int z;
return z+x;

}

frame 0

ret
ebp

frame

next
x
y

env code

f

gcg

Heap-allocated Frames

void->int f(){
int x;
int y;

return g;
}

h = f();
// h == cg
h();

int g (){
int z;
return z+x;

}

frame 0

env
ebp

frame

next
x
y

env code

g

gcg

h->code(h->env);

Pause

47

Memory Management
When a program is started, most operating systems
allocate 3 memory segments for it:
1) code segment: read-only

Code (normally doesn’t change during execution)
Global variables (sometimes stored at the bottom of the stack)

2) stack segment (data):
manipulated by machine instructions.
local variables and arguments for procedures and functions
lifetime follows procedure activation

3) heap segment (data):
manipulated by the programmer.
some programs may ask for and get memory allocated on
arbitrary points during execution
When this memory is no longer used it should be freed

49

Heap Storage

• Memory allocation under explicit programmatic control
– C malloc, C++ / Pascal / Java / C# new operation.

• Memory allocation implicit in language constructs
– Lisp, Scheme, Haskell, SML, … most functional languages
– Autoboxing/unboxing in Java 1.5 and C#

• Deallocation under explicit programmatic control
– C, C++, Pascal (free, delete, dispose operations)

• Deallocation implicit
– Java, C#, Lisp, Scheme, Haskell, SML, …

50

Data representation
Sometimes it goes the other way round

High Level
Program

Low-level Language
Processor

How to reflect low-level memory and machine data structures in
terms of high-level computational structures.

Objects

Registers
Bits and Bytes

How to model ?

Pointers

Indirect addressing

References

51

How does things become garbage?

int *p, *q;
…
p = malloc(sizeof(int));
p = q;

for(int i=0;i<10000;i++){
SomeClass obj= new SomeClass(i);
System.out.println(obj);

}

Newly created space becomes garbage

Creates 10000 objects, which becomes
garbage just after the print

52

Problem with explicit heap management

int *p, *q;
…
p = malloc(sizeof(int));
q = p;
free(p); Dangling pointer in q now

float myArray[100];

p = myArray;
*(p+i) = … //equivalent to myArray[i]

They can be hard to recognize

53

Stacks and dynamic allocations are incompatible

Why can’t we just do dynamic allocation within the stack?

Programming Language design and Implementation -4th Edition
Copyright©Prentice Hall, 2000

54

Where to put the heap?

• The heap is an area of memory which is dynamically
allocated.

• Like a stack, it may grow and shrink during runtime.
• Unlike a stack it is not a LIFO => more complicated to

manage
• In a typical programming language implementation we

will have both heap-allocated and stack allocated
memory coexisting.

Q: How do we allocate memory for both

55

Where to put the heap?

• A simple approach is to divide the available memory at
the start of the program into two areas: stack and heap.

• Another question then arises
– How do we decide what portion to allocate for stack vs. heap ?
– Issue: if one of the areas is full, then even though we still have

more memory (in the other area) we will get out-of-memory
errors

Q: Isn’t there a better way?

56

Where to put the heap?

Q: Isn’t there a better way?
A: Yes, there is an often used “trick”: let both stack and heap share the
same memory area, but grow towards each other from opposite ends!

ST

SB

HB

HT

Stack memory area

Heap memory area

Stack grows downward

Heap can expand upward

57

Implicit memory management

• Current trend of modern programming language development:
to give only implicit means of memory management to a
programmer:
– The constant increase of hardware memory justifies the policy of automatic

memory management
– The explicit memory management distracts programmer from his primary tasks:

let everyone do what is required of them and nothing else!
– The philosophy of high-level languages conforms to the implicit memory

management

• Other arguments for implicit memory management:
– Anyway, a programmer cannot control memory management for temporary

variables!
– The difficulties of combination of two memory management mechanisms: system

and the programmer’s

• The history repeats: in 70’s people thought that the implicit
memory management had finally replaced all other mechanisms

58

Automatic Storage Deallocation
(Garbage Collection)

Everybody probably knows what a garbage collector is.

But here are two “one liners” to make you think again about what a
garbage collector really is!

1) Garbage collection provides the “illusion of infinite memory”!

2) A garbage collector predicts the future!

It’s a kind of magic! :-)

Let us look at how this magic is done!

59

Types of garbage collectors

• The “Classic” algorithms
– Reference counting
– Mark and sweep

• Copying garbage collection
• Generational garbage collection
• Incremental Tracing garbage collection

• Direct Garbage Collectors: a record is associated with each node in
the heap. The record for node N indicates how many other nodes or
roots point to N.

• Indirect/Tracing Garbage Collectors: usually invoked when a user’s
request for memory fails. The garbage collector visits all live nodes,
and returns all other memory to the free list. If sufficient memory has
been recovered from this process, the user’s request for memory is
satisfied.

60

Terminology

• Roots: values that a program can manipulate directly (i.e. values
held in registers, on the program stack, and global variables.)

• Node/Cell/Object: an individually allocated piece of data in the
heap.

• Children Nodes: the list of pointers that a given node contains.
• Live Node: a node whose address is held in a root or is the child

of a live node.
• Garbage: nodes that are not live, but are not free either.
• Garbage collection: the task of recovering (freeing) garbage

nodes.
• Mutator: The program running alongside the garbage collection

system.

61

Reference Counting

• Every cell has an additional field: the reference count.
This field represents the number of pointers to that cell
from roots or heap cells.

• Initially, all cells in the heap are placed in a pool of free
cells, the free list.

• When a cell is allocated from the free list, its reference
count is set to one.

• When a pointer is set to reference a cell, the cell’s
reference count is incremented by 1; if a pointer is to the
cell is deleted, its reference count is decremented by 1.

• When a cell’s reference count reaches 0, its pointers to
its children are deleted and it is returned to the free list.

Reference Counting

63

Reference Counting: Advantages and Disadvantages

• Advantages:
– Garbage collection overhead is distributed.
– Locality of reference is no worse than mutator.
– Free memory is returned to free list quickly.

• Disadvantages:
– High time cost (every time a pointer is changed, reference counts must be updated).

• In place of a single assignment x.f = p:

– Storage overhead for reference counter can be high.
– If the reference counter overflows, the object becomes permanent.
– Unable to reclaim cyclic data structures.

z = x.f
c = z.count
c = c – 1
z.count = c
If c = 0 call putOnFreeList(z)
x.f = p
c = p.count
c = c + 1
p.count = c

64

How to keep track of free memory?

Stack is LIFO allocation => ST moves up/down everything above ST
is in use/allocated. Below is free memory. This is easy! But …
Heap is not LIFO, how to manage free space in the “middle” of the
heap?

HB

HT
Allocated

ST

SB

Free

Free

Mixed:
Allocated
and
Free

reuse?

65

How to keep track of free memory?

How to manage free space in the “middle” of the heap?

HB

HT

=> keep track of free blocks in a data structure: the “free list”. For
example we could use a linked list pointing to free blocks.

Free Next

freelist

Free Next

Free Next

A freelist!
Good idea!

But where do we
find the memory to
store this data
structure?

66

How to keep track of free memory?

HB

HT

Q: Where do we find the memory to store a freelist data structure?
A: Since the free blocks are not used for anything by the program =>
memory manager can use them for storing the freelist itself.

HF

HF free block size
next free

67

Mark-Sweep

• The first tracing garbage collection algorithm
• Garbage cells are allowed to build up until heap space is

exhausted (i.e. a user program requests a memory allocation, but
there is insufficient free space on the heap to satisfy the request.)

• At this point, the mark-sweep algorithm is invoked, and garbage
cells are returned to the free list.

• Performed in two phases:
– Mark: identifies all live cells by setting a mark bit. Live cells are cells

reachable from a root.
– Sweep: returns garbage cells to the free list.

68

Mark and Sweep Garbage Collection

HT
e

c

a
HB

SB

ST

b

d

before gc

HT
e

c

a

SB

ST

b

d

HB

mark as free phase

X

X

X
X
X

69

Mark and Sweep Garbage Collection

HT
e

c

a

SB

ST

b

d

HB

mark as free phase

X

X

X
X
X

HT
e

c

a

SB

ST

b

d

HB

X

X

X
X
X

X

X

X

mark reachable
SB

ST

HB

HT
e

b

d

X

X

X

X

X

X

collect free

70

Mark and Sweep Garbage Collection
Algorithm pseudo code:
void garbageCollect() {

mark all heap variables as free
for each frame in the stack

scan(frame)
for each heapvar (still) marked as free

add heapvar to freelist
}
void scan(region) {

for each pointer p in region
if p points to region marked as free then

mark region at p as reachable
scan(region at p)

}
Q: This algorithm is recursive. What do you think about that?

71

Mark-Sweep:
Advantages and Disadvantages

• Advantages:
– Cyclic data structures can be recovered.
– Tends to be faster than reference counting.

• Disadvantages:
– Computation must be halted while garbage collection is being

performed
– Every live cell must be visited in the mark phase, and every

cell in the heap must be visited in the sweep phase.
– Garbage collection becomes more frequent as residency of a

program increases.
– May fragment memory.

72

Mark-Sweep-Compact:
Advantages and Disadvantages

• Advantages:
– The contiguous free area eliminates fragmentation problem.

Allocating objects of various sizes is simple.
– The garbage space is "squeezed out", without disturbing the original

ordering of objects. This improves locality.

• Disadvantages:
– Requires several passes over the data are required. "Sliding

compactors" takes two, three or more passes over the live objects.
• One pass computes the new location
• Subsequent passes update the pointers to refer to new locations,

and actually move the objects

73

74

Copying Garbage Collection
(Cheney's algorithm)

• Like mark-compact, copying garbage collection, but does not
really "collect" garbage.

• The heap is subdivided into two contiguous subspaces
– (FromSpace and ToSpace).

• During normal program execution, only one of these semispaces
is in use.

• When the garbage collector is called, all the live data are copied
from the current semispace (FromSpace) to the other semispace
(ToSpace), so that objects need only be traversed once.

• The work needed is proportional to the amount of live data (all
of which must be copied).

75

Semispace Collector Using the Cheney Algorithm

• The heap is subdivided into two contiguous subspaces
(FromSpace and ToSpace).

• During normal program execution, only one of these
semispaces is in use.

• When the garbage collector is called, all the live data are
copied from the current semispace (FromSpace) to the
other semispace (ToSpace).

76

77

Copying Garbage Collection:
Advantages and Disadvantages

• Advantages:
– Allocation is extremely cheap.
– Excellent asymptotic complexity.
– Fragmentation is eliminated.
– Only one pass through the data is required.

• Disadvantages:
– The use of two semi-spaces doubles memory

requirement
– Poor locality. Using virtual memory will cause

excessive paging.

78

Problems with Simple Tracing Collectors

• Difficult to achieve high efficiency in a simple
garbage collector, because large amounts of
memory are expensive.

• If virtual memory is used, the poor locality of the
allocation/reclamation cycle will cause excessive
paging.

• Even as main memory becomes steadily cheaper,
locality within cache memory becomes increasingly
important.

79

Generational Garbage Collection
• Attempts to address weaknesses of simple tracing

collectors such as mark-sweep and copying collectors:
– All active data must be marked or copied.
– For copying collectors, each page of the heap is touched every

two collection cycles, even though the user program is only
using half the heap, leading to poor cache behavior and page
faults.

– Long-lived objects are handled inefficiently.
• Generational garbage collection is based on the

generational hypothesis:
Most objects die young.

• As such, concentrate garbage collection efforts on
objects likely to be garbage: young objects.

80

Generational Garbage Collection: Multiple Generations

• Advantages:
– Keeps youngest generation’s size small.
– Helps address mistakes made by the promotion policy by creating

more intermediate generations that still get garbage collected fairly
frequently.

• Disadvantages:
– Collections for intermediate generations may be disruptive.
– Tends to increase number of inter-generational pointers, increasing

the size of the root set for younger generations.
• Performs poorly if any of the main assumptions are false:

– That objects tend to die young.
– That there are relatively few pointers from old objects to young

ones.

81

Incremental Tracing Collectors

• Program (Mutator) and Garbage Collector run
concurrently.
– Can think of system as similar to two threads. One performs

collection, and the other represents the regular program in
execution.

• Can be used in systems with real-time requirements.
For example, process control systems.
– allow mutator to do its job without destroying collector’s

possibilities for keeping track of modifications of the object
graph, and at the same time

– allowing collector to do its job without interfering with
mutator

82

Garbage Collection: Summary

Method Conservatism Space Time Fragmentation Locality

Mark Sweep Major Basic 1 traversal + heap
scan

Yes Fair

Mark Compact Major Basic Many passes of
heap

No Good

Copying Major Two Semispaces 1 traversal No Poor

Reference
Counting

No Reference count
field

Constant per
Assignment

Yes Very Good

Deferred
Reference
Counting

Only for stack
variables

Reference Count
Field

Constant per
Assignment

Yes Very Good

Incremental Varies depending
on algorithm

Varies Can be Guaranteed
Real-Time

Varies Varies

Generational Variable Segregated Areas Varies with number
of live objects in
new generation

Yes (Non-Copying)
No (Copying)

Good

Tracing
Increm

ental

83

Different choices for different reasons

• JVM
– Sun Classic: Mark, Sweep and Compact
– SUN HotSpot: Generational (two generation + Eden)

• -Xincgc an incremental collector that breaks that old-object region into
smaller chunks and GCs them individually

• -Xconcgc Concurrent GC allows other threads to keep running in
parallel with the GC

– BEA jRockit JVM: concurrent, even on another processor
– IBM: Improved Concurrent Mark, Sweep and Compact with a notion of

weak references
– Real-Time Java

• Scoped LTMemory, VTMemory, RawMemory
• .Net CLR

– Managed and unmanaged memory (memory blob)
– PC version: Self-tuning Generation Garbage Collector
– .Net CF: Mark, Sweep and Compact

84

RTSJ Scoped Memory
• Scopes have fixed lifetimes
• Lifetime starts here:

– scopedMemArea.enter() { … }

• Lifetime ends:
• All calls to new inside a scope, create an object

inside of that scope
• When the scope’s lifetime ends, all objects within

are destroyed
• Scopes may be nested

85

Region Based memory management

• Compiler (especially Type inference)
automatically detects scopes or regions

• May require programmer to annotate types
• May sometimes have worse behaviour than GC

and heap

Summary of Storage Allocation

• Data Representation
– Non-confusion and uniqueness
– Direct vs. indirect

• Data Allocation
– Static
– Stack

• Frames, dynamic and static links/display regs, closures
– Heap

• Manual vs. automatic
• Garbage Collection

– Different algorithms have pros and cons

86

1

Languages and Compilers
(SProg og Oversættere)

Lecture 18
Low Level Code Generation

Bent Thomsen
Department of Computer Science

Aalborg University

Learning goals

• Understand issues such as
– code selection
– storage allocation
– register allocation
– code scheduling
for low level code generation.

• Understand different approaches to low level code
generation:
– Code generation from AST via visitor
– Code generation by tree-rewrite and pattern matching
– Code generation from IR

2

3

The “Phases” of a Compiler

Syntax Analysis

Contextual Analysis

Code Generation

Source Program

Abstract Syntax Tree

Decorated Abstract Syntax Tree

Object Code

Error Reports

Error Reports

4

The “Phases” of a Compiler

Analyze/Optimize

Analyze/optimize

Code Generation

Intermediate Code

Intermediate Code

Intermediate Code

Object Code

Error Reports

Error Reports

Intermediate Representations

• Abstract Syntax Tree
– Convenient for semantic analysis phases
– We can generate code directly from the AST, but...
– What about multiple target architectures?

• Remember n * m vs. n + m
• Intermediate Representation

– "Neutral" architecture
– Easy to translate to native code
– Can abstracts away complicated runtime issues

• Stack Frame Management
• Memory Management
• Register Allocation

5

6

Issues in Code Generation

• Code Selection:
Deciding which sequence of target machine instructions will be
used to implement each phrase in the source language.

• Storage Allocation
Deciding the storage address for each variable in the source
program. (static allocation, stack allocation etc.)

• Register Allocation (for register-based machines)
How to use registers efficiently to store intermediate results.

• Code Scheduling
The order in which the generated instructions are executed

7

Code generation from AST
summary

• Idea from Brown & Watt
• Create code templates inductively

– There may be special case templates generating
equivalent, but more efficient code

– Keep in mind what goes on at compile time
• AST traversal order

– Keep in mind what goes on at run time
• Control flow order

• Use visitors (or composit or functional) pattern to walk
the AST recursively emitting code as you go along

• Low level VM, called Triangle VM, with direct
addressing and storage allocation

8

Developing a Code Generator “Visitor”

generate code as specified by
execute[C]
generate code as specified by
evaluate[E]
Return “entity description” for the
visited variable or constant name.
generate code as specified by
elaborate[D]
return the size of the type

Program visitProgram generate code as specified by run[P]
Command visit…Command

Expression visit…Expression

V-name visit…Vname

Declaration visit…Declaration

Type-Den visit…TypeDen

Phrase
Class

visitor method Behavior of the visitor method

Example from Brown&Watt chapter 7, p. 260- 280, translating miniTriangle to TAM,
a stack based VM with explicit addressing and storage allocation

9

Developing a Code Generator “Visitor”

/* Expressions */
public Object visitIntegerExpression (

IntegerExpression expr,Object arg) {
short v = valuation(expr.IL.spelling);
emit(Instruction.LOADLop, 0, 0, v);
return null;

}

public short valuation(String s) {
... convert string to integer value ...

}

evaluate [IL] =
LOADL v where v is the integer value of IL

10

Developing a Code Generator “Visitor”

public Object visitBinaryExpression (
BinaryExpression expr,Object arg) {

expr.E1.visit(this,arg);
expr.E2.visit(this,arg);
short p = address for expr.O operation
emit(Instruction.CALLop,

Instruction.SBr,
Instruction.PBr, p);

return null;
}

evaluate [E1 O E2] =
evaluate [E1]
evaluate [E2]
CALL p where p is the address of routine for O

Remaining expression visitors are developed in a similar way.

11

Developing a Code Generator “Visitor”

/* Generating code for commands */

public Object visitAssignCommand(
AssignCommand com,Object arg) {

com.E.visit(this,arg);
RuntimeEntity entity =

(RuntimeEntity) com.V.visit(this,null);
short d = entity.address;
emit(Instruction.STOREop,Com.V.size,d);
return null;

}

execute [V := E] =
evaluate [E]
assign [V]

12

Developing a Code Generator “Visitor”

public Object visitSequentialCommand(
SequentialCommand com,Object arg) {

com.C1.visit(this,arg);
com.C2.visit(this,arg);
return null;

}

execute [C1 ; C2] =
execute[C1]
execute[C2]

- IfCommand and WhileCommand: complications with jumps
- LetCommand is more complex: memory allocation and addresses

13

Control Structures

We have yet to discuss generation for IfCommand and WhileCommand

execute [while E do C] =
JUMP h

g: execute [C]
h: evaluate[E]

JUMPIF(1) g

A complication is the generation of the correct addresses for the jump
instructions.

We can determine the address of the instructions by incrementing a
counter while emitting instructions.

Backwards jumps are easy but forward jumps are harder.
Q: why?

C
E

14

Control Structures

Backwards jumps are easy:
The “address” of the target has already been generated and is
known

Forward jumps are harder:
When the jump is generated the target is not yet generated so its
address is not (yet) known.

There is a solution which is known as backpatching
1) Emit jump with “dummy” address (e.g. simply 0).
2) Remember the address where the jump instruction

occurred.
3) When the target label is reached, go back and patch the

jump instruction.

15

Backpatching Example
public Object WhileCommand (

WhileCommand com,Object arg) {
short j = nextInstrAddr;
emit(Instruction.JUMPop, 0,

Instruction.CBr,0);
short g = nextInstrAddr;
com.C.visit(this,arg);
short h = nextInstrAddr;
code[j].d = h;
com.E.visit(this,arg);
emit(Instruction.JUMPIFop, 1,

Instruction.CBr,g);
return null;

}

execute [while E do C] =
JUMP h

g: execute [C]
h: evaluate[E]

JUMPIF(1) g

dummy address

backpatch

16

Static Storage Allocation: In the Code Generator
public Object visit...Command(

...Command com, Object arg) {
short gs = shortValueOf(arg);
generate code as specified by execute[com]
return null;

}
public Object visit...Expression(

...Expression expr, Object arg) {
short gs = shortValueOf(arg);
generate code as specified by evaluate[expr]
return new Short(size of expr result);

}
public Object visit...Declaration(

...Declaration dec, Object arg) {
short gs = shortValueOf(arg);
generate code as specified by elaborate[dec]
return new Short(amount of extra allocated by dec);

}

17

Routines

We call the assembly language equivalent of procedures “routines”.

What are routines? Unlike procedures/functions in higher level
languages. They are not directly supported by language constructs.
Instead they are modeled in terms of how to use the low-level
machine to “emulate” procedures.

What behavior needs to be “emulated”?
• Calling a routine and returning to the caller after completion.
• Passing arguments to a called routine
• Returning a result from a routine
• Local and non-local variables.

18

Code Generation for Procedures and Functions

We extend Mini Triangle with procedures:

Declaration
::= ...

| proc Identifier () ~ Command
Command

::= ...
| Identifier ()

First , we will only consider global procedures (with no arguments).

19

Code Template: Global Procedure

elaborate [proc I () ~ C] =
JUMP g

e: execute [C]
RETURN(0) 0

g:

C

execute [I ()] =
CALL(SB) e

20

Routines

• Transferring control to and from routine:
Most low-level processors have CALL and RETURN for
transferring control from caller to callee and back.

• Transmitting arguments and return values:
Caller and callee must agree on a method to transfer argument
and return values.
=> This is called the “routine protocol”

There are many possible ways to pass argument and return
values.
=> A routine protocol is like a “contract” between the caller
and the callee.

!
The routine protocol is often dictated by the operating system.

21

Routine Protocol Examples

The routine protocol depends on the machine architecture (e.g. stack
machine versus register machine).

Example 1: A possible routine protocol for a RM
- Passing of arguments:

first argument in R1, second argument in R2, etc.
- Passing of return value:

return the result (if any) in R0
Note: this example is simplistic:

- What if more arguments than registers?
- What if the representation of an argument is larger than can be
stored in a register.

For RM protocols, the protocol usually also specifies who (caller or
callee) is responsible for saving contents of registers.

22

Routine Protocol Examples

Example 2: A possible routine protocol for a stack machine
- Passing of arguments:

pass arguments on the top of the stack.
- Passing of return value:

leave the return value on the stack top, in place of the
arguments.

Note: this protocol puts no boundary on the number of arguments
and the size of the arguments.

Most micro-processors, have registers as well as a stack. Such
“mixed” machines also often use a protocol like this one.

23

Routine Protocol

SB

LB

ST

globals

just before the call just after the call

args

SB

LB

ST

globals

result

What happens in between?

24

Routine Protocol

LB

ST

(1) just before the call

args

(2) just after entry

LB

ST

args

link data

note: Going from (1) -> (2) in JVM is the execution of a single
CALL instruction.

25

Routine Protocol

(2) just after entry

LB

ST

args

link data

(3.1) during execution of routine

LB

ST

args

link data
local
data

shrinks
and grows
during
execution

26

Routine Protocol

(3.2) just before return

LB

ST

args

link data
local
data

result

(4) just after return

LB

ST result

note: Going from (3.2) -> (4) in JVM is the execution of a single
RETURN instruction.

27

Procedures and Functions: Parameters

We extend Mini Triangle with ...

Declaration
::= ...

| proc Identifier (Formal) : TypeDenoter ~
Expression

Expression
::= ...

| Identifier (Actual)
Formal

::= Identifier : TypeDenoter
| var Identifier : TypeDenoter

Actual
::= Expression

| var VName

28

Code Templates Parameters

elaborate [proc I(FP) ~ C] =
JUMP g

e: execute [C]
RETURN(0) d

g:

execute [I (AP)] =
passArgument [AP]
CALL(r) e

passArgument [E] =
evaluate [E]

passArgument [var V] =
fetchAddress [V]

where d is the size of FP

Where (l,e) = address of routine bound to I,
Cl = current routine level

r = display-register(cl,l)

29

Arguments: by value or by reference

Value parameters:
At the call site the argument is an expression, the evaluation of that
expression leaves some value on the stack. The value is passed to the
procedure/function.
A typical instruction for putting a value parameter on the stack:
LOADL 6

Var parameters:
Instead of passing a value on the stack, the address of a memory
location is pushed. This implies a restriction that only “variable-like”
things can be passed to a var parameter. In Triangle there is an explicit
keyword var at the call-site, to signal passing a var parameter. In
Pascal and C++ the reference is created implicitly (but the same
restrictions apply).
Typical instructions: LOADA 5[LB] LOADA 10[SB]

30

Summary

• The activation record must be designed together with
the code generator

• Code generation can be done by recursive traversal of
the AST

• Production compilers do different things
– Emphasis is on keeping values (esp. current stack frame) in

registers
– Intermediate results are laid out in the AR, not pushed and

popped from the stack

Pause

31

Code generation for the MIPS Architecture

MIPS is implementation of a RISC architecture
• MIPS32 ISA

– Designed for use with high-level programming languages
• small set of instructions and addressing modes, easy for compilers

– fixed instruction width (32-bits),
– minimize control complexity, allow for more registers
– 32 general purpose registers (32 bits each)

– Arithmetic operations use registers for operands and results
• Must use load and store instructions to use operands and results in

memory
– Load-store machine

• large register set (32 word sized regs)
• minimize main memory access

• MIPS has a nice simulator called SPIM
• MIPS (sometimes called RISC-I) is inspiration for the RISC-V processor

32

MIPS organization

33

Source: Introduction to Compiler Construction in a Java World: B. Campbell et. Al.

34

MIPS Instructions

• MIPS instructions fall into 5 classes:
– Arithmetic/logical/shift/comparison (R-type)
– Load/store (I-type)
– Control instructions (branch and jump) (J-type)
– Other (exception, register movement to/from GP registers, etc.)

• Three instruction encoding formats:
– R-type (6-bit opcode, 5-bit rs, 5-bit rt, 5-bit rd, 5-bit shamt, 6-bit function code)

– I-type (6-bit opcode, 5-bit rs, 5-bit rt, 16-bit immediate)

– J-type (6-bit opcode, 26-bit pseudo-direct address)

35

36

A Sample of MIPS Instructions

– lw reg1 offset(reg2)
• Load 32-bit word from address reg2 + offset into reg1

– add reg1 reg2 reg3

• reg1 ← reg2 + reg3

– sw reg1 offset(reg2)
• Store 32-bit word in reg1 at address reg2 + offset

– addiu reg1 reg2 imm
• reg1 ← reg2 + imm
• “u” means overflow is not checked

– li reg imm
• reg ← imm

MIPS Addressing Modes

• MIPS addresses register operands using 5-bit field
– Example: ADD $2, $3, $4

• Immediate addressing
– Operand is help as constant (literal) in instruction word
– Example: ADDI $2, $3, 64

• MIPS addresses load/store locations
– base register + 16-bit signed offset (byte addressed)

• Example: LW $2, 128($3)

– 16-bit direct address (base register is 0)
• Example: LW $2, 4092($0)

– indirect (offset is 0)
• Example: LW $2, 0($4)

37

MIPS Addressing Modes

• MIPS addresses jump targets as register content or 26-
bit “pseudo-direct” address

• Example: JR $31, J 128

• MIPS addresses branch targets as signed instruction
offset
– relative to next instruction (“PC relative”)
– in units of instructions (words)
– held in 16-bit offset in I-type
– Example: BEQ $2, $3, 12

38

A small language example

• A language with integers and integer operations

P → D; P | D
D → def id(ARGS) = E;

ARGS → id, ARGS | id
E → int | id | if E1 = E2 then E3 else E4

| E1 + E2 | E1 – E2 | id(E1,…,En)
• The first function definition f is the “main” routine
• Running the program on input i means computing f(i)

39

Code Generation Strategy

• For each expression e we generate MIPS code that:
– Computes the value of e in $a0
– Preserves $sp and the contents of the stack

• We define a code generation function cgen[e] whose
result is the code generated for e

40

Code Generation for Sub and Constants

• The code to evaluate a constant simply copies it into the
accumulator:

• cgen[i] = li $a0 i

• Note that this also preserves the stack, as required

41

Code Generation for Add and SUB

cgen[e1 + e2] =
cgen[e1]
sw $a0 0($sp)
addiu $sp $sp -4
cgen[e2]
lw $t1 4($sp)
add $a0 $t1 $a0
addiu $sp $sp 4

Cgen[e1 - e2] =
cgen[e1]
sw $a0 0($sp)
addiu $sp $sp -4
cgen[e2]
lw $t1 4($sp)
sub $a0 $t1 $a0
addiu $sp $sp 4

42

Code Generation for Conditional

• We need flow control instructions

• Instruction: beq reg1 reg2 label
– Branch to label if reg1 = reg2

• Instruction: b label
– Unconditional jump to label

43

Code Generation for Conditional

Cgen[if e1 = e2 then e3 else e4] =
cgen[e1]
sw $a0 0($sp)
addiu $sp $sp -4
cgen[e2]
lw $t1 4($sp)
addiu $sp $sp 4
beq $a0 $t1 true_branch
false_branch:
cgen[e4]
b end_if

true_branch:
cgen[e3]

end_if:

44

The Activation Record

• Code for function calls and function definitions depends
on the layout of the activation record

• A very simple AR suffices for this language:
– The result is always in the accumulator

• No need to store the result in the AR
– The activation record holds actual parameters

• For f(x1,…,xn) push xn,…,x1 on the stack
• These are the only variables in this language

45

The Activation Record (Cont.)

• The stack discipline guarantees that on function exit $sp
is the same as it was on function entry
– No need for a control link/static link

• We need the return address
• It’s handy to have a pointer to the current activation

– This pointer lives in register $fp (frame pointer)
– Reason for frame pointer will be clear shortly

46

47

The Activation Record

• For this language, an AR with the caller’s frame
pointer (dynamic link), the actual parameters, and the
return address suffices

• Picture: Consider a call to f(x,y), The AR will be:

y
x

old fp

SP

FP

AR of f

48

Code Generation for Function Call

• The calling sequence is the instructions (of both caller
and callee) to set up a function invocation

• New instruction: jal label
– Jump to label, save address of next instruction in $ra
– On other architectures the return address is stored on the stack

by the “call” instruction

49

Code Generation for Function Call (Cont.)

Cgen[f(e1,…,en)] =
sw $fp 0($sp)
addiu $sp $sp -4
cgen[en]
sw $a0 0($sp)
addiu $sp $sp -4
…
cgen[e1]
sw $a0 0($sp)
addiu $sp $sp -4
jal f_entry

• The caller saves its value of
the frame pointer

• Then it saves the actual
parameters in reverse order

• The caller saves the return
address in register $ra

• The AR so far is 4*n+4 bytes
long

50

Code Generation for Function Definition

• Instruction: jr reg
– Jump to address in register reg

Cgen[def f(x1,…,xn) = e] =
move $fp $sp
sw $ra 0($sp)
addiu $sp $sp -4
cgen[e]
lw $ra 4($sp)
addiu $sp $sp z
lw $fp 0($sp)
jr $ra

• Note: The frame pointer points
to the top, not bottom of the
frame

• The callee pops the return
address, the actual arguments
and the saved value of the
frame pointer

• z = 4*n + 8

50

51

Calling Sequence. Example for f(x,y).

Before call On entry Before exit After call

SP

FP

y
x

old fp

SP

FP

SP

FP

SP
return

y
x

old fp

FP

52

Code Generation for Variables

• Variable references are the last construct
• The “variables” of a function are just its parameters

– They are all in the AR
– Pushed by the caller

• Problem: Because the stack grows when intermediate
results are saved, the variables are not at a fixed offset
from $sp

53

Code Generation for Variables (Cont.)

• Solution: use a frame pointer
– Always points to the return address on the stack
– Since it does not move it can be used to find the variables

• Let xi be the ith (i = 1,…,n) formal parameter of the
function for which code is being generated

cgen[xi] = lw $a0 z($fp) (z = 4*i)

54

Code Generation for Variables (Cont.)

• Example: For a function def f(x,y) = e the activation
and frame pointer are set up as follows:

y
x

return

old fp
• X is at fp + 4
• Y is at fp + 8

FP

SP

fac(n) = if (n = 1) then 1 else (n*fac(n-1))
move $fp $sp #copy fp to top of stack
sw $ra 0($sp) #save ra on top of stack
addiu $sp $sp -4 #adjust tos

lw $a0 4($fp) #/load n
sw $a0 0($sp) # save n on tos
addiu $sp $sp -4
li $a0 1 #load 1
lw $t1 4($sp) #load n into t1
addiu $sp $sp 4
beq $a0 $t1 true_branch #branch if 1 = n

false_branch:
lw $a0 4($fp) #load n
sw $a0 0($sp)
addiu $sp $sp -4
lw $a0 4($fp) #load n

sw $a0 0($sp)
addiu $sp $sp -4
li $a0 1 #load 1
lw $t1 4($sp)
sub $a0 $t1 $a0 #n-1
addiu $sp $sp 4
sw $a0 0($sp)
addiu $sp $sp -4
jal f_entry #call fac

lw $t1 4($sp)
mul $a0 $t1 $a0 #n*fac(n-1)
addiu $sp $sp 4

b end_if
true_branch:
li $a0 1 #load 1

end_if:
lw $ra 4($sp)
addiu $sp $sp 4 #remove n from toc
lw $fp 0($sp)
jr $ra #return from fac

55

Pause

56

Instruction selection by patternmatching

57

Translate AST to tree rep.
with leaves corresponding
to registers, memeory locations or litterals
and internal nodes to fetch
and basic operations

Instruction selection
is now a question of
pattern matching
similar to bottom up
parsing

58

Code generation from IR

• JBC to Machine code is used by AOT (Ahead-of-Time)
Java compilers like gcj and FijiVM

• JBC to Machine code is used by all JIT VMs
– Some JIT VM compile JBC on class loading
– Others start interpretation and then compile HOT methods and

store the compiled code in a method cashe
– Others record sequences of JBC and discover ”often used

sequences” and then compiles these – so called trace based JIT
(e.g. Mozilla’s TraceMonkey)

• We look at JBC to MIPS

59

60

61

62

Stringsum example

public static String stringSum(int limit){
int sum = 0;
for (int i = 1; i <= limit; i++)

sum += i;
return Integer.toSting(sum);

}

63

64

65

Register Allocation

• A compiler generating code for a register
machine needs to pay attentention to register
allocation as this is a limited ressource

• In routine protocol
– Allocate arg1 in R1, arg2 in R2 .. Result in R0
– But what if there are more args than regs?

• In evaluation of expressions
– On MIPS all calculations take place in regs
– Reduce traffic between memory and regs

66

67

68

69

70

Optimizing register allocations

• TreeCG generates code such that result(s)
end up in targeted registers

• However TreeCG does not exploit
communicative operators
– exp1 op exp2 = exp2 op exp1
– Also difficult due to overflow or exceptions

• Exploiting associativity can reduce reg needs
– (a+b)+(c+d) needs 3 regs
– a+b+c+d needs only 2 regs

71

Register Allocation

• Expression level register allocation
• Procedure level register allocation

– Interference graphs
– Graph coloring

• Intra-procedural register allocation
– 10%-28% speed-up

72

Code scheduling

• Modern computers are pipelined
– Instructions are processed in stages
– Instructions take different time to execute
– If result from previous instruction is needed

but not yet ready then we have a stalled
pipeline

– Delayed load
• Load from memory takes 2, 10 or 100 cycles

– Also FP instructions takes time
73

74

75

Reg allocation and Code Scheluling

• Reg allocations algorithms try to minimize
the number of regs used

• May conflict with pipeline architecture
– Using more regs than strictly necessary may

avoid pipeline stalls
• Solution

– Integrated register allocator and code
scheduler

76

77

Modern Hardware and code
generation

• Speculative execution
• Prefetch instructions

– Load data into cache
• Dynamic scheduling
• Out of order architectures

• Should the HW, Compiler or the
programmer do the job?

78

Register variable in C

• Ex: register float a = 0 ;

• register provides a hint to the compiler that you think a
variable will be frequently used

• compiler is free to ignore register hint
• if ignored, the variable is equivalent to an auto variable

with the exception that you may not take the address of
a register (since, if put in a register, the variable will not
have an address)

• rarely used, since any modern compiler will do a better
job of optimization than most programmers

79

80

Java Memory Model

• Abstract memory model
– Local stack for each thread

• But stacks may need to be implemented via registers and memory
– Shared variables can be problematic on some implementations

• Serial to concurrent
– Code for serial execution may not work in concurrent system

• Concurrent to serial
– Code with synchronization may be inefficient in serial programs

(10-20% unnecessary overhead)

– Java 1.5 has expanded the definition of the memory model
• Volatile keyword

– The value of a volatile variable will never be cached thread-
locally: all reads and writes will go straight to "main memory"

81

A programmer’s view of memory

This model was pretty accurate in 1985.
Processors (386, ARM, MIPS, SPARC) all ran at 1–10MHz clock
speed and could access external memory in 1 cycle; and most
instructions took 1 cycle.
Indeed the C language was as expressively time-accurate as a
language could be: almost all C operators took one or two cycles.
But this model is no longer accurate!

82

A modern view of memory timings

So what happened?
On-chip computation (clock-speed) sped up
faster (1985–2005) than off-chip communication (with memory) as feature
sizes shrank.
The gap was filled by spending transistor budget on caches which
(statistically) filled the mismatch until 2005 or so.
Techniques like caches, deep pipelining with bypasses, and
superscalar instruction issue burned power to preserve our illusions.
2005 or so was crunch point as faster, hotter, single-CPU Pentiums
were scrapped. These techniques had delayed the inevitable.

83

The Current Mainstream Processor

Will scale to 2, 4 maybe 8 processors.
But ultimately shared memory becomes the bottleneck (1024 processors?!?).

Conclusions
• Low level code genrations requires attentions

to lots of details:
– Instruction sequence selection
– Register allocation
– Instruction scheduling
– Storage allocation

• Memory hierachies
– (multi-core placement)

• Sometimes Implications for language design
– E.g. high level memory models

84

What can you do in your
projects now?

• You should by now have lexer, parser and AST in
place
– Write pretty printer to test front end

• Use all the programs you wrote when designing your syntax
• You should have static semantic analyzer in place.

– Write recursive interpreter to test programs
– And generate ideas for formal semantics

• Code generation:
– Write C, Java, python … code generator
– Write JBC or CIL code generator
– Write MIPS, AVR or x86

85

1

Languages and Compilers
(SProg og Oversættere)

Lecture 19

Abstract Data Types
and

Object Oriented Features

Bent Thomsen
Department of Computer Science

Aalborg University

With acknowledgement to John Mitchell, Elsa Gunter, David Watt and Amiram Yehudai
whose slides this lecture is based on.

Learning goals

• To understand the concept of abstract data types
• Understand implementations of abstract data types
• Understand concepts of Object Oriented programming:

– Classes and objects
– Inheritance
– Dynamic dispatch

• Understand how classes and objects can be implemented
• Understand issues in modularity of large programs

2

3

Tennent’s Language Design principles

4

The Concept of Abstraction
• The concept of abstraction is fundamental in programming (and

computer science)
• Tennents principle of abstraction

– is based on identifying all of the semantically-meaningful syntactic
categories of the language and then designing a coherent set of abstraction
facilities for each of these.

• Nearly all programming languages support process (or command)
abstraction with subprograms (procedures)

• Many programming languages support expression abstraction
with functions

• Nearly all programming languages designed since 1980 have
supported data abstraction:
– Abstract data types
– Objects
– Modules

5

What have we seen so far?

• Structured data
– Arrays
– Records or structs
– Lists

• Visibility of variables and subprograms
– Scope rules

• Why is this not enough?

6

Information Hiding

• Consider the C code:

typedef struct RationalType {
int numerator;
int denominator;

} Rational

Rational mk_rat (int n,int d) { …}
Rational add_rat (Rational x, Rational y) {
… }

• Can use mk_rat, add_rat without knowing the
details of RationalType

7

Need for Abstract Types

• Problem: abstraction not enforced
– User can create Rationals without using mk_rat
– User can access and alter numerator and denominator

directly without using provided functions

• With abstraction we also need information hiding

8

Abstract Types - Example

• Suppose we need sets of integers
• Decision:

– implement as lists of int
• Problem:

– lists have order and repetition, sets don’t
• Solution:

– use only lists of int ordered from smallest to largest
with no repetition (data invariant)

9

Abstract Type – SML code Example
type intset = int list
val empty_set = []:intset
fun insert {elt, set = [] } = [elt]

| insert {elt, set = x :: xs} =
if elt < x then elt :: x :: xs
else if elt = x then x :: xs
else x :: (insert {elt = elt, set = xs})

fun union ([],ys) = ys
| union (x::xs,ys) =

union(xs,insert{elt=x,set = ys})

fun intersect ([],ys) = []
| intersect (xs,[]) = []
| intersect (x::xs,y::ys) =

if x <y then intersect(xs, y::ys)
else if y < x then intersect(x::xs,ys)
else x :: (intersect(xs,ys))

fun elt_of {elt, set = []} = false
| elt_of {elt, set = x::xs} =

(elt = x) orelse
(elt > x andalso
elt_of{elt = elt, set = xs})

10

Abstract Type – Example
• Notice that all these definitions maintain the data

invariant for the representation of sets, and depend on it

• Are we happy now?
• NO!
• As is, user can create any pair of lists of int and apply

union to them; the result is meaningless

11

Solution: abstract datatypes
abstype intset = Set of int list with
val empty_set = Set []
local
fun ins {elt, set = [] } = [elt]

| ins {elt, set = x :: xs} =
if elt < x then elt :: x :: xs
else if elt = x then x :: xs
else x :: (ins {elt = elt, set =
xs})

fun un ([],ys) = ys
| un (x::xs,ys) =

un (xs,ins{elt=x,set = ys})
in

fun insert {elt, set = Set s}=
Set(ins{elt = elt, set = s})

fun union (Set xs, Set ys) =
Set(un (xs, ys))

end

local
fun inter ([],ys) = []

| inter (xs,[]) = []
| inter (x::xs,y::ys) =

if x <y then inter(xs, y::ys)
else if y < x then inter(x::xs,ys)
else x :: (inter(xs,ys))

in
fun intersect(Set xs, Set ys) =

Set(inter(xs,ys))
end
fun elt_of {elt, set = Set []} = false

| elt_of {elt, set = Set (x::xs)} =
(elt = x) orelse
(elt > x andalso
elt_of{elt = elt, set = Set xs})

fun set_to_list (Set xs) = xs
end (* abstype *)

12

Abstract Type – Example

• Creates a new type (not equal to int list)
– Remember type equivalence – structure vs. name

• Exports
– type intset,
– Constant empty_set
– Operations: insert, union, elt_of, and set_to_list; act as

primitive

– Note: Unfortunately in SML we cannot use pattern matching
or list functions on intset; won’t type check

– Lack of orthogonality in the design of abstype for SML – does
not fulfill Tennent’s principle of data type completion

13

Abstract Type – Example

• Implementation: just use int list, except for type
checking

• Data constructor Set only visible inside the asbtype
declaration; type intset visible outside

• Function set_to_list used only at compile time

• Data abstraction allows us to prove data invariant
holds for all objects of type intset

14

Abstract Types
• A type is abstract if the user can only see:

– the type
– constants of that type (by name)
– operations for interacting with objects of that type that have

been explicitly exported
• Primitive types are built-in abstract types

e.g. int type in Java
– The representation is hidden
– Operations are all built-in
– User programs can define objects of int type

• User-defined abstract data types must have the same
characteristics as built-in abstract data types

15

User Defined Abstract Types
• Syntactic construct to provide encapsulation of abstract

type implementation
• Inside, implementation visible to constants and

subprograms
• Outside, only type name, constants and operations visible,

not implementation
• No runtime overhead as all the above can be checked

statically

16

Advantages of Data Abstraction

• Advantage of Inside condition:
– Program organization, modifiability (everything

associated with a data structure is together)
– Separate compilation may be possible

• Advantage of Outside condition:
– Reliability--by hiding the data representations, user

code cannot directly access objects of the type. User
code cannot depend on the representation, allowing the
representation to be changed without affecting user
code.

17

Limitation of Abstract data types
Queue

abstype q
with
mk_Queue : unit -> q
is_empty : q -> bool
insert : q * elem -> q
remove : q -> elem

is …
in
program

end

Priority Queue

abstype pq
with
mk_Queue : unit -> pq
is_empty : pq -> bool
insert : pq * elem -> pq
remove : pq -> elem

is …
in
program

end

But cannot intermix pq’s and q’s

18

Abstract Data Types

• Guarantee invariants of data structure
– only functions of the data type have access to the internal

representation of data
• Limited “reuse”

– Cannot apply queue code to pqueue, except by explicit
parameterization, even though signatures identical

– Cannot form list of points and colored points

• Data abstraction is important – how can we make it
extensible?

• Remember subtyping from Lecture 13 ?

19

Subtyping for Product Types
The rule is:

if A <: T and B <: U then A × B <: T × U

This rule, and corresponding rules for other structured types, can be
worked out by following the principle:

T <: U means that whenever a value of type U is expected, it is
safe to use a value of type T instead.

What can we do with a value v of type T × U ?
• use fst(v) , which is a value of type T
• use snd(v) , which is a value of type U
If w is a value of type A × B then fst(w) has type A and can be used
instead of fst(v). Similarly snd(w) can be used instead of snd(v).
Therefore w can be used where v is expected.

Objects and subtyping

• Objects can be thought of as (extendible) records of
fields and methods.

• That is why Square <: Shape and Circle <: Shape in

20

abstract class Shape {
abstract float area(); }

class Square extends Shape {
float side;
float area() {return (side * side); } }

class Circle extends Shape {
float radius;
float area() {return (PI * radius * radius); } }

21

Objects

• An object consists of
– hidden data

• instance variables, also
called member data

• hidden functions also
possible

– public operations
• methods or member

functions
• can also have public

variables in some languages
• Object-oriented program:

– Send messages to objects:
• o m (a) or o.m(a)

hidden data
method1msg1

.
methodnmsgn

Objects can be extended by
cloning or subclassing

22

Encapsulation

• Builder of a concept has detailed view
• User of a concept has “abstract” view
• Encapsulation is the mechanism for separating these two

views
• The message concept facilitate loose coupling

message

Object

23

Object-oriented programming

• Metaphor usefully ambiguous
– Database, window, file, integer – all are objects
– sequential or concurrent computation
– distributed, sync. or async. Communication

• Programming methodology
– organize concepts into objects and classes
– build extensible systems

• Language concepts
– encapsulate data and functions into objects
– subtyping allows extensions of data types
– inheritance allows reuse of implementation
– dynamic lookup facilitate loose coupling

24

Dynamic Lookup – dynamic dispatch

• In object-oriented programming,
object message (arguments)
object.method(arguments)

code depends on object and message
– Add two numbers x add (y) or x.add(y)

different add if x is integer or complex

• In conventional programming,
operation (operands)

meaning of operation is always the same
– Conventional programming add (x, y)

function add has fixed meaning

25

Dynamic Dispatch Example
class point {

int c;
int getColor() { return(c); }
int distance() { return(0); }

}
class cartesianPoint extends point{

int x, y;
int distance() { return(x*x + y*y); }

}
class polarPoint extends point {

int r, t;
int distance() { return(r*r); }
int angle() { return(t); }

}

26

Dynamic Dispatch Example

if (x == 0) {
p = new point();

} else if (x < 0) {
p = new cartesianPoint();

} else if (x > 0) {
p = new polarPoint();

}
y = p.distance();

Which distance method is invoked?
• Invoked Method Depends on Type

of Receiver!
– if p is a point

• return(0)
– if p is a cartesianPoint

• return(x*x + y*y)
– if p is a polarPoint

• return(r*r)

27

Dynamic dispatch

• If methods are overridden, and if the PL allows a
variable of a particular class to refer to an object of a
subclass, then method calls entail dynamic dispatch.

• Consider the Java method call O.M(E1, …, En):
– The compiler infers the type of O, say class C.
– The compiler checks that class C is equipped with a method

named M, of the appropriate type.
– Nevertheless, it might turn out (at run-time) that the target

object is actually of class S, a subclass of C.
– If method M is overridden by any subclass of C, a run-time tag

test is needed to determine the actual class of the target object,
and hence which of the methods named M is to be called.

© 2004, D.A. Watt, University of Glasgow

28

Overloading vs. Dynamic Dispatch

• Dynamic Dispatch
– Add two numbers x.add (y)

different add if x is integer, complex, ie. depends on the run-
time type of x

• Overloading
– add (x, y) function add has fixed meaning
– int-add if x and y are ints, i.e. add (int x, int y)
– real-add if x and y are reals i.e. add (float x, float y)

Important distinction:
Overloading is resolved at compile time,
Dynamic lookup at run time.

29

Comparison

• Traditional approach to encapsulation is through
abstract data types

• Advantage
– Separate interface from implementation

• Disadvantage
– All ADTs are independent and at the same level
– Not extensible in the way that OOP is
– Not reusable in the way OOP is

30

Subtyping and Inheritance

• Interface
– The external view of an object

• Subtyping
– Relation between interfaces

• Implementation
– The internal representation of an object

• Inheritance
– Relation between implementations

31

Object Interfaces

• Interface
– The messages understood by an object

• Example: point
– x-coord : returns x-coordinate of a point
– y-coord : returns y-coordinate of a point
– move : method for changing location

• The interface of an object is its type.

32

Subtyping

• If interface A contains all of interface B, then A
objects can also be used as B objects.

• Colored_point interface contains Point
• Colored_point is a subtype of Point

Point
x-coord
y-coord
move

Colored_point
x-coord
y-coord
color
move
change_color

33

Inheritance

• Implementation mechanism
• New objects may be defined by reusing

implementations of other objects

34

Example

class Point
private

float x, y
public

point move (float dx, float dy);

class Colored_point
private

float x, y; color c
public

point move(float dx, float dy);
point change_color(color newc);

Subtyping
• Colored points can be

used in place of points
• Property used by client

program

Inheritance
• Colored points can be

implemented by reusing
point implementation

• Property used by
implementor of classes

35

Subtyping differs from inheritance

Collection

Set

Sorted Set

Indexed

Array Dictionary

String
Subtyping
Inheritance

36

Inheritance

• Implementation mechanism
• New objects may be defined by reusing

implementations of other objects

• Note in Java and C# inheritance also implies a subtype
relation !

• In C++ you can have inheritance without subtyping by
extending a class private:
– class Derived: private Base { … };
–

37

Tennent’s Language Design principles and OOP

• We have seen abstractions over expressions, i.e. functions
• We have seen abstractions over commands, i.e. procedures
• What about abstractions over declarations?

• Well Tennent, in 1981 saw that
• Declabs Name(params) begin D end
• Is exactly the notion of a class in the simula language !
• “but this is not a widespread language construct”
• Well not in 1981

38

Varieties of OO languages

• class-based languages
– behaviour of object determined by its class

• object-based
– objects defined directly

• multi-methods
– operation depends on all operands

39

History

• Simula 1960’s
– Object concept used in simulation

• Smalltalk 1970’s
– Object-oriented design, systems

• C++ 1980’s
– Adapted Simula ideas to C

• Java 1990’s
– Distributed programming, internet

• C# 2000’s
– Combine the efficiency of C/C++ with the safety of Java

• Scala,F#, Swift, RUST - combine FP and OOP 2010’s

40

Runtime Organization for OO Languages

How to represent/implement object oriented constructs such as
objects, classes, methods, instance variables and method invocation

Some definitions for these concepts:
• An object is a group of instance variables to which a group of

instance methods is attached.
• An instance variable is a named component of a particular object.
• An instance method is a named operation attached to a particular

object and able to access that objects instance variables
• An object class (or just class) is a family of objects with similar

instance variables and identical methods.

41

Runtime Organization for OO Languages

Objects are a lot like records, and instance variables are a lot like fields.
=> The representation of objects is similar to that of a record.

Methods are a lot like procedures.
=> Implementation of methods is similar to routines.

But… there are differences:

Objects have methods as well as instance variables, records only
have fields (except in C#).

The methods have to somehow know what object they are associated
with (so that methods can access the object’s instance variables)

42

Example

A simple Java object (no inheritance)

class Point {
int x,y;
public Point(int x, int y) {

this.x=x; this.y=y;
}

public void move(int dx, int dy) {
x=x+dx; y=y+dy;

}

public float area() { ...}
public float dist(Point other) { ... }

}

(1)

(2)

(3)
(4)

43

Example

Representation of a simple Java object (no inheritance)

Point class
Point
move
area
dist

constructor(1)
method(2)
method(3)
method(4)

Point p = new Point(2,3);
Point q = new Point(0,0);

p

q

class
x
y

2
3

class
x
y

0
0

new allocates an object in
the heap

44

Example

Points and other “shapes” (Inheritance)

abstract class Shape {
int x,y; // “origin” of the shape
public Shape(int x, int y) {

this.x=x; this.y=y;
}

public void move(int dx, int dy) {
x=x+dx; y=y+dy;

}

public abstract float area();
public float dist(Shape other) { ... }

}

(S1)

(S2)

(S3)

45

class Point extends Shape {

public Point(int x, int y) {
super(x,y);

}

public float area() { return 0.0; }
}

Example

Points and other “shapes” (Inheritance)

(P1)

(P2)

46

Example

Points and other “shapes” (Inheritance)

class Circle extends Shape {
int r;
public Circle(int x,int y,int r) {

super(x,y); this.r = r;
}

public int radius() { return r; }

public float area() {
return 3.14 * r * r;

}
}

(C1)

(C3)

(C2)

47

Representation of Points and other “shapes” (Inheritance)

Shape[] s = new Shape[2];
s[0] = new Point(2,3);
s[1] = new Circle(4,5,6);

s

class
x
y
r

4
5
6

class
x
y

2
3

point class circle class

Note the similar layout between point and circle objects!

s[0]
s[1]

s[0].x = ...;
s[1].y = ...;
float areas =

s[0].area()
+s[1].area();

48

Representation of Points and other “shapes” (Inheritance)

Shape class
Shape
move
area
dist

constru(S1)
method(S2)

method(S3)

Circle class
Circle
move
area
dist

constru(C1)
method(S2)
method(C3)
method(S3)

radius method(C2)

Inherited from shapePoint class
Point
move
area
dist

constru(P1)
method(S2)

method(S3)
method(P2) Note the similar layout of

each class object.
Q: why is that important?

Q: why don’t we need a pointer to the super class in a class object?

49

Alternative Run-time representation of point

class
x 3
y 2

x
y

newX:Y:
...

move

Point object

Point class
Template

Method dictionary

to superclass Object

code

...

code

Detail: class method shown in
dictionary, but lookup procedure
distinguishes class and instance
methods

50

Alternative Run-time representation

2
3

x
y newX:Y:

draw
move

Point object Point class Template
Method dictionary

...

4
5

x
y newX:Y:C:

color
draw

ColorPoint object ColorPoint class Template
Method dictionary

red

color

This is a schematic diagram meant to illustrate the main idea. Actual implementations may differ.

51

Multiple Inheritance

• In the case of single inheritance, each class may have one
direct predecessor; multiple inheritance allows a class to
have several direct predecessors.

• In this case the simple ways of accessing attributes and
binding method-calls (shown previously) don’t work.

• The problem: if class C inherits class A and class B the
objects of class C cannot begin with attributes inherited
from A and at the same time begin with attributes inherited
from B.

• In addition to these implementation problems multiple
inheritance also introduces problems at the language
(conceptual) level.

52

Object Layout

• The memory layout of the object’s fields
• How to access a field if the dynamic type is unknown?

– Layout of a type must be “compatible” with that of its supertypes
– Easy for Single Inheritance hierarchies

• The new fields are added
at the end of the layout

 Hard for MI hierarchies

B C

A
CB

A
B

A
A

A

C

D
A
B
C

C
A

C

B
A
B

A
A

D

Leave holes

Rectangle

Shape Polygon Rectangle

PolygonPolygon
ShapeShapeShape

Layout in SI

D

A
B

C
D

C

A

C

B

A
B

A

A

BiDirectional layout

D

A

B
C
D

C

A

C
B

A
BA

A

C++ layout
D

D

?

A
B C

D

The difficulty in MI

53

Dynamic (late) Binding
• Consider the method call:

– x.f(a,b) where is f defined?
in the class (type)of x? Or in a predecessor?

• If multiple inheritance is supported then the entire
predecessor graph must be searched:
– This costs a large overhead in dynamic typed languages like

Smalltalk (normally these languages don’t support multiple
inheritance)

– In static typed languages like Java, Eiffel, C++ the compiler is
able to analyse the class-hierarchy (or more precise: the graph) for
x and create a display-array containing addresses for all methods
of an object (including inherited methods)

– According to Meyer the overhead of this compared to static
binding is at most 30%, and overhead decreases with complexity
of the method

• If multi-methods are supported a forest like data structure
has to be searched

Traits

• Some feel that single inheritance is too limiting
• Interface specification helps by forcing class to

implement specified methods, but can lead to code
duplication

• A trait is a collection of pure methods
• Can be thought of as an interface with implementation
• Classes “use” traits
• Traits can be used to supply the same methods to

multiple classes in the inheritance hierarchy

55

Simple Example Using Traits

trait Similarity {
def isSimilar(x: Any): Boolean
def isNotSimilar(x: Any): Boolean = !isSimilar(x)

}

• This trait consists of two methods isSimilar and isNotSimilar
– isSimilar is abstract
– isNotSimilar is concrete but written in terms of isSimilar

• Classes that integrate this trait only have to provide a concrete
implementation for isSimilar, isNotSimilar gets inherited directly
from the trait

56

Simple Example Using Traits

class Point(xc: Int, yc: Int) extends
Similarity {
var x: Int = xc
var y: Int = yc
def isSimilar(obj: Any) =

obj.isInstanceOf[Point] &&
obj.asInstanceOf[Point].x == x

}

57

Using Traits

• Class = Superclass + State + Traits + Glue
• A class provides it’s own state
• It also provides “glue”, which is the code that hooks the traits in
• Traits can satisfy each other’s requirements for accessors
• A class is complete if all of the trait’s requirements are met

• Languages with traits:
– SmallTalk/Squeak/Pharo
– Fortress
– Scala
– Swift
– Kotlin
– (Java8 – default methods on interfaces)

58

Implementation of Object Oriented Languages

• Implementation of Object Oriented Languages differs
only slightly from implementations of block structured
imperative languages

• Some additional work to do for the contextual analysis
– Access control, e.g. private, public, protected directives
– Subtyping can be tricky to implement correctly

• The main difference is that methods usually have to be
looked up dynamically, thus adding a bit of run-time
overhead
– For efficiency some languages introduce modifiers like:

• final (Java) or virtual/override (C#)
– Multiple inheritance poses a bigger problem
– Multi methods pose an even bigger problem

59

Larger Encapsulation Constructs

• Original motivation:
– Large programs have two special needs:
1. Some means of organization, other than simply division into

subprograms
2. Some means of partial compilation (compilation units that are

smaller than the whole program)
• Obvious solution: a grouping of subprograms that are

logically related into a unit that can be separately
compiled (compilation units)
– These are called encapsulations (or packages or modules)
– Classes are too small (unless they allow true inner classes)

Encapsulation Constructs
• Why are Classes are too small and what is true inner classes?
• Originally mainstream OOP languages like C++ and Java had a

flat namespace for classes
• But what if classes can be declared within classes?
• Java 1.1 introduced the notion of inner/nested classes:

class OuterClass {
...
class NestedClass {

...
}

}
• Distinction between inner and nested classes

– An inner class refer to an instance of the outer class in Java
– A nested class is declared as static in Java
– C# and C++ have static nested classes

• remember in C# members are static unless declared to be overridable
and inner classes cannot be declared overridable

60

class OuterClass {
...
static class StaticNestedClass {

...
}

}

Encapsulation Constructs
• Static nested classes introduce a form of namespace

hierachy:
OuterClass.StaticNestedClass nestedObject =

new OuterClass.StaticNestedClass();
Static nested classes only have access to static members and
methods!

• Inner classes needs an instance of the outer class:
OuterClass outerObject = new OuterClass();
OuterClass.InnerClass innerObject =

outerObject.new InnerClass();
Inner classes have access to members and methods of the
instance of the outer class

Note Java also allow class definitions in methods, but

61

Encapsulation Constructs

• However, many restrictions on inner classes in Java
– A method can declare a local class,

• but only access to variables declared as final – a restriction
put to ensure a closure is not needed.

– Classes cannot be treated as objects in Java.
• Other languages treat classes as first class objects

– E.g. SmallTalk:
Every object has
a class and every
Class is an object

62

63

Naming Encapsulations

• Large programs define many global names
• So we need a way to divide names into logical groupings
• A naming encapsulation is used to create a new scope for

names
• C++ Namespaces

– Can place each library in its own namespace and qualify names
used outside with the namespace

• C# also includes namespaces
• In Java namespaces are called packages

64

Naming Encapsulations
• Java Packages

– Packages can contain more than one class definition; classes in a package
are partial friends

– Clients of a package can use fully qualified name or use the import
declaration

• Ada Packages
– Packages are defined in hierarchies which correspond to file hierarchies
– Visibility from a program unit is gained with the with clause

• SML Modules
– Called structure; interface called signature
– Interface specifies what is exported
– Interface and structure may have different names
– If structure has no signature, everything exported
– Modules may be parameterized (functors)
– Module system quite expressive

65

Modules

• Language construct for grouping related types, data
structures, and operations

• Typically allows at least some encapsulation
– Can be used to provide abstract types

• Provides scope for variable and subprogram names
• Typically includes interface stating which modules it

depends upon and what types and operations it exports
• Compilation unit for separate compilation

66

Encapsulation Constructs

• Encapsulation in C
– Files containing one or more subprograms can be

independently compiled
– The interface is placed in a header file (.h)
– Problem: the linker does not check types between a header

and associated implementation
• Encapsulation in C++

– Similar to C
– Addition of friend functions that have access to private

members of the friend class

67

Encapsulation Constructs

• Ada Package
– Can include any number of data and subprogram declarations
– Two parts: specification and body
– Can be compiled separately

• C# Assembly
– Collection of files that appears to be a single dynamic link

library or executable
– Larger construct than class; used by all .NET programming

languages
• Java Module System (JSR 277/JSR376)

– New deployment and distribution format
– New language constructs:

• module, import/export, provides/requires

Java 9 module system

68

69

Issues for modules
• The target language usually has one name space

– Generate unique names for modules
– Some assemblers support local names per file
– Use special characters which are invalid in the programming

language to guarantee uniqueness
• This is what Java does since the JVM has no nested classes

• Generate code for initialization
– Modules may use items from other modules
– Init before used
– Init only once
– Circular dependencies

• How to initialize C once if module A uses module B and C, and B uses C
– Compute a total order and init before use
– Use special compile-time flag

70

Summary

• Abstract Data Types
– Encapsulation
– Invariants may be preserved

• Objects
– Reuse
– Subtyping
– Inheritance
– Dynamic dispatch

• Modules
– Grouping (related) entities
– Namespace management
– Separate compilation

71

“I invented the term Object-Oriented
and I can tell you I did not have C++
in mind.”

Alan Kay
Inventor of Smalltalk

1

Languages and Compilers
(SProg og Oversættere)

Lecture 20

Compiler Optimizations

Bent Thomsen
Department of Computer Science

Aalborg University

With acknowledgement to Norm Hutchinson and Mooly Sagiv whose slides this lecture is based on.

2

The “Phases” of a Compiler

Syntax Analysis

Contextual Analysis

Code Generation

Source Program

Abstract Syntax Tree

Decorated Abstract Syntax Tree

Object Code

Error Reports

Error Reports

3

The “Phases” of a Compiler

Analyze/Optimize

Analyze/optimize

Code Generation

Intermediate Code

Intermediate Code

Intermediate Code

Object Code

Error Reports

Error Reports

4

Compiler Optimizations

The code generated by the code generators discussed so far are not very efficient:
– They compute some values at runtime that could be known at compile time
– They compute values more times than necessary
– They produce code that will never be executed

We can do better! We can do code transformations
• Code transformations are performed for a variety of reasons among which are:

– To reduce the size of the code
– To reduce the running time of the program
– To take advantage of machine idioms

• Code optimizations include:
– Peephole optimizatioons
– Constant folding
– Common sub-expression elimination
– Code motion
– Dead code elimination

• Mathematically, the generation of optimal code is undecidable.

5

Criteria for code-improving transformations

• Preserve meaning of programs (safety)
– Potentially unsafe transformations

• Associative reorder of operands
• Movement of expressions and code sequences
• Loop unrolling

• Must be worth the effort (profitability) and
– on average, speed up programs

• 90/10 Rule: Programs spend 90% of their execution time in 10%
of the code. Identify and improve "hot spots" rather than trying to
improve everything.

Peephole optimizations

• Recognition of program patterns that could be rewritten
to produce faster code

• Can be done at several levels in the compiler:
– AST rewrite
– IR level rewrite
– Bytecode
– Target Code

• The general idea:
– Pattern => replacement

6

10

Constant folding

• Consider:

• The compiler could compute 4 / 3 * pi as 4.1888 before
the program runs. This saves how many instructions?

• What is wrong with the programmer writing
4.1888 * r * r * r?

static double pi = 3.1416;
double volume = 4/3 * pi * r * r * r;

11

Constant folding II

• Consider:

• If the address of holidays is x, what is the address of
holidays[2].m?

• Could the programmer evaluate this at compile time?
Safely?

struct { int y, m, d; } holidays[6];
holidays[2].m = 12;
holidays[2].d = 25;

12

Common sub-expression elimination

• Consider:

• Computing x – y takes three instructions, could we save
some of them?

int t = (x – y) * (x – y + z);

13

Common sub-expression elimination II

int t = (x – y) * (x – y + z);

Naïve code:

iload x
iload y
isub
iload x
iload y
isub
iload z
iadd
Imult
istore t

14

Common sub-expression elimination II
Programmer tries to be clever

Naïve code:

iload x
iload y
isub
iload x
iload y
isub
iload z
iadd
Imult
istore t

New code:

iload x
iload y
isub
istore tmp
iload tmp
iload tmp
iload z
iadd
Imult
istore t

int tmp = (x - y)
int t = tmp * (tmp + z);

Is this code better or worse?

15

Common sub-expression elimination II

int t = (x – y) * (x – y + z);

Naïve code:

iload x
iload y
isub
iload x
iload y
isub
iload z
iadd
Imult
istore t

Better code:

iload x
iload y
isub
dup
iload z
iadd
Imult
istore t

16

Common sub-expression elimination III

• Consider:

• The address of holidays[i] is a common
subexpression.

struct { int y, m, d; } holidays[6];
holidays[i].m = 12;
holidays[i].d = 25;

17

• But, be careful!

• Is x – y++ still a common sub-expression?

Common sub-expression elimination IV

int t = (x – y++) * (x – y++ + z);

18

Code motion

• Consider:

• Computing the address of name[i][j] is
address[name] + (i * 10) + j

• Most of that computation is constant throughout the
inner loop

char name[3][10];
for (int i = 0; i < 3; i++) {

for (int j = 0; j < 10; j++) {
name[i][j] = ‘a’;

address[name] + (i * 10)

19

Code motion II

• You can think of this as rewriting the original code:

as

char name[3][10];
for (int i = 0; i < 3; i++) {

for (int j = 0; j < 10; j++) {
name[i][j] = ‘a’;

char name[3][10];
for (int i = 0; i < 3; i++) {

char *x = &(name[i][0]);
for (int j = 0; j < 10; j++) {

x[j] = ‘a’;

20

Dead code elimination

• Consider:

• Computing t takes many instructions, but the value of t
is never used.

• We call the value of t “dead” (or the variable t dead)
because it can never affect the final value of the
computation. Computing dead values and assigning to
dead variables is wasteful.

int f(int x, int y, int z)
{

int t = (x – y) * (x – y + z);
return 6;

}

21

Dead code elimination II

• But consider:

• Now t is only dead for part of its existence. Hmm…

int f(int x, int y, int z)
{

int t = x * y;
int r = t * z;
t = (x – y) * (x – y + z);
return r;

}

22

Optimization implementation

• What do we need to know in order to apply an
optimization?

–Constant folding
–Common sub-expression elimination
–Code motion
–Dead code elimination

• Is the optimization correct or safe?
• Is the optimization an improvement?
• What sort of analyses do we need to perform to get the

required information?

23

Control-Flow Analysis

• The purpose of Control-Flow Analysis is to determine
the control structure of a program
– determine possible control flow paths
– find basic blocks and loops

• A Basic Block (BB) is a sequence of instructions
entered only at the beginning and left only at the end.

• The Control-Flow Graph (CFG) of a program is a
directed graph G=(N, E) whose nodes N represent the
basic blocks in the program and whose edges E
represent transfers of control between basic blocks.

24

Basic blocks

• A basic block is a sequence of instructions entered only
at the beginning and left only at the end.

• A flow graph is a collection of basic blocks connected
by edges indicating the flow of control.

25

Finding basic blocks
iconst_1
istore 2
iconst_2
istore 3

Label_1:
iload 3
iload 1
if_icmplt Label_4
iconst_0
goto Label_5

Label_4:
iconst_1

Label_5:
ifeq Label_2

iload 2
iload 3
imul
dup
istore 2
pop

Label_3:
iload 3
dup
iconst_1
iadd
istore 3
pop
goto Label_1

Label_2:
iload 2
ireturn

26

Finding basic blocks II

Label_2:
iload 2
ireturn

Label_3:
iload 3
dup
iconst_1
iadd
istore 3
pop
goto Label_1

iload 2
iload 3
imul
dup
istore 2
pop

Label_5:
ifeq Label_2

Label_4:
iconst_1

iconst_0
goto Label_5

Label_1:
iload 3
iload 1
if_icmplt Label_4

iconst_1
istore 2
iconst_2
istore 3

27

Flow graphs

7: iload 2
ireturn

6: iload 3
dup
iconst_1
iadd
istore 3
pop
goto 1

5: iload 2
iload 3
imul
dup
istore 2
pop

4: ifeq 7

3: iconst_1

2: iconst_0
goto 4

1: iload 3
iload 1
if_icmplt 3

0: iconst_1
istore 2
iconst_2
istore 3

29

Data-Flow Analysis

• The purpose of Data-Flow Analysis is to provide global
information about how a procedure manipulates its data.

• Examples:
– Live variable analysis

• Which variable are still alive?
• Needed for: register allocation, dead-code elimination

– Reaching definitions
• What points in program does each variable definition

reach?
• Needed for: copy- and constant propagation

• Available expressions
– Which expressions computed earlier still have same value?
– Needed for: common sub-expression elimination.

32

Optimizations within a BB

• Everything you need to know is easy to determine
• For example: live variable analysis

–Start at the end of the block and work backwards
–Assume everything is live at the end of the BB
–Copy live/dead info for the instruction
–If you see an assignment to x, then mark x “dead”
–If you see a reference to y, then mark y “live”

5: iload 2
iload 3
imul
dup
istore 2
pop

live: 1, 2, 3

live: 1, 3

live: 1, 2, 3

live: 1, 3
live: 1, 3
live: 1, 2, 3

live: 1, 3

33

Global optimizations

• Global means “between basic blocks”
• We must know what happens across block boundaries
• For example: live variable analysis

– The liveness of a value depends on its later uses perhaps in
other blocks

– What values does this block define and use?

5: iload 2
iload 3
imul
dup
istore 2
pop

Define: 2
Use: 2, 3

34

Global live variable analysis

• We define four sets for each BB
– def == variables with defined values
– use == variables used before they are defined
– in == variables live at the beginning of a BB
– out == variables live at the end of a BB

• These sets are related by the following equations:
– in[B] = use[B] ∪ (out[B] – def[B])

– out[B] = ∪S in[S] where S is a successor of B

35

Solving data flow equations

• Iterative solution:
– Start with empty set
– Iteratively apply constraints
– Stop when we reach a fixed point

For all instructions in[I] = out[I] = ∅
Repeat

For each instruction I
in[I] = (out[I] – def[I]) ∪ use[I]

For each basic block B
out[B] = ∪ in[B’]

Until no new changes in sets
B’ ∈ succ(B)

36

Dead code elimination

• Armed with global live variable information we redo the
local live variable analysis with correct liveness
information at the end of the block out[B]

• Whenever we see an assignment to a variable that is
marked dead, we eliminate it.

37

Static Analysis

• Automatic derivation of static properties which hold on every
execution leading to a program location

• Example Static Analysis Problems
– Live variables
– Reaching definitions
– Expressions that are “available”
– Dead code
– Pointer variables that never point into the same location
– Points in the program in which it is safe to free an object
– An invocation of a virtual method whose address is unique
– Statements that can be executed in parallel
– An access to a variable which must be in cache
– Integer intervals
– Security properties
– WCET and Schedulability
– …

38

A somewhat more complex compiler

39

Learning More about Optimizations

• Read chapter 9-12 in the new Dragon Book
– Compilers: Principles, Techniques, and Tools (2nd Edition) by Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D.

Ullman, Addison-Wesley, ISBN 0-321-21091-3

• Read the ultimate reference on program analysis
– Principles of Program Analysis Flemming Nielson, Hanne Riis Nielson, Chris Hankin: Principles of Program Analysis.

Springer (Corrected 2nd printing, 452 pages, ISBN 3-540-65410-0), 2005.

• Use one of the frameworks:
– Soot: a Java Optimization Framework

• http://www.sable.mcgill.ca/soot
– WALA: The T. J. Watson Libraries for Analysis

• http://wala.sourceforge.net/wiki/index.php/Main_Page

http://www.sable.mcgill.ca/soot
http://wala.sourceforge.net/wiki/index.php/Main_Page

Pause

40

Remember the exercises before
this course?

• 2.Write a Java program that
implements a data structure for
the following tree

• 3.Extend your Java program to
traverse the tree depth-first and
print out information in nodes
and leaves as it goes along.

• 4.Write a Java program that can
read the string "a + n * 1" and
produce a collection of objects
containing the individual
symbols when blank spaces are
ignored (or used as separator).

41

Remember the exercises before
this course?

• 2.Make a drawing or description of
the phases (internals) of a compiler
(without reading the books or
searching the Internet) – save this
for comparison with your
knowledge after the course.

• 4.Create a list of language features
group members would like in a
new language. Are any of these
features in conflict with each other?
How would you prioritize the
features?

• 5.Discuss what is needed to define
a new programming language.
Write down your conclusions for
comparison with your knowledge
after the course.

42

43

What was this course about?

• Programming Language Design
– Concepts and Paradigms
– Ideas and philosophy
– Syntax and Semantics

• Compiler Construction
– Tools and Techniques
– Implementations
– The nuts and bolts

44

Curricula
Studie ordningen i de gode gamle dage

The purpose of the course is contribute to the student
gaining knowledge of important principles in
programming languages and understanding of
techniques for describing and compiling programming
languages.

45

Sprog og oversættelse / Language and Compiler Construction (SPO)
Omfang: 5 ECTS-point.
Forudsætninger: Programmeringserfaring svarende til projektenheden på 3. semester samt kendskab til

imperativ og objektorienteret programmering svarende til 1. - og 2. semesters kurser i
programmering.

Mål:

Viden:
Den studerende skal opnå viden om væsentlige principper i programmeringssprog, samt forståelse af

teknikker til beskrivelse og oversættelse af sprog generelt, herunder:
• Abstraktionsprincippet, kontrol- og datastrukturer, blokstruktur og scopebegrebet,

parametermekanismer og typeækvivalens
• Oversættelse, herunder leksikalsk, syntaktisk, og statisk semantisk analyse, samt kodegenering
• Køretids-omgivelser, herunder lagerallokering samt strukturer til understøttelse af procedurer og

funktioner

Færdigheder:
Den studerende skal opnå følgende færdigheder:
• Kunne redegøre for de berørte teknikker og begreber inden for sprogdesign og

oversætterkonstruktion ved brug af fagets terminologi og notation for beskrivelse og implementation
af programmeringssprog

• Kunne redegøre for hvordan implementations teknikker influerer sprog design
• Kunne ræsonnere datalogisk om og med de berørte begreber og teknikker

Kompetencer: Den studerende skal kunne beskrive, analysere og implementere programmeringssprog og
skal kunne redegøre for de enkelte faser og sammenhængen mellem faserne i en oversætter

Undervisningsform: Kursus
Prøveform: Mundtlig eller skriftlig prøve
Bedømmelse: Ekstern bedømmelse efter 7-trins-skala
Vurderingskriterier: Se Rammestudieordningen.

46

What is expected of you at the end?

• One goal for this course is for you to be able to
explain concepts, techniques, tools and theories to
others
– Your future colleagues, customers and boss
– (especially me and the examiner at the exam ;-)

• That implies you have to
– Understand the concepts and theories
– Know how to use the tools and techniques
– Be able to put it all together

• I.e. You have to know and know that you know

Exam

• 15 minute video presentation exam
– To be recorded in 1 hours
– Your subject and questions will be released in DE

• Subjects are already published
– So you know roughly what we will ask you !!
– For each published question there will be some questions you do not

know before hand.
– For each question there will be a set of slides available that you can

choose to use for your presentation
• note you do not need to use all the available slides.

– you may draw on slides, add slides, or choose to only use the slides
provided

• If you modify the provided slides, it is a good idea to state this at
the beginning of the presentation.

47

The 8 Questions

1. Language Design and Control Structures
2. Structure of the compiler
3. Lexical analysis
4. Parsing
5. Semantic Analysis
6. Run-time organization
7. Heap allocation and Garbage Collection
8. Code Generation

48

And how did it go last year?

49

Chart1

		U		1

		-3		0

		00		2

		02		4

		4		6

		7		10

		10		11

		12		3

SW4

DAT4

4

3

3

4

12

17

16

24

Sheet1

		U		4				U		1

		-3		3				-3		0

		00		3				00		2

		02		4				02		4

		4		12				4		6

		7		17				7		10

		10		16				10		11

		12		24				12		3

Sheet1

		

SW4

DAT4

50

Important

• At the end of the course you should …
• Know

– Which theories and techniques exist
– Which tools exist

• Be able to choose “the right ones”
– Objective criteria
– Subjective criteria

• Be able to argue and justify your choices!

51

The Most Important Open Problem in Computing

Increasing Programmer Productivity
– Write programs correctly
– Write programs quickly
– Write programs easily

• Why?
– Decreases support cost
– Decreases development cost
– Decreases time to market
– Increases satisfaction

52

Why Programming Languages?

3 ways of increasing programmer productivity:
1. Process (software engineering)

– Controlling programmers
2. Tools (verification, static analysis, program generation)

– Important, but generally of narrow applicability
3. Language design --- the center of the universe!

– Core abstractions, mechanisms, services, guarantees
– Affect how programmers approach a task (C vs. SML)
– Multi-paradigm integration

53

New Programming Language! Why Should I Care?

• The problem is not designing a new language
– It’s easy! Thousands of languages have been developed

• The problem is how to get wide adoption of the new language
– It’s hard! Challenges include

• Competition
• Usefulness
• Interoperability
• Fear

“It’s a good idea, but it’s a new idea; therefore, I fear it and must reject it.”
--- Homer Simpson

• The financial rewards are low, but …

54

Famous Danish Computer Scientists
• Peter Nauer

– BNF and Algol
• Per Brinck Hansen

– Monitors and Concurrent Pascal
• Dines Bjørner

– VDM and ADA
• Bjarne Straustrup

– C++
• Mads Tofte

– SML
• Rasmus Lerdorf

– PhP
• Anders Hejlsberg

– Turbo Pascal and C#
• Lars Bak

– Java HotSpot VM, V8 and DART

• Jacob Nielsen

55

56

57

58

Fancy joining this crowd?
• Look forward to the PP (Programming Paradigms) course

– on SW7/DAT7/IT7
• Look forward to the Advanced Programming course

– On SW8/IT8
• Specialize in Programming Technology

– on DAT9/DAT10 or SW9/SW10 or IT9/IT10

• Research Programme in Programming Technology
• Programmatic Program Construction

• Real-time programming in Java (and C)

• Big Data and Functional Programming
– Popular Parallel Programming (P3)
– Prescriptive Analytics

• Energy Aware Programming

• ”The P-gang”:
• Kurt Nørmark
• Lone Leth
• Bent Thomsen
• Thomas Bøgholm

59

What I promised you at the start of the course

Ideas, principles and techniques to help you
– Design your own programming language or design your own

extensions to an existing language
– Tools and techniques to implement a compiler or an interpreter
– Lots of knowledge about programming

I hope you feel you got what I promised

60

The “Phases” of a Compiler

Syntax Analysis

Contextual Analysis

Code Generation

Source Program

Abstract Syntax Tree

Decorated Abstract Syntax Tree

Object Code

Error Reports

Error Reports

Is this picture still valid or is it how compilers were taught 30 years ago?

.NET Compiler Platform ("Roslyn") Overview

61

Corresponding to each of those phases, an object model is surfaced that allows access
to the information at that phase:
The parsing phase is exposed as a syntax tree,
the declaration phase as a hierarchical symbol table,
the binding phase as a model that exposes the result of the compiler’s semantic analysis
the emit phase as an API that produces IL byte codes.

Programming Language design

• Designing a new programming language or extending an
existing programming language usually follows an
iterative approach:

1. Create ideas for the programming language or
extensions

2. Describe/define the programming language or
extensions

3. Implement the programming language or extensions
4. Evaluate the programming language or extensions
5. If not satisfied, goto 1

62

Discount Method for Evaluating
Programming Languages

1. Create tasks specific to the language being tested - tasks
that the participants of the experiment should solve.
Estimate the time needed for each task (max 1 hour)

2. Create a short sample sheet of code examples in the
language being tested, which the participants can use as a
guideline for solving the tasks.

3. Prepare setup (e.g. use of NotePad++ and recorder) and do
a sample test with 1 person.
– Adjust tasks if needed

4. Perform the test on each participant, i.e. make them solve
the tasks defined in step 1. (Use approx. 5 test persons)

5. Each participant should be interviewed briefly after the test,
where the language and the tasks can be discussed.

6. Analyze the resulting data to produce a list of problems
– Cosmetic problems, Serious problems, Critical problems

63

Discount Method for Evaluating
Programming Languages

• Method inspired by the Discount Usability Evaluation
(DUE) method and Instant Data Analysis (IDA) method

• Reference:
– Svetomir Kurtev, Tommy Aagaard Christensen, and Bent

Thomsen.
– Discount method for programming language evaluation.
– In Proceedings of the 7th International Workshop on

Evaluation and Usability of Programming Languages and
Tools (PLATEAU 2016). ACM, New York, NY, USA, 1-8.
DOI: https://doi.org/10.1145/3001878.3001879

64

65

Finally

Keep in mind, the compiler is the program from which all other
programs arise. If your compiler is under par, all programs created
by the compiler will also be under par. No matter the purpose or use
-- your own enlightenment about compilers or commercial
applications -- you want to be patient and do a good job with this
program; in other words, don't try to throw this together on a
weekend.

Asking a computer programmer to tell you how to write a compiler
is like saying to Picasso, "Teach me to paint like you."

Sigh Well, Picasso tried.

