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What is the Most Important 
Open Problem in Computing?

Increasing Programmer Productivity

– Write programs quickly
– Write programs easily
– Write programs correctly

• Why?
– Decreases development cost
– Decreases time to market
– Decreases support cost
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How to increase Programmer Productivity?

3 ways of increasing programmer productivity:
1. Process (software engineering)

– Controlling programmers
– Good process can yield up to 20% increase 

2. Tools (verification, static analysis, program generation)

– Good tools can yield up to 10% increase
3. Better designed Languages --- the center of the universe!

– Core abstractions, mechanisms, services, guarantees
– Affect how programmers approach a task (C vs. 

Haskell)
– New languages can yield 700% increase
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Quicksort in C and Haskell 
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Programming Languages and Compilers 
are at the core of Computing 

All software is written in a programming language

Learning about compilers will teach you a lot about the 
programming languages you already know.

Compilers are big – therefore you need to apply all you knowledge 
of software engineering.

The compiler is the program from which all other programs arise.
Get it wrong and a lot of people will be affected! 
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What is a Programming Language?

• A set of rules that provides a way of telling a 
computer what operations to perform.

• A set of rules for communicating an algorithm
• A linguistic framework for describing 

computations
• Symbols, words, rules of grammar, rules of 

semantics
– Syntax and Semantics
– (Libraries, Frameworks, Patterns and Pragmas)
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Why Are There So Many 
Programming Languages

• Why do some people speak French?
• Programming languages have evolved over time 

as better ways have been developed to design 
them.
– First programming languages were developed in the 

1950s
– Since then thousands of languages have been developed

• Different programming languages are designed for 
different types of programs.
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Levels of Programming Languages
High-level program class Triangle {

...   
float surface()
return b*h/2;

}

Low-level program LOAD r1,b
LOAD r2,h
MUL r1,r2
DIV r1,#2
RET

Executable Machine code 0001001001000101
0010010011101100
10101101001...
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Types of Programming Languages

• First Generation Languages
Machine
0000 0001 0110 1110
0100 0000 0001 0010

• Second Generation Languages
Assembly
LOAD x
ADD R1 R2

• Third Generation Languages
High-level imperative/object oriented
public Token scan ( ) {
while (currentchar == ‘ ’
|| currentchar == ‘\n’)
{….} }

• Fourth Generation Languages
Database
select fname, lname
from employee
where department=‘Sales’

• Fifth Generation Languages
Functional Logic
fact n = if n==0 then 1 uncle(X,Y) :- parent(Z,Y), brother(X,Z).
else n*(fact n-1)

Fortran, Pascal, Ada, C, C++, Java, C# 

SQL

Lisp, SML, Haskel, Prolog
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Beyond Fifth Generation Languages

• Some talk about
– Aspect Oriented Programming  (Not so much )

– Agent Oriented Programming
– Intentional Programming
– Natural language programming

• Maybe you will invent the next big 
language
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The principal paradigms
• Imperative Programming

– Fortran, Pascal, C
• Object-Oriented Programming

– Simula, SmallTalk, C++, Java, C#
• Logic/Declarative Programming

– Prolog, SQL
• Functional/Applicative Programming

– Lisp, Scheme, Haskell, SML, F#
• (Aspect Oriented Programming)

– AspectJ, AspectC#, Aspect.Net
• (Reactive Programming)

– RxJava, Angular, React, Vue, Functional reactive
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The Multi-Paradigm Era

Microsoft fellow Anders Hejlsberg, who heads 
development on C#, said: 

"The taxonomies of programming languages are 
starting to break down," 

He points to dynamic languages, programming 
languages, and functional languages. 

He said "future languages are going to be an 
amalgam of all of the above. 

If in doubt, take a look at C# 



The 10 most popular 
programming languages
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Swift
DART
Erlang
Scala
Lisp
Kotlin
F#
Haskel

https://www.tiobe.com/tiobe-index/

https://www.tiobe.com/tiobe-index/
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What determines a “good” language

• Formerly:  Run-time performance
– (Computers were more expensive than programmers)

• Now:  Life cycle (human) cost is more important
– Ease of designing,  coding
– Debugging
– Maintenance
– Reusability

• FADS 
– A fad is any form of behavior that develops among a large population 

and is collectively followed enthusiastically for a period of time, 
generally as a result of the behavior being perceived as popular by one's 
peers or being deemed "cool" Source Wikipedia



Concepts of Programming Languages, Eleventh Edition, Global Edition
Robert W. Sebesta

Copyright ©2017 by
Pearson Education, Ltd.

All rights reserved.

Table 1.1   Language evaluation criteria and the 
characteristics that affect them



Evidense Based Programming 
Language Design

• New direction in PL Resreach (ca. 2005)
– Use social science techniques

• Data Mining of repositories or MOC (massive Online Course)
• Questionaeres

– E.g. Perl vs. Python (age difference)
– E.g. ObjectiveC (Most like used in small companies)

– Use medical science techniques
• Controlled experiments

– E.g. Static vs. Dymanic types
• Placebo effects

– E.g. Quorum vs. Perl. Vs Randomo
– Use HCI techniques

• Eye tracking and Brain Scans
• (Usability Lab) 
• Discount Method for Programming Language Evaluation

• Actually not that new
– SmallTalk and Logo designers used observational studies in the 70ies

16
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Programming languages are languages

• But Computer languages lack ambiguity and 
vagueness

• In English sentences can be ambiguous 
– I saw the man with a telescope

• Who had the telescope? 

– Take a pinch of salt 
• How much is a pinch?

• In a programming language a sentence either 
means one thing or it means nothing
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Programming Language Specification

• Why?
– A communication device between people who need to 

have a common understanding of the PL:
• language designer, language implementor, language user

• What to specify?
– Specify what is a ‘well formed’ program

• syntax
• contextual constraints (also called static semantics):

– scope rules
– type rules

– Specify what is the meaning of (well formed) programs
• semantics (also called runtime semantics)
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Programming Language Specification

• Why?
• What to specify?
• How to specify ?

– Formal specification: use some kind of precisely defined 
formalism

– Informal specification: description in English.

– Usually a mix of both (e.g. Java specification)
• Syntax => formal specification using CFG
• Contextual constraints and semantics => informal
• Formal semantics has been retrofitted though

– But trend towards more formality (C#, Fortress)
• fortress.pdf
• Ecma-334.pdf



Specification of Method invocation in C# 
according to the ECMA 334 standard
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Method invocation in Fortress
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Programming Language Specification

– A Language specification has (at least) three parts
• Syntax of the language: 

– usually formal in BNF or EBNF + RE for lexems
• Contextual constraints: 

– scope rules (often written in English, but can be formal)
– type rules (formal or informal)

• Semantics: 
– defined by the implementation
– informal descriptions in English 
– formal using operational or denotational semantics

The Syntax and Semantics course will teach you how to read and 
write a formal language specification – so pay attention! 
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Does Syntax matter?

• Syntax is the visible part of a programming language
– Programming Language designers can waste a lot of time discussing 

unimportant details of syntax
• The language paradigm is the next most visible part

– The choice of paradigm, and therefore language, depends on how 
humans best think about the problem

– There are no right models of computations – just different models of 
computations, some more suited for certain classes of problems than 
others

• The most invisible part is the language semantics
– Clear semantics usually leads to simple and efficient 

implementations

• But syntax does matter!
– Syntax that suggest underlying semantics seems to be 

important to programmers
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Language Processors: What are they?

A programming language processor is any system (software 
or hardware) that manipulates programs.
Examples:

– Editors
• Emacs

– Integrated Development Environments
• Eclipse
• NetBeans
• Visual Studio .Net

– Translators (e.g. compiler, assembler, disassembler)
– Interpreters



Interpreters
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You use lots of interpreters every day!
Web-Client

Web-Server

DBMS

Database
Output

SQL 
commands

PHP
Script

JavaScript
interpreter

JVM

WWW

Submit
Data

Call PHP
interpreter

Response Response

LAN

Web-Browser
HTML interpreter

Database
Server
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Compilation

• Compilation is at least a two-step process, in 
which the original program (source program) is 
input to the compiler, and a new program (target 
program) is output from the compiler.   The 
compilation steps can be visualized as the 
following.
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Compiler (simple view)
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Compiler
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Hybrid compiler / interpreter
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Compiler (simple view again)

C code
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The Phases of a Compiler

Syntax Analysis

Contextual Analysis

Code Generation

Source Program

Abstract Syntax Tree

Decorated Abstract Syntax Tree

Object Code

Error Reports

Error Reports
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Different Phases of a Compiler
The different phases can be seen as different 

transformation steps to transform source code into 
object code. 

The different phases correspond roughly to the different 
parts of the language specification:

• Syntax analysis <-> Syntax
• Contextual analysis <-> Contextual constraints
• Code generation <-> Semantics
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Multi Pass Compiler

Compiler Driver

Syntactic Analyzer

calls
calls

Contextual Analyzer Code Generator

calls

Dependency diagram of a typical Multi Pass Compiler:

A multi pass compiler makes several passes over the program. The 
output of a preceding phase is stored in a data structure and used by 
subsequent phases.

input

Source Text

output

AST

input output

Decorated AST

input output

Object Code



Organization of a Compiler
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Programming Language Implementation

Translatorinput output
source program object program

is expressed in the
source language

is expressed in the
implementation language

is expressed in the
target language

Q: Which programming languages play a role in this picture? 

A: All of them! 
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Single Pass Compiler

Compiler Driver

Syntactic Analyzer

calls

calls

Contextual Analyzer Code Generator

calls

Dependency diagram of a typical Single Pass Compiler:

A single pass compiler makes a single pass over the source text, 
parsing, analyzing and generating code all at once.



Programming Language and 
Compiler Design

• Many compiler techniques arise from the need to cope with 
some programming language construct

• The state of the art in compiler design also strongly affects 
programming language design

• The advantages of a programming language that’s easy to 
compile: 
– Easier to learn, read, understand
– Have quality compilers on a wide variety of machines
– Better code will be generated
– Fewer compiler bugs
– The compiler will be smaller, cheaper, faster, more reliable, and 

more widely used
– Better diagnostic messages and program development tools



Compiler Writing Tools

• Compiler generators (compiler compilers)
– Scanner generator

• JLex (lex, lg)

– Parser generator
• JavaCUP (Yacc, pg)

– Front-end generator
• SableCC, JavaCC, (COCO/R, ANTLR, ..)

– Code-generation tools
• Much of the effort in crafting a compiler lies in 

writing and debugging the semantic phases
– Usually hand-coded
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Programming Language Projects

• A good DAT4/SW4/IT8 project group can
– Design a language (or language extensions)
– Define the language syntax using CFG
– Define the language semantics using SOS
– Implement a compiler/interpreter 

• in Java (or C/C++, C#, SML, F#, Scala, Kotlin …)
• Build a recursive decent parser by hand 
• Or using front-end tools such as Lex/Yacc, JavaCC, SableCC, ..
• Do code generation for abstract machine

– JVM (PerlVM or .Net CLR) or new VM
• Or code generation to some high level language

– C, Java, C#, SQL, XML
• Or code generation for some hardware platform

– MIPS, X86, ARM, ATmega, Z80, …
– (Prove correctness of compiler)

• Using SOS for Prg. Lang. and VM



41

Programming Language Life Cycle

Design

Specification

Manuals,
Textbooks

Compiler

Prototype
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Some advice

• A language design and compiler project is easy to 
structure.
– Design phase (Lecture 1-5 + 13-14 + 19)
– Front-end development (Lecture 6-9)
– Contextual analysis (Lecture 10-12)
– Code generation or interpretation (Lecture 15-18 + 20)

• You will learn the techniques and tools you need 
in time for you to apply them in your project



43

Summary

• Programming Language Design
– New features
– Paradigm, Philosophy

• Programming Language Specification
– Syntax
– Contextual constraints
– Meaning (semantics and code generation)

• Programming Language Implementation
– Compiler
– Interpreter
– Hybrid system
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Important

• At the end of the course you should …
• Know

– Which techniques exist
– Which tools exist

• Be able to choose “the right ones”
– Objective criteria
– Subjective criteria

• Be able to argue and justify your choices!
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Finally

Keep in mind, the compiler is the program from which all other 
programs arise. If your compiler is under par, all programs created 
by the compiler will also be under par. No matter the purpose or use 
-- your own enlightenment about compilers or commercial 
applications -- you want to be patient and do a good job with this 
program; in other words, don't try to throw this together on a 
weekend.

Asking a computer programmer to tell you how to write a compiler 
is like saying to Picasso, "Teach me to paint like you." 

*Sigh* Nevertheless, Picasso shall try.
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Learning goals

• Introduction to programming language design
• Overview of the evolution of programming

languages
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Why Are There So Many Programming 
Languages

• Why does some people speak French?
• Programming languages have evolved over time as better 

ways have been developed to design them.
– First programming languages were developed in the 1950s
– Since then thousands of languages have been developed

• Different programming languages are designed for different 
types of programs.



Why do people design new 
programming Languages?

• Most new languages are invented out of frustration!
– “The decision to create a new programming language or 

to design an extension of an existing language is often a 
reaction to some language that the designer knows (and 
likes or dislikes)” 

• P. Sestoft 2012

• A few languages are created because somebody 
requested a new language
– Fortran, C#, Swift, DART
– All of you, because the study regulations says so 
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Programming Language design

• Designing a new programming language or extending an 
existing programming language usually follows an 
iterative approach:

1. Create ideas for the programming language or 
extensions

2. Describe/define the programming language or 
extensions

3. Implement the programming language or extensions
4. Evaluate the programming language or extensions
5. If not satisfied, goto 1

6



Programming Language design

1. Create ideas for the programming language or extensions
• This subject is almost completely absent from literature!

2. Describe/define the programming language or extensions
• We will spend quite a bit of time in this course and the SS

3. Implement the programming language or extensions
• We will spend a lot of time on this subject. 

4. Evaluate the programming language or extensions
• is not usually covered in classic litterature on Programming 

Languages and Compilers!
• But you saw Sebesta’s Language evaluation criteria in the last 

lecture
• We shall see a some more later.

7



Concepts of Programming Languages, Eleventh Edition, Global Edition
Robert W. Sebesta

Copyright ©2017 by
Pearson Education, Ltd.

All rights reserved.

Table 1.1   Language evaluation criteria and the 
characteristics that affect them



How to create ideas for a new programming 
language or extensions ?

• Do a problem analysis!
– Who needs the new language?
– What is the purpose of the new language
– What type of programs would we like to write?

• Create some example programs
• Even before you have defined the language you can create

examples of programs as you would like them to look
• Take inspiration from other languages

– Which langauges do you know?
– What do you like about these languages?
– What do you dislike?
– Look at languages you don’t know!
– Look at the history of programming languages

9
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Programming Language History
1940s

The first electronic computers were monstrous 
contraptions
– Programmed in binary machine code by hand
– Code is not reusable or relocatable

• Each machine had its own machine language

– Computation and machine maintenance were 
difficult:
• cathode tubes regularly burned out
• The term ‘‘bug’’ originated from a bug that reportedly 

roamed around in a machine causing short circuits



11

… in the beginning of time



12

Programming Language History
Late 1940s early 1950s

• Assembly languages 
– invented to allow machine operations to be 

expressed in mnemonic abbreviations 
– Enables larger, reusable, and re-locatable 

programs
– Actual machine code is produced by an 

assembler
– Early assemblers had a one-to-one 

correspondence between assembly and machine 
instructions

– Later: expansion of macros into multiple 
machine instructions to achieve a form of 
higher-level programming

Assembly
LOAD x
ADD R1 R2



; Hello World for Intel Assembler (MSDOS)

mov ax,cs
mov ds,ax
mov ah,9
mov dx, offset Hello
int 21h
xor ax,ax
int 21h
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Programming Language History
Mid 1950s

• Fortran , the first higher-level language
– Now programs could be developed that were 

machine independent!
– Main computing activity in the 50s: solve 

numerical problems in science and engineering
– Other high-level languages soon followed:

• Algol 58 is an improvement compared to Fortran
• Cobol for business computing
• Lisp for symbolic computing and artificial intelligence
• BASIC for "beginners"



C     Hello World in Fortran

PROGRAM HELLO
WRITE (*,100)
STOP

100 FORMAT (' Hello World! ' /)
END

* Hello World in COBOL

*****************************
IDENTIFICATION DIVISION.
PROGRAM-ID. HELLO.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.
MAIN SECTION.
DISPLAY "Hello World!"
STOP RUN.
****************************
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Programming Language History
1960s

• Structured Programming 
– Dijkstra, Dahl, and Hoare.

• Pascal, Niklaus Wirth (ETH, Zurich)
– Modelled after Algol
– No GOTO
– Very strongly typed
– Procedures nested inside each other
– Designed for teaching programming

• Simula, Dahl and Nygaard (Norway)
– The first language with objects, classes, and 

subclasses



{Hello world in Pascal}

program HelloWorld(output);
begin
WriteLn('Hello World!');

end.
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Programming Language History
1970s

• C, Dennis Ritchie/Ken Thompson (Bell Labs)
– Successor to B, which was stripped-down BCPL.
– High-level constructs and low-level power
– Flat name space for functions/procedures

• Ada, Jean Ichbiah (France)
– Instigated by the Department of Defense
– Designed for systems programming, especially 

embedded systems.



/* Hello World in C, Ansi-style */

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
puts("Hello World!");
return EXIT_SUCCESS;

}

-- Hello World in Ada

with Text_IO;
procedure Hello_World is

begin
Text_IO.Put_Line("Hello 

World!");
end Hello_World;
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Programming Language History
1970s

• Smalltalk, Alan Kay, Adele Goldberg (Xerox PARC)
– Graphics-rich

• GUI
• Fonts

– Object-oriented
• Everything is an object
• Objects communicate through messages

• Scheme, Gerald Sussman & Guy Steele (MIT)
– LISP with static scoping

• Prolog, Philippe Roussel (France)
– Based on rules, facts, and queries.



"Hello World in Smalltalk"

Transcript show: 'Hello 
World!'.

; Hello World in Scheme

(display "Hello, world!")
(newline)

% Hello World in Prolog

hello :- display('Hello 
World!') , nl .
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Programming Language History
1980s

• Object-oriented programming
– Important innovation for software development
– The concept of a class is based on the notion of 

data type abstraction from Simula 67 , a language 
for discrete event simulation that has classes but 
no inheritance

• 1979-1983: C++ Bjarne Stroustrop (Bell Labs)
– Originally thought of as “C with classes”.
– First widely-accepted object-oriented language.
– First implemented as a pre-processor for the C 

compiler.



// Hello World in C++ (pre-ISO)

#include <iostream.h>

main()
{

cout << "Hello World!" << endl;
return 0;

}
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Programming Language History
1980s

• Functional Programming
– Extensive list of new concepts 

• Lazy vs. eager evaluation
• Pure vs. imperative features
• Parametric polymorphism
• Type inference
• (Garbage collection)

– Hope
– Clean
– Haskell
– SML
– Caml
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Programming Language History
1990s

• HTML, Tim Berners-Lee (CERN)
– “Hypertext Markup Language”

• Language of the World Wide Web.
– A markup language, not a programming language.

• Scripting languages
– PERL.

• CGI or Apache module
– Languages within Web pages

• JavaScript, VBScript
• PHP, ASP, JSP

• Java, James Gosling (Sun)
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The evolution of Java
• 1993 Oak project at Sun

– small, robust, architecture independent, Object-Oriented, language to control interactive TV.
– didn’t go anywhere

• 1995 Oak becomes Java
– Focus on the web

• 1996 Java 1.0 available
• 1997 (March) Java 1.1 - some language changes, much larger library, new event handling model 
• 1997 (September) Java 1.2 beta – huge increase in libraries including Swing, new collection classes, J2EE
• 1998 (October) Java 1.2 final  (Java2!)
• 2000 (April) Java 1.3 final
• 2001 Java 1.4 final (assert)
• 2004 Java 1.5 (parameterized types, enum, …)
• 2005 J2EE 1.5
• 2006 Java 6
• 2011 Java 7
• 2014 Java 8 (lambda expressions)
• 2017 Java 9 (expected 23.3.17, but released 21.9.17 
• – REPL, process control, collections, streams, …)
• 2018 Java 10 (March – Minor updates, GC interface, parallel GC)
• 2018 Java 11 (September - Local-variable syntax for lambda parameters, ZGC: a scalable low-latency GC )
• 2019 Java 12 (March) 
• Java SE 13 (September 17, 2019)
• Java SE 14 (March 17, 2020) – preview of patternmatching
• Java SE 15 (September 15, 2020)
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Programming Language History
2000s

• XML
• Microsoft .NET

– Multiple languages
• C++
• C#
• Visual Basic
• COBOL
• Fortran
• Eiffel

– Common virtual machine (.Net CLR)
– Web services
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C# History
• 12/1998 – COOL project started
• 07/1999 – First internal ports to COOL
• 02/2000 – Named changed to C#
• 07/2000 – First public preview release
• 02/2002 – C# 1.0, VS.NET 2002
• 05/2003 – C# 1.1, VS.NET 2003
• 06/2004 – Beta 1 of C# 2.0 and VS 2005 
• 04/2005 – Beta 2 of C# 2.0 and VS 2005
• 11/2005 – C# 2.0 VS 2005, C# 2.0 release  

– Generics, anonymous delegates, nullable types, iterators, partial classes
• 11/2006 – C# 3.0, VS 2008

– (local type inference, lambdas, expression trees, LINQ)
• 04/2010 – C# 4.0, VS 2010

– Type dynamics, named+optional parameters, co-/contra variant generics
• 08/2012 – C# 5.0, VS 2012

– Async methods
• 06/2015 – C# 6.0, VS 2015

– Await in catch/finally blocks, succinct null checking
• 2017 – C# 7.0,7.1,7.2, VS 2017

– Pattern matching, Local functions, tuples
• 2018 – C# 7.3 

– Reassigning ref local variables, Using initializers on stackalloc arrays
• 2019 – C# 8

– readonly struct members, default interface members, switch expressions, Property, Tuple, and positional patterns, using 
declarations

– static local functions, Disposable ref struct, Nullable reference types, Indices and Ranges, Null-coalescing assignment,AsyncStreams
• 2020 – C# 9
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Programming Language History
2010s

• Multi paradigm integration, especially 
OO+FP(+concurrency)
– C#, C++ and Java
– Python
– Ruby
– Groovy
– Clojure
– Fortress
– Scala
– O’Caml, F#
– Haskell
– Erlang
– Swift, DART, RUST, Kotlin



-- Hello World in Haskell

main = putStrLn "Hello World“

%% Hello World in Erlang

-module(hello).

-export([hello/0]).

hello() ->
io:format("Hello World!~n", []).

// Hello world in Swift

println("Hello, world!")

// Hello world in Dart

main() {
print('Hello world!');

}

// Hello world in Kotlin

fun main(args : Array<String>) {
println("Hello, world!")

}
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Three Trends

• Declarative programming languages in vogue 
again
– Especially functional

• Dynamic Programming languages gained 
momentum, but …

• Concurrent Programming languages came 
back on the agenda
– Reactive programming

• (a special kind of concurrent programming)



So what can you do in your projects?

• Look at code in the languages you know
• Use Sebesta’s Language Evalualtion criteria

to those languages
• Look at code in languages you do not know
• Make a list of language features you like
• Make a list of language features you dislike
• Creat some example programs

39
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So how would you like to 
programme in 20 years?
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Learning goals

• Knowledge of compilers and interpreters as programs
• Knowledge of tombstone diagrams
• Introduction to Cross compilation
• Introduction to Two stage compiling
• Reasoning about Portability
• Introduction to bootstrapping

2



3

Terminology

Translatorinput output
source program object program

is expressed in the
source language

is expressed in the
implementation language

is expressed in the
target language

Q: Which programming languages play a role in this picture? 

A: All of them! 
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Tombstone Diagrams

What are they?
– diagrams consisting out of a set of “puzzle pieces” we can use 

to reason about language processors and programs
– different kinds of pieces
– combination rules (not all diagrams are “well formed”)

M

Machine implemented in hardware

S -> T
L

Translator implemented in L

M
L

Language interpreter in L

Program P implemented in L

L
P



5

Tombstone diagrams: Combination rules

S
P P

TS -> T
M
M

L
P

S -> T
MWRONG!

OK!
OK!

OK!M
M
P

OK!

M
L
P

WRONG!
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Tetris
x86C

Tetris

Compilation 

x86

Example: Compilation of C programs on an x86 machine

C -> x86
x86

x86
Tetris

x86
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Tetris
ARMC

Tetris

Cross compilation

x86

Example: A C “cross compiler” from x86 to ARM

C -> ARM
x86

A cross compiler is a compiler which runs on one machine (the host 
machine) but emits code for another machine (the target machine).

Host ≠ Target

Q: Are cross compilers useful? Why would/could we use them?

ARM
Tetris

ARM

download
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Tetris
x86

Tetris
JVMJava

Tetris

Two Stage Compilation

x86

Java->JVM
x86

A two-stage translator is a composition of two translators. The 
output of the first translator is provided as input to the second 
translator.

x86

JVM->x86
x86
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Tetris
x86

Tetris
CJava

Tetris

Two Stage Compilation (via C)

x86

Java->C
x86

A two-stage translator is a composition of two translators. The 
output of the first translator is provided as input to the second 
translator.

x86

C->x86
x86
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x86
Java->x86

Compiling a Compiler

Observation: A compiler is a program! 
Therefore it can be provided as input to a language processor.
Example: compiling a compiler.

Java->x86
C

x86

C -> x86
x86
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Interpreters

An interpreter is a language processor implemented in software, i.e. 
as a program.

Terminology: abstract (or virtual) machine versus real machine

Example: The Java Virtual Machine

JVM
x86
x86

JVM
Tetris

Q: Why are abstract machines useful?
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Interpreters

Q: Why are abstract machines useful?

1) Abstract machines provide better platform independence

JVM
x86
x86 ARM

JVM
Tetris

JVM
ARM

JVM
Tetris
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Interpreters

Q: Why are abstract machines useful?

2) Abstract machines are useful for testing and debugging.

Example: Testing the “Ultima” processor using hardware emulation

Ultima
x86
x86

Ultima≡
Ultima

P

Ultima
P

Functional equivalence

Note: we don’t have to implement Ultima emulator in x86 we can 
use a high-level language and compile it.
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Interpreters versus Compilers

Q: What are the tradeoffs between compilation and interpretation?

Compilers typically offer more advantages when 
– programs are deployed in a production setting
– programs are “repetitive”
– the instructions of the programming language are complex

Interpreters typically are a better choice when
– we are in a development/testing/debugging stage
– programs are run once and then discarded 
– the instructions of the language are simple 
– the execution speed is overshadowed by other factors

• e.g. on a web server where communications costs are much higher than 
execution speed 
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Interpretive Compilers

Why?
A tradeoff between fast(er) compilation and a reasonable runtime 
performance.

How?
Use an “intermediate language”
• more high-level than machine code => easier to compile to
• more low-level than source language => easy to implement as an 

interpreter

Example: A “Java Development Kit” for machine M

Java->JVM
M

JVM
M
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P
JVMJava

P

Interpretive Compilers

Example: Here is how we use our “Java Development Kit” to run a 
Java program P

Java->JVM
M JVM

MM

JVM
P

Mjavac java
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Portable Compilers

Example: Two different “Java Development Kits”

Java->JVM
JVM

JVM
M

Kit 2:

Java->JVM
M

JVM
M

Kit 1:

Q: Which one is “more portable”?
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Example: a “portable” compiler kit

Java->JVM
Java

JVM
Java

Java->JVM
JVM

Q: Suppose we want to run this kit on some machine M. How could 
we go about realizing that goal? (with the least amount of effort)

Portable Compiler Kit:
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Example: a “portable” compiler kit

Java->JVM
Java

JVM
Java

Java->JVM
JVM

Q: Suppose we want to run this kit on some machine M. How could 
we go about realizing that goal? (with the least amount of effort)

JVM
Java

JVM
C

reimplement

C->M
M

JVM
M

M
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Example: a “portable” compiler kit

Java->JVM
Java

JVM
Java

Java->JVM
JVM

JVM
M

This is what we have now:

Now, how do we run our Tetris program?

Tetris
JVMJava

Tetris

M

Java->JVM
JVM
JVM

M

JVM
Tetris

JVM
M
M
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Bootstrapping

Java->JVM
Java

JVM
Java

Java->JVM
JVM

Remember our “portable compiler kit”:

We haven’t used this yet!

Java->JVM
Java

Same language! Q: What can we do with a compiler written in 
itself? Is that useful at all?

JVM
M
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Bootstrapping

Java->JVM
Java

Same language!

Q: What can we do with a compiler written in 
itself? Is that useful at all?

• By implementing the compiler in (a subset of) its own language, we 
become less dependent on the target platform => more portable 
implementation.

• But… “chicken and egg problem”? How do to get around that?
=> BOOTSTRAPPING: requires some work to make the first “egg”. 

There are many possible variations on how to bootstrap a compiler 
written in its own language.
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Bootstrapping an Interpretive Compiler to 
Generate M code

Java->JVM
Java

JVM
Java

Java->JVM
JVM

Our “portable compiler kit”:

P
MJava

P
Goal: we want to get a “completely native” Java compiler on machine M

Java->M
M

JVM
M

M
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Bootstrapping an Interpretive Compiler to 
Generate M code (first approach)

Step 1: implement

Java->M
Java JVM

Java ->M
Java->JVM

JVM
JVM

M
M

Java ->M
Java

Step 2: compile it

Step 3: Use this to compile again

by rewriting Java ->JVM
Java
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Bootstrapping an Interpretive Compiler to 
Generate M code (first approach)

Step 3: “Self compile” the Java (in Java) compiler

M
Java->M

JVM
M
M

Java->M
Java Java->M

JVM

This is our desired 
compiler!

Step 4: use this to compile the P program

P
MJava

P
Java->M

M
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Bootstrapping an Interpretive Compiler to 
Generate M code (second approach)

Idea: we will build a two-stage Java -> M compiler.

P
M

P
MJava

P P
JVM

M

Java->JVM
M

M

JVM->M
M

We will make this by 
compiling 

To get this we implement

JVM->M
Java

Java->JVM
JVM and compile it
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Bootstrapping an Interpretive Compiler to 
Generate M code (second approach)

Step 1: implement

JVM->M
Java JVM

JVM->M
Java->JVM

JVM
JVM

M
M

JVM->M
Java

Step 2: compile it

Step 3: compile this
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Bootstrapping an Interpretive Compiler to 
Generate M code (second approach)

Step 3: “Self compile” the JVM (in JVM) compiler

M
JVM->M

JVM
M
M

JVM->M
JVM JVM->M

JVM

This is the second 
stage of our 
compiler!

Step 4: use this to compile the Java compiler



29

Bootstrapping an Interpretive Compiler to 
Generate M code

Step 4: Compile the Java->JVM compiler into machine code

M
Java->JVM

M

Java->JVM
JVM JVM->M

M

The first stage of 
our compiler!

We are DONE!

P
M

P
MJava

P P
JVM

M

Java->JVM
M

M

JVM->M
M
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Bootstrapping to Improve Efficiency

The efficiency of programs and compilers:
Efficiency of programs: 

- memory usage
- runtime

Efficiency of compilers: 
- Efficiency of the compiler itself
- Efficiency of the emitted code

Idea: We start from a simple compiler (generating inefficient code) 
and develop more sophisticated versions of it. We can then use 
bootstrapping to improve performance of the compiler.
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Bootstrapping to Improve Efficiency

We have:
Java->Mslow

Java
Java-> Mslow

Mslow

We implement:
Java->Mfast

Java

Java->Mfast

Java

M

Java->Mfast
Mslow

Step 1

Java-> Mslow
Mslow

Step 2 Java->Mfast

Java

M

Java->Mfast
MfastJava-> Mfast

Mslow

Fast compiler that 
emits fast code!
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Conclusion

• To write a good compiler you may be writing several 
simpler ones first

• You have to think about the source language, the target 
language and the implementation language.

• Strategies for implementing a compiler
1. Write it in machine code
2. Write it in a lower level language and compile it using an 

existing compiler
3. Write it in the same language that it compiles and bootstrap

• The work of a compiler writer is never finished, there 
is always version 1.x and version 2.0 and …



AtoCC Demo
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Languages and Compilers
(SProg og Oversættere)

Lecture 3
The ac language and compiler

Bent Thomsen
Department of Computer Science

Aalborg University

With acknowledgement to H. J. Wang whose slides this lecture is based on.



Learning goals

• Get an overview of a simple language (ac)
• Get an introduction to language definition
• Get an overview of the compilation process for a simple 

language
• Get a quick overview of a compiler’s phases and their 

associated data structures

2
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The “Phases” of a Compiler

Syntax Analysis

Contextual Analysis

Code Generation

Source Program

Abstract Syntax Tree

Decorated Abstract Syntax Tree

Object Code

Error Reports

Error Reports
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Different Phases of a Compiler

The different phases can be seen as different 
transformation steps to transform source code into 
object code. 

The different phases correspond roughly to the different 
parts of the language specification:

• Syntax analysis <-> Syntax
• Lexical analysis <-> Regular Expressions
• Parsing               <-> Context Free Grammar

• Contextual analysis <-> Contextual constraints
• Scope checking   <->  Scope rules (static semantics)
• Type checking     <->  Type rules (static semantics)

• Code generation <-> Semantics  (dynamic semantics)



Organization of a Compiler

5



Phases of a Simple Compiler
• Scanner: source program -> tokens

– Part of Syntax analysis phase
– Fischer et. Al. Chap. 3

• Parser: tokens -> abstract syntax tree (AST)
– Part of Syntax analysis phase
– Fischer et. Al. Chap. 5 & 6

• Symbol table: created from AST
– Part of contextual analysis phase
– Fischer et. Al. Chap. 8  

• Semantic analysis: AST decoration
– Part of contextual analysis phase
– Fischer et. Al. Chap. 9

• Translation (Code generation)
– Part of code generation phase
– Fischer et. Al. Chap. 11 and Chap 13.

6



An Informal Definition of the ac Language
• ac: adding calculator
• Types

– integer
– float: allows 5 fractional digits after the decimal point
– Automatic type conversion from integer to float

• Keywords
– f: float
– i: integer
– p: print

• Variables
– 23 names from lowercase Roman alphabet except the three reserved keywords f, i, 

and p
• Monolitic scope, i.e. names are visible in the program when they are 

declared
– Note more complex languages may have nested scopes 

• e.g. in C we can write { int x; … { int x; … x =5; … } … x =x +1; …}
• Target of translation: dc (desk calculator)

– Reverse Polish notation (RPN)

7



Example Program

f   b                      //declare variable b as float
i   a //declare variable a as int
a   =     5   //assign a the value 5
b   =    a  +  3.2   //assign b the result of  

//calculating a + 3.2
p  b                      //print the content of b

8



An Example ac Program

• Example ac program:
– f b

i a
a = 5
b = a + 3.2
p b

• Corresponding dc 
code
– 5

sa
la
3.2
+
sb
lb
p

9Note that DC is a stack machine just like the JVM, CLR and PostScript 



Formal Definition of ac

• Syntax specification: 
– context-free grammar (CFG)
– (Chap. 4)

• Token specification: 
– Regular Expressions (RE)
– (Sec. 3.2)

• Note no formal definition of Type Rules or 
Runtime semantics (in Fischer et. Al.)

10



A sketch SOS for ac

11



Syntax Specification

12



Context Free Grammar
• CFG:

– A set of productions or rewriting rules
– E.g.: Stmt id assign Val Expr

| print id
– Two kinds of symbols

• Terminals: cannot be rewritten
– E.g.: id, assign, print
– Empty or null string: λ - some references use ε for empty string
– End of input stream or file: $

• Nonterminals:
– E.g.: Val, Expr
– Start symbol: Prog

– Left-hand side (LHS)
– Right-hand side (RHS)

13



Example Program

f   b                      //declare variable b as float
i   a //declare variable a as int
a   =     5   //assign a the value 5
b   =    a  +  3.2   //assign b the result of  

//calculating a + 3.2
p  b                      //print the content of b
$                           //symbol used to signal

//end of input
14



f    b   i   a a =     5   b   =    a  +  3.2   p  b $
15
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Definition of ac language 

Regular expression specifies Token
– The actual input characters that correspond to each 

terminal symbol (called token) are specified by 
regular expression.

– For example:
• assign symbol as a terminal, which appears in the input 

stream as  “=“ character.
• The terminal id (identifier) could be any alphabetic character  

except f, i, or p, which are reserved for special use in ac. It is 
specified as [a-e] | [g-h] ] | [j-o] | [q-z]

– Regular expression will be covered in Ch. 3.
– Also need to specify which symbols to ignore

• E.g. blanks, tabs, comments (sometimes called Ignore Tokens)



Token Specification for ac

18Note: In most languages id is a sequence of letters and numbers starting
With a letter defined as [a-z]([a-z]|[0-9])*



Tokens and FSA

19
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Phases of an ac compiler
• Scanning/lexing

– The scanner reads a source ac program as a text file 
and produces a stream of tokens.

– Fig. 2.5 shows a scanner that finds all tokens for ac. 
– Fig. 2.6 shows scanning a number token.

– Each token has the two components:
1)Token type  explains the token’s category. (e.g., id)
2)Token value provides the string value of the token. (e.g., “b”)

- Automatic construction of scanners: Chap.3
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Scanning: Divide Input into Tokens

An example ac source program:
f b
i a
a = 5
b = a + 3.2
p b

floatdl
f

id
b

intdcl
i

scanner

id
a

id
a

assign
=

id
a

plus
+

...

... fnum
3.2

print
p

id
b

eot

Lexems are “words” in the input, for 
example  keywords, operators, 
identifiers, literals, etc.
Tokens is a datastructure for lexems 
and additional information

inum
5

assign
=
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Pause

26



Parsing
• To determine if the stream of tokens conforms to the 

language’s grammar specification
– Chap. 4, 5, 6
– For ac, a simple parsing technique called recursive descent is used

• “Mutually recursive parsing routines that descend through a derivation 
tree”

• Each nonterminal has an associated parsing procedure for determining 
if the token stream contains a sequence of tokens derivable from that 
nonterminal

• Examine the next input token to predict which production 
should be applied, e.g:

» Stmt id assign Val Expr
» Stmt print id

– Predict set
» {id} [1]
» {print} [6]

27



TMT
PEEK

PEEK

MATCH
MATCH

MATCH
MATCH

ERROR

AL

XPR

TMT
PEEK

PEEK

MATCH
MATCH

MATCH
MATCH

ERROR

AL

XPR

28

Stmt id assign Val Expr

Stmt print id



• Consider the productions for Stmts
– Stmts  Stmt Stmts
– Stmts  λ

• The predict sets
– {id, print} [8]
– {$} [11]

29



TMTS
PEEK PEEK

PEEK

TMT
TMTS

ERROR

30
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The result of parsing

• If all of the tokens are processed, an 
abstract syntax tree (AST) will be 
generated. 
– An example is shown in fig 2.9.
– Actually the AST is produced during the process

• AST serves as a representation of a 
program for all phases 

after syntax analysis.
32
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Abstract Syntax Trees

• Parse trees are large and unnecessarily detailed 
(Fig. 2.4)
– Abstract syntax tree (AST) (Fig. 2.9)

• Inessential punctuation and delimiters are not included
– A common intermediate representation for all phases 

after syntax analysis
• Declarations need not be in source form
• Order of executable statements explicitly represented
• Assignment statement must retain identifier and expression
• Nodes representing computation: operation and operands
• Print statement must retain name of identifier

34
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Contextual Analysis
• Aspects of compilation that can be difficult to 

perform during syntax analysis
– Some aspects of language cannot be specified in a CFG

• Symbol usage consistency with type declaration
• Scope/visibility of variables
• In Java: x.y.z

– Package x, class y, static field z
– Variable x, field y, another field z

• Operator overloading
– +: numerical addition or appending of strings

– Separation into phases makes the compiler much 
easier to write and maintain

37



Semantic Analysis

• Example processing
– Declarations and name scopes are processed 

to construct a symbol table
– Type consistency
– Make type-dependent behavior explicit

38



Symbol Tables

• To record all identifiers and their types 
– 23 entries for 23 distinct identifiers in ac (Fig. 

2.11)
• Type info.: integer, float, unused (null)
• Attributes: scope, storage class, protection 

properties
– Symbol table construction (Fig. 2.10)

• Symbol declaration nodes call 
VISIT(SymDeclaring n)

• ENTERSYMBOL checks the given symbol has not 
been previously declared

39
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Type Checking
• Only two types in ac

– Integer
– Float

• Type hierarchy
– Float wider than integer
– Automatic widening (or casting)

• integer -> float
• All identifiers must be type-declared in a 

program before they can be used
• This process walks the AST bottom-up from 

its leaves toward its root.
42



43



Phases of an ac compiler (Cont.)

• At each node, appropriate analysis is applied:

– For constants and symbol references, the visitor methods simple 
set the supplied node’s type based on the node’s contents.

– For nodes that compute value, such as plus and minus, the 
appropriate type is computed by calling the utility methods.

– For an assignment operation, the visitor makes certain that the 
value computed by the second child is of the same type as the 
assigned identifier (the first child).

The results of applying semantic analysis to the AST of fig 2.9 are 
shown in fig 2.13.

44



Type Checking

45
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• Type checking
– Constants and symbol reference: simply set the 

node’s type based on the node’s contents
– Computation nodes: CONSISTENT(n.c1, n.c2)
– Assignment operation: CONVERT(n.c2, n.c1.type)

• CONSISTENT()
– GENERALIZE(): determines the least general type
– CONVERT(): checks whether conversion is necessary 

49
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Code Generation
• The formulation of target-machine instructions 

that faithfully represent the semantics of the 
source program
– Chap. 11 & 13
– dc: stack machine model
– Code generation proceeds by traversing the AST, 

starting at its root
• VISIT (Computing n)
• VISIT (Assigning n)
• VISIT (SymReferencing n)
• VISIT (Printing n)
• VISIT (Converting n)

51
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• That’s it !!
• At least for ac on dc

55
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Some advice
• A language design and compiler project follows 

an iterative approach
• but each iteration is easy to structure:

– Design phase (Lecture 1-5 + 13-14 + 19)
– Front-end development (Lecture 6-9)
– Contextual analysis (Lecture 10-12)
– Code generation or interpretation (Lecture 15-18 + 20)
– If not happy start again

• You will learn the techniques and tools you need 
in time for you to apply them in your project
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Choosing the impl. language

Translatorinput output
source program object program

is expressed in the
source language

is expressed in the
implementation language

is expressed in the
target language

Q: Which programming languages play a role in this picture? 

A: All of them! 



What can we do now in our 
projects?

• Write programs!
• Imagine that you have already designed your 

language – how would programs look?
• Serves as outset for discussions about your 

language design
– Especially token and grammer design

• Write lots of programs – they will serve as 
test case for your compiler later

• Start thinking about implementation 
language

58
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Languages and Compilers
(SProg og Oversættere)

Lecture 4
Language specifications

Bent Thomsen
Department of Computer Science

Aalborg University



Learning goals

• A deeper understanding of programming language
specifications

• Introduction to context free grammars
• Introduction to BNF and EBNF
• Overview of formal specifications notations

2



3

Programming Language Specification

• Why?
– A communication device between people who need to 

have a common understanding of the PL:
• language designer, language implementor, language user

• What to specify?
– Specify what is a ‘well formed’ program

• syntax
• contextual constraints (also called static semantics):

– scope rules
– type rules

– Specify what is the meaning of (well formed) programs
• semantics (also called runtime semantics)
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Programming Language Specification

• Why?
• What to specify?
• How to specify ?

– Formal specification: use some kind of precisely defined formalism
– Informal specification: description in English.

– Usually a mix of both (e.g. Java specification)
• Syntax => formal specification using RE and CFG
• Contextual constraints and semantics => informal
• Formal semantics has been retrofitted though

– But trend towards more formality (C#, Fortress)
• fortress.pdf
• Ecma-334.pdf



Fortress definition p. 71 and p. 181 

5



The C89 standard – 519 pages
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Programming Language Specification

A language specification need to address:

• Syntax
• Token grammar: Regular Expressions
• Context Free Grammar: BNF or EBNF

• Contextual constraints
• Scope rules (static semantics)

– Often informal, but can be formalized
• Type rules (static semantics)

– Informal or Formal

• Semantics  (dynamic semantics)
– Informal or Formal
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Syntax Analysis

• The syntax analysis portion of a language 
processor nearly always consists of two 
parts:
– A low-level part called a lexical analyzer

(mathematically, a finite automaton based on a 
regular grammar)

– A high-level part called a syntax analyzer, or 
parser (mathematically, a push-down 
automaton based on a context-free grammar, 
or BNF)
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The General Problem of Describing 
Syntax: Terminology

• A sentence is a string of characters over 
some alphabet

• A language is a set of sentences

• A lexeme is the lowest level syntactic unit 
of a language (e.g., *, sum, begin)

• A token is a category of lexemes (e.g., 
identifier)



Definition of Tokens/lexemes

• Tokens are often specified using regular expressions
• Remember:

11

Note: In most languages id is a sequence of letters and numbers starting
With a letter defined as [a-z]([a-z]|[0-9])*
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Formal Definition of Languages

• Generators
– A device that generates sentences of a language
– One can determine if the syntax of a particular sentence is 

syntactically correct by comparing it to the structure of 
the generator

• Recognizers
– A recognition device reads input strings over the alphabet 

of the language and decides whether the input strings 
belong to the language 

– Example: syntax analysis part of a compiler



Copyright © 2009 Addison-
Wesley. All rights reserved.

1-13

BNF and Context-Free Grammars

• Context-Free Grammars
– Developed by Noam Chomsky in the mid-1950s
– Language generators, meant to describe the syntax of 

natural languages
– Define a class of languages called context-free 

languages

• Backus-Naur Form (1959)
– Invented by John Backus to describe Algol 58
– Modified by Peter Naur to describe Algol 60
– BNF is equivalent to context-free grammars
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Syntax Specification

Syntax is specified using “Context Free Grammars”:
– A finite set of terminal symbols (or tokens)
– A finite set of non-terminal symbols
– A start symbol
– A finite set of production rules

A CFG defines a set of strings 
– This is called the language of the CFG.
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Backus-Naur Form

Usually CFG are written in BNF notation. 

A production rule in BNF notation is written as:

N ::= α     where N is a non terminal
and α a sequence of terminals and non-terminals 

N ::= α | β | ... is an abbreviation for several rules with N
as left-hand side.

Sometimes non terminals are represented in angel brackets: <N> and ::= is replaced with →
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Syntax Specification

Example:
Start ::= Letter 

| Start Letter

| Start Digit

Letter ::= a | b | c | d | ... | z
Digit  ::= 0 | 1 | 2 | ... | 9

Q: What is the “language” defined by this grammar?

Note: a sequence of letters and numbers starting with a letter defined in RE as 
[a-z]([a-z]|[0-9])*
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What is the “language” defined by this grammar?
identifier::= available-identifier

|   @ identifier-or-keyword
available-identifier::= identifier-or-keyword (that is not a keyword)
identifier-or-keyword::= identifier-start-character identifier-part-charactersopt
identifier-start-character::= letter-character

|   _ (the underscore character U+005F)
identifier-part-characters::= identifier-part-character

|    identifier-part-characters identifier-part-character
identifier-part-character::= letter-character

|   decimal-digit-character
|   connecting-character
|   combining-character
|   formatting-character

letter-character::= A Unicode character of classes Lu, Ll, Lt, Lm, Lo, or Nl
|  A unicode-escape-sequence representing a character of classes Lu, Ll, Lt, Lm, Lo, or Nl 

combining-character::= A Unicode character of classes Mn or Mc
| A unicode-escape-sequence representing a character of classes Mn or Mc 

decimal-digit-character::= A Unicode character of the class Nd
| A unicode-escape-sequence representing a character of the class Nd 

connecting-character::= A Unicode character of the class Pc 
| A unicode-escape-sequence representing a character of the class Pc 

formatting-character::= A Unicode character of the class Cf 
| A unicode-escape-sequence representing a character of the class Cf 

http://msdn.microsoft.com/en-us/library/aa664812(VS.71).aspx



What is the “language” defined by this grammar?

18



Spot the syntax error

{ 
x = 1;
y = 2;
z = 1+2

}

19
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Syntax Specification

Subtle example 1:
Block ::= { Statements }

Statements ::= Statement ; Statements 

|  Statement

Statement  ::= V-name = Expression

| Identifier ( Expression )

| …
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Syntax Specification

Subtle example 2:
Block ::= { Statements }

Statements ::= Statement Statements 

|  Statement

Statement  ::= V-name = Expression ;

| Identifier ( Expression ) ;

| …
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Syntax Specification

Subtle example 3:
Block ::= { Statements }

Statements ::= Statement ; Statements 

|  Statement ;

Statement  ::= V-name = Expression

| Identifier ( Expression )

| …



Table 1.1   
Language 
evaluation 

criteria and the 
characteristics 

that affect them
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Syntax Specification

Subtle example 4:
Block ::= begin Statements end

Statements ::= Statement ; Statements 

|  Statement ;

Statement  ::= V-name = Expression

| Identifier ( Expression )

| …
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Syntax Specification

Bad example 4:
Block ::= \nl Statements \nl

Statements ::= Statement \nl Statements 

|  Statement \nl

Statement  ::= V-name = Expression

| Identifier ( Expression )

| …
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BNF Fundamentals

• In BNF, abstractions are used to represent classes of syntactic structures--they act like  
syntactic  variables (also called nonterminal symbols, or just nonterminals)

• Terminals are lexemes or tokens

• A rule has a left-hand side (LHS), which is a nonterminal, and a right-hand side (RHS), 
which is a string of terminals and/or nonterminals

• Nonterminals are often enclosed in angle brackets

– Examples of BNF rules:
<ident_list> → identifier | identifier, <ident_list>

<if_stmt> → if <logic_expr> then <stmt>

• Grammar: a finite non-empty set of rules

• A start symbol is a special element of the nonterminals of a grammar

Note: terminals/lexemes like if and then are often used in CFG instead of tokens if_token and then_token
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BNF Rules

• An abstraction (or nonterminal symbol) 
can have more than one RHS
<stmt> → <single_stmt> 

<stmt> → begin <stmt_list> end

• Alternative rules are written with |

<stmt> → <single_stmt> 
| begin <stmt_list> end
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Describing Lists

• Syntactic lists are described using 
recursion
<ident_list> → ident

| ident, <ident_list>

• A derivation is a repeated application of 
rules, starting with the start symbol and 
ending with a sentence (all terminal 
symbols)



Pause
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An Example Grammar

<program> → <stmts>

<stmts> → <stmt> | <stmt> ; <stmts>

<stmt> → <var> = <expr>

<var> → a | b | c | d

<expr> → <term> + <term> | <term> - <term>

<term> → <var> | const
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An Example Derivation

<program> => <stmts> => <stmt> 

=> <var> = <expr> 

=> a = <expr> 

=> a = <term> + <term>

=> a = <var> + <term> 

=> a = b + <term>

=> a = b + const
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Derivations

• Every string of symbols in a derivation is a 
sentential form

• A sentence is a sentential form that has only 
terminal symbols

• A leftmost derivation is one in which the 
leftmost nonterminal in each sentential form is 
the one that is expanded

• A rightmost derivation is one in which the 
rightmost nonterminal in each sentential form 
is the one that is expanded

• A derivation may be neither leftmost nor 
rightmost
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Parse Tree

• A hierarchical representation of a derivation
<program>

<stmts>

<stmt>

const

a

<var> = <expr>

<var>

b

<term> + <term>
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Ambiguity in Grammars

• A grammar is ambiguous if and only if it 
generates a sentential form that has two 
or more distinct parse trees
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An Ambiguous Expression Grammar

<expr> → <expr> <op> <expr>  |  const

<op> → /  |  -

<expr>

<expr> <expr>

<expr> <expr>

<expr>

<expr> <expr>

<expr> <expr>

<op>

<op>

<op>

<op>

const const const const const const- -/ /

<op>
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An Unambiguous Expression Grammar

• If we use the parse tree to indicate 
precedence levels of the operators, we 
cannot have ambiguity

<expr> → <expr> - <term>  |  <term>
<term> → <term> / const| const

<expr>

<expr> <term>

<term> <term>

const const

const/

-
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Associativity of Operators

• Operator associativity can also be indicated by a 
grammar

<expr> -> <expr> + <expr> |  const  (ambiguous)
<expr> -> <expr> + const  |  const  (unambiguous)

<expr><expr>

<expr>

<expr> const

const

const

+

+
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Extended BNF

• Optional parts are placed in brackets [ ]
<proc_call> -> ident [(<expr_list>)]

• Alternative parts of RHSs are placed 
inside parentheses and separated via 
vertical bars 
<term> → <term> (+|-) const

• Repetitions (0 or more) are placed inside 
braces { }
<ident> → letter {letter|digit}



Copyright © 2009 Addison-Wesley. All rights reserved. 1-39

BNF and EBNF

• BNF
<expr> → <expr> + <term>

| <expr> - <term>
| <term>

<term> → <term> * <factor>
| <term> / <factor>
| <factor>

• EBNF
<expr> → <term> {(+ | -) <term>}
<term> → <factor> {(* | /) <factor>}
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Recent Variations in EBNF

• Alternative RHSs are put on separate lines
• Use of a colon or =  or := instead of →
• Use of opt for optional parts
• Use of oneof for choices
• Sometimes terminal (lexems or tokens) are 

written in “ “ or `` or in bold or color ..
• Sometimes given in a seperate grammar

and the non-terminals from this grammer
is used as terminal in the CFG

• Sometimes (  )* is used for { } and ? for [ ]
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BNF and EBNF

• BNF
<expr> → <expr> + <term>

| <expr> - <term>
| <term>

<term> → <term> * <factor>
| <term> / <factor>
| <factor>

• EBNF
<expr> → <term> ((+ | -) <term>)*
<term> → <factor> ((* | /) <factor>)*



EBNF in EBNF

Production = production_name "=" [ Expression ] "." .
Expression = Alternative { "|" Alternative } .
Alternative = Term { Term } .
Term        = production_name | token [ "…" token ] 

| Group | Option | Repetition .
Group       = "(" Expression ")" .
Option      = "[" Expression "]" .
Repetition  = "{" Expression "}" .

42
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An Example Language Specification

Mini Triangle is a very simple Pascal-like language introduced in 
Brown & Watt’s book: Language Processors in Java

An example program:

!This is a comment.
let const m ~ 7;

var n
in

begin
n := 2 * m * m  ;
putint(n)

end

Declarations

Command

Expression
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Syntax of Mini Triangle

Program ::= single-Command
single-Command 

::= V-name := Expression
| Identifier ( Expression )
| if Expression then single-Command

else single-Command
| while Expression do single-Command
| let Declaration in single-Command
| begin Command end

Command ::= single-Command 
| Command ; single-Command
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Syntax of Mini Triangle (continued)
Expression 
::= primary-Expression

| Expression Operator primary-Expression
primary-Expression 

::= Integer-Literal
| V-name
| Operator primary-Expression
| ( Expression )

V-name ::= Identifier
Identifier ::= Letter 

| Identifier Letter
| Identifier Digit

Integer-Literal ::= Digit 
| Integer-Literal Digit

Operator ::= + | - | * | / | < | > | =
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Syntax of Mini Triangle (continued)

Declaration  
::= single-Declaration

| Declaration ; single-Declaration
single-Declaration 

::= const Identifier ~ Expression
| var Identifier ::= Type-denoter

Type-denoter ::= Identifier

Comment ::= ! CommentLine eol
CommentLine ::= Graphic CommentLine
Graphic ::= any printable character or space
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Concrete Syntax of Commands

single-Command 
::= V-name := Expression
| Identifier ( Expression )
| if Expression then single-Command

else single-Command
| while Expression do single-Command
| let Declaration in single-Command
| begin Command end

Command ::= single-Command 
| Command ; single-Command
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Abstract Syntax of Commands

Command 
::= V-name := Expression AssignCmd
| Identifier ( Expression ) CallCmd
| if Expression then Command

else Command IfCmd
| while Expression do Command WhileCmd
| let Declaration in Command LetCmd
| Command ; Command SequentialCmd

An abstract syntax , like the above, is often used in the definition of the formal semantics 
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Even more Abstract Syntax of Commands

Command 
::= V-name Expression AssignCmd
| Identifier Expression CallCmd
| Expression Command Command IfCmd
| Expression Command WhileCmd
| Declaration Command LetCmd
| Command Command SequentialCmd

An abstract syntax, like the above, may form the basis for the design of the AST
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Contextual Constraints
Syntax rules alone are not enough to specify the format of 
well-formed programs. 

Example 1:
let const m~2
in  m + x 

Example 2:
let const m~2 ;

var   n:Boolean
in begin

n := m<4;
n := n+1

end

Undefined! Scope Rules

Type error! Type Rules
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Scope Rules
Scope rules regulate visibility of identifiers. They relate 
every applied occurrence of an identifier to a binding 
occurrence
Example 1
let const m~2;

var   r:Integer
in  

r := 10*m

Binding occurence

Applied occurence

Terminology:

Static binding vs. dynamic binding

Example 2:
let const m~2
in  m + x

?
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Type Rules
Type rules regulate the expected types of arguments and 
types of returned values for the operations of a language. 

Examples

Terminology:

Static typing vs. dynamic typing

Type rule of < : 
E1 < E2 is type correct and of type Boolean
if E1 and E2 are type correct and of type Integer

Type rule of while: 
while E do C is type correct
if E of type Boolean and C type correct
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Semantics
Specification of semantics is concerned with specifying the 
“meaning” of well-formed programs. 

Terminology:

Expressions are evaluated and yield values (and may or may not 
perform side effects)

Commands are executed and perform side effects.

Declarations are elaborated to produce bindings

Side effects:
• change the values of variables
• perform input/output
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Semantics

Example: The semantics of expressions.

An expression is evaluated to yield a value.

An (integer literal expression)  IL yields the integer value of IL

The (variable or constant name) expression V yields the value of 
the variable or constant named V

The (binary operation) expression E1 O E2 yields the value 
obtained by applying the binary operation O to the values yielded 
by (the evaluation of) expressions E1 and E2

etc.
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Semantics
Example: The semantics of declarations.

A declaration is elaborated to produce bindings. It may also have 
the side effect of allocating (memory for) variables.

The constant declaration  const I~E is elaborated by binding 
the identifier value I to the value yielded by E

The constant declaration  var I:T is elaborated by binding I
to a newly allocated variable, whose initial value is undefined. 
The variable will be deallocated on exit from the let containing 
the declaration.

The sequential declaration D1;D2 is elaborated by elaborating 
D1 followed by D2 combining the bindings produced by both. D2
is elaborated in the environment of the sequential declaration 
overlaid by the bindings produced by D1
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Semantics
Example: The (informally specified) semantics of commands in 
Mini Triangle.

Commands are executed to update variables and/or perform input 
output.

The assignment command V := E is executed as follows:

first the expression E is evaluated to yield a value v

then v is assigned to the variable named V

The sequential command C1;C2 is executed as follows: 

first the command C1 is executed 

then the command C2 is executed 

etc.
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Structured operational semantics
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Semantics

• There is no single widely acceptable 
notation or formalism for describing 
semantics

• Several needs for a methodology and 
notation for semantics:
– Programmers need to know what statements mean
– Compiler writers must know exactly what language 

constructs do
– Correctness proofs would be possible
– Compiler generators would be possible
– Designers could detect ambiguities and inconsistencies



Semantic styles

• Structural Operational Semantics
– Sebesta’s book has a very narrow view
– Much better view in

• Transitions and Trees: An introduction to structural 
operational semantics, Cambridge University Press

• Denotational Semantics
– Based on recursive function theory
– Originally developed by Scott and Strachey (1970)

• Axiomatic Semantics
– Sometimes called Hoare Logic
– Original purpose: formal program verification

Copyright © 2009 Addison-Wesley. All rights reserved. 1-59
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Important!

• Syntax is the visible part of a programming language
– Programming Language designers can waste a lot of time discussing 

unimportant details of syntax
– But syntax is important – syntax should convey the meaning 

intutively
• The language paradigm is the next most visible part

– The choice of paradigm, and therefore language, depends on how 
humans best think about the problem

• Imperative, Object Oriented, Functional, ..
– There are no right models of computations – just different models of 

computations, some more suited for certain classes of problems than 
others

• The most invisible part is the language semantics
– Clear semantics usually leads to simple and efficient 

implementations



Before Language definition
• Write programs !!
• Serves as inspiration for language specification

– Syntax
• Tokens
• CFG

– Static semantics
• Scope rules
• Type rules

– Semantics
• Informal
• Formal

• Serves as test case for compiler !!
• Read language specifications: C, C#, Java, .. 

61
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Programming Language Specification

– A Language specification has (at least) three parts
• Syntax of the language: 

– usually formal CFG in BNF or EBNF
– Tokens defined using regular expressions (RE)

• Contextual constraints: 
– scope rules (often written in English, but can be formal)
– type rules (formal or informal)

• Semantics: 
– defined by the implementation
– informal descriptions in English 
– formal using operational or denotational semantics
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Syntax Specification

Syntax is specified using “Context Free Grammars”:
– A finite set of terminal symbols
– A finite set of non-terminal symbols
– A start symbol
– A finite set of production rules

A CFG defines a set of strings 
– This is called the language of the CFG.



How to design a grammar?

• Let's write a CFG for C-style function prototypes!
• Write examples:

– void myf1(int x, double y);
– int myf2();
– int myf3(double z);
– double myf4(int, int w, int);
– void myf5(void);

• Terminals: void, int, double, ( , ), , , ; , ident
– ident = [a-z]([a-z]|[0-9])*

4



Designing a grammar for Function Prototypes

• Here is one possible
grammar

S → Ret ident (Args);
Ret → Type | void
Type → int | double
Args → ε | void | ArgList
ArgList → OneArg | ArgList, OneArg
OneArg → Type | Type ident

• Examples

– void ident(int ident, double ident);
– int ident();
– int ident(double ident);
– double ident(int, int ident, int);
– void ident(void);

5



Designing a grammar for Function Prototypes

• Here is another possible
grammar

S → Ret ident Args ;
Ret → int | double | void
Type → int | double
Args → () | (void)| (ArgList)
ArgList → OneArg |OneArg,ArgListArg
OneArg → Type | Type ident

• Examples

– void ident(int ident, double ident);
– int ident();
– int ident(double ident);
– double ident(int, int ident, int);
– void ident(void);

6



Context-Free Grammars
• Components: G=(N,Σ,P,S)

– A finite terminal alphabet Σ: the set of tokens 
produced by the scanner

– A finite nonterminal alphabet N: variables of the 
grammar

– A start symbol S: S∈N that initiates all derivations
• Goal symbol

– A finite set of productions P: AX1…Xm, where A∈N, 
Xi∈N∪Σ, 1≤i≤m and m≥0.

• Rewriting rules
• Vocabulary V=N∪Σ

– N∩Σ=φ



• CFG: recipe for creating strings
• Derivation: a rewriting step using the 

production Aα replaces the nonterminal 
A with the vocabulary symbols in α
– Left-hand side (LHS): A
– Right-hand side (RHS): α

• Context-free language of grammar G L(G): 
the set of terminal strings derivable from S



• notation:
– Aα

|β
…
|ζ

• or
– Aα

Aβ
…

Aζ

• αAβ=>αγβ: one step of derivation using 
the production Aγ
– =>+: derives in one or more steps
– =>*: derives in zero or more steps

• S=>*β: β is a sentential form of the CFG
• SF(G): the set of sentential forms of G
• L(G)={w∈Σ*|S=>+w}

– L(G)=SF(G)∩Σ*

Two conventions that nonterminals are rewritten in some systematic order
Leftmost derivation: from left to right
Rightmost derivation: from right to left



Leftmost Derivation

• A derivation that always chooses the 
leftmost possible nonterminal at each step
– =>lm, =>+

lm, =>*lm

– A left sentential form
• A sentential form produced via a leftmost 

derivation
• E.g. production sequence in top-down parsers
• (Fig. 4.1)





• E.g: a leftmost derivation of f ( v + v )
– E =>lm Prefix ( E )

=>lm f ( E )
=>lm f ( v Tail )
=>lm f ( v + E )
=>lm f ( v + v Tail )
=>lm f ( v + v )



Rightmost Derivations

• The rightmost possible nonterminal is 
always expanded
– =>rm, =>+

rm, =>*rm

– A right sentential form
• A sentential form produced via a rightmost 

derivation
• E.g. produced by bottom-up parsers (Ch. 6)
• (Fig. 4.1)



• E.g: a rightmost derivation of f ( v + v )
– E =>rm Prefix ( E )

=>rm Prefix ( v Tail )
=>rm Prefix ( v + E )
=>rm Prefix ( v + v Tail )
=>rm Prefix ( v + v )
=>rm f ( v + v )



Parse Trees

• Parse tree: graphical representation of a 
derivation
– Root: start symbol S
– Each node: either grammar symbol or λ (or ε)
– Interior nodes: nonterminals

• An interior node and its children: production
– E.g. Fig. 4.2
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BNF form of grammars
• Backus-Naur Form (BNF) is a formal grammar for 

expressing context-free grammars.
• The single grammar rule format:

– Non-terminal → zero or more grammar symbols

• It is usual to combine all rules with the same left-hand 
side into one rule, such as:

N → α
N → β
N → γ  

Greek letters α,β, or γ means a string of symbols.
are combined into one rule:

N → α | β | γ
α, β and γ are called the alternatives of N.



18181818

Extended BNF form of grammars
• BNF is very suitable for expressing nesting and 

recursion, but less convenient for repetition and 
optionality.

• Three additional postfix operators +,?, and *, are 
thus introduced:
– R+ indicates the occurrence of one or more Rs, to 

express repetition (sometime R_opt isused).
– R? indicates the occurrence of zero or one Rs, to 

express optionality (sometimes [R] is used).
– R* indicates the occurrence of zero or more Rs, to 

express repetition (sometimes {R} is used).
• The grammar that allows the above is called 

Extended BNF (EBNF).



19191919

Extended forms of grammars
An example is the grammar rule in EBNF:

parameter_list →
(’IN’ | ‘OUT’)? identifier (‘,’ identifier)*

or
parameter_list →

[’IN’ | ‘OUT’] identifier {‘,’ identifier}
which produces program fragments like:

a, b
IN year, month, day
OUT left, right
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Extended forms of grammars
• Rewrite EBNF grammar to CFG

– Given the EBNF grammar:
expression → term (+ term)*

Rewrite it to: 
expression → term term_tmp
term_tmp → + term term_tmp

|   λ
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Properties of grammars
• A non-terminal N is left-recursive if, 

starting with a sentential form N, we can 
produce another sentential form starting 
with N.
– ex: expression → expression ‘+’ factor | factor

• right-recursion also exists, but is less 
important. 
– ex: expression → term ‘+’ expression
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Properties of grammars (Cont.)
• A non-terminal N is nullable, if starting 

with a sentential form N, we can produce 
an empty sentential form.
example: 

expression → λ
• A non-terminal N is useless, if it can never 

produce a string of terminal symbols.
example: 

expression → + expression 
|   - expression
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Grammar Transformations

Left factorization

single-Command 
::= V-name := Expression
| if Expression then single-Command
| if Expression then single-Command

else single-Command

single-Command 
::= V-name := Expression
| if Expression then single-Command

( λ | else single-Command)

X Y | X Z X ( Y | Z )

Example:
X Y=λ Z
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Grammar Transformations (ctd)

Elimination of Left Recursion

N ::= X | N Y

Identifier ::= Letter
| Identifier Letter
| Identifier Digit

N ::= X M  
M ::= Y M | λExample:

Identifier ::= Letter
| Identifier (Letter|Digit)

Identifier ::= Letter (Letter|Digit)*

N ::= X | N Y N ::= X Y*
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Grammar Transformations (ctd)

Substitution of non-terminal symbols
N ::= X
M ::= α N β

single-Command 
::= for contrVar := Expression 

to-or-dt Expression do single-Command
to-or-dt ::= to | downto

Example:

N ::= X
M ::= α X β

single-Command ::= 
for contrVar := Expression 
(to|downto) Expression do single-Command
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From tokens to parse tree

The process of finding the structure in the 
flat stream of tokens is called parsing, 
and the module that performs this task is 
called parser.
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Parsing methods
There are two well-known ways to parse:  

1) top-down 
Left-scan, Leftmost derivation (LL).  

2) bottom-up 
Left-scan, Rightmost derivation in reverse (LR).

• LL constructs the parse tree in pre-order;
• LR in post-order.
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Different kinds of Parsing Algorithms

• Two big groups of algorithms can be distinguished:
– bottom up strategies
– top down strategies

• Example parsing of  “Micro-English”
Sentence ::= Subject Verb Object .
Subject ::= I | a Noun | the Noun  
Object ::= me | a Noun | the Noun
Noun ::= cat | mat | rat
Verb ::= like | is | see | sees

The cat sees the rat.
The rat sees me.
I like a cat

The rat like me.
I see the rat.
I sees a rat.
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Top-down parsing

The cat sees a rat .The cat sees rat .

The parse tree is constructed starting at the top  (root).

Sentence

Subject Verb Object .

Sentence

Noun

Subject

The

Noun

cat

Verb

sees a

Noun

Object

Noun

rat .
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Left derivations

Sentence 

→ Subject Verb Object .

→ The Noun Verb Object.

→ The cat Verb Object.

→ The cat sees Object.

→ The cat sees a Noun .

→ The cat sees a rat .

Sentence ::= Subject Verb Object .
Subject ::= I | a Noun | the Noun  
Object ::= me | a Noun | the Noun
Noun ::= cat | mat | rat
Verb ::= like | is | see | sees
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Top-down parsing

The cat sees a rat .The cat sees rat .

The parse tree is constructed starting at the top  (root).

Sentence

Subject Verb Object .

Sentence

Noun

Subject

The

Noun

cat

Verb

sees a

Noun

Object

Noun

rat .
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Right derivations

Sentence 

→ Subject Verb Object .

→ Subject Verb a Noun .

→ Subject Verb a rat .

→ Subject sees a rat .

→ The Noun sees a rat .

→ The cat sees a rat .

Sentence ::= Subject Verb Object .
Subject ::= I | a Noun | the Noun  
Object ::= me | a Noun | the Noun
Noun ::= cat | mat | rat
Verb ::= like | is | see | sees
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Bottom up parsing

The cat sees a rat .The cat

Noun

Subject

sees

Verb

a rat

Noun

Object

.

Sentence

The parse tree “grows” from the bottom (leafs) up to the top (root).
Just read the right derivations backwards Sentence 

→ Subject Verb Object .

→ Subject Verb a Noun .

→ Subject Verb a rat .

→ Subject sees a rat .

→ The Noun sees a rat .

→ The cat sees a rat .
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Look-Ahead

Derivation

LL-Analyse (Top-Down)
Left-to-Right Left Derivative

Look-Ahead

Reduction

LR-Analyse (Bottom-Up)
Left-to-Right Right Derivative

Top-Down vs. Bottom-Up parsing
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Hierarchy



Pause
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Formal definition of LL(1)

A grammar G is LL(1) iff
for each set of productions X ::= X1 | X2 | … | Xn :
1. first[X1], first[X2], …, first[Xn] are all pairwise disjoint 
2. If Xi =>* λ then first[Xj]∩ follow[X]=Ø, for 1≤j≤ n.i≠j

If G is λ-free then 1 is sufficient

Define FIRST(α),where α is any string of grammar symbols, to be:
the set of terminals 

that begin strings derived from α



First Sets

• The set of all terminal symbols that can 
begin a sentential form derivable from the 
string α
– First(α)={ a∈Σ| α=>*aβ }
– We never include λ in First(α) even if α=>λ
– E.g. (in Fig.4.1)

• First(Tail) = {+}
• First(Prefix) = {f}
• First(E) = {v, f, (}





Follow Sets

• The set of terminals that can follow a 
nonterminal A in some sentential form
– For A∈N,

• Follow(A) = {b∈Σ|S=>+αAbβ}
– The right context associated with A
– Fig. 4.11
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Follow Sets

• Follow(A) is the set of prefixes of strings of terminals that can 
follow any derivation of A in G
– $ ∈ follow(S) (sometimes <eof> ∈ follow(S)) 
– if (B→αAβ) ∈ P, then
– first(β)⊕follow(B)⊆ follow(A)

• The definition of follow usually results in recursive set definitions.  In order to 
solve them, you need to do several iterations on the equations.

– E.g. (in Fig.4.1)
• Follow(Tail) = { )}
• Follow(Prefix) = {(}
• Follow(E) = {$,)}
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A few provable facts about LL(1) grammars

• No left-recursive grammar is LL(1)
• No ambiguous grammar is LL(1)
• Some languages have no LL(1) grammar
• A λ-free grammar, where each alternative Xj for N ::= 

Xj begins with a distinct terminal, is a simple LL(1) 
grammar 
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LR Grammars

• A Grammar is an LR Grammar if it can be parsed by an 
LR parsing algorithm

• Harder to implement LR parsers than LL parsers
– but tools exist (e.g. JavaCUP, Yacc, C#CUP and SableCC)

• Can recognize LR(0), LR(1), SLR, LALR grammars 
(bigger class of grammars than LL)
– Can handle left recursion!
– Usually more convenient because less need to rewrite the 

grammar.
• LR parsing methods are the most commonly used for 

automatic tools today (LALR in particular)



Other Types of Grammars

• Regular grammars: less powerful
• Context-sensitive and unrestricted 

grammars: more powerful
• Parsing Expression Grammars



Designing CFGs is a craft.

• When thinking about CFGs:
– Think recursively: Build up bigger structures 

from smaller ones.
• Have a construction plan: 

– Know in what order you will build up the 
string.

• Store information in nonterminals: 
– Have each nonterminal correspond to some 

useful piece of information.



Copyright © 2009 Addison-
Wesley. All rights reserved.
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Ambiguity in Grammars

• A grammar is ambiguous if and only if it 
generates a sentential form that has two 
or more distinct parse trees



Copyright © 2009 Addison-
Wesley. All rights reserved.
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An Ambiguous Expression Grammar

<expr> → <expr> <op> <expr>  |  const

<op> → /  |  -

<expr>

<expr> <expr>

<expr> <expr>

<expr>

<expr> <expr>

<expr> <expr>

<op>

<op>

<op>

<op>

const const const const const const- -/ /

<op>



Copyright © 2009 Addison-
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An Unambiguous Expression Grammar

• If we use the parse tree to indicate 
precedence levels of the operators, we 
cannot have ambiguity

<expr> → <expr> - <term>  |  <term>
<term> → <term> / const| const

<expr>

<expr> <term>

<term> <term>

const const

const/

-

const – (const / const)



Copyright © 2009 Addison-
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Associativity of Operators
• Operator associativity can also be indicated by a 

grammar

<expr> -> <expr> + <expr> |  const (ambiguous)
<expr> -> <expr> + const |  const (unambiguous)

<expr><expr>

<expr>

<expr> const

const

const

+

+

(const + const) + const



Associativity and Left Resursion
<expr> -> <expr> + const |  const
(unambiguous, but left recursive)

<expr> -> const + <expr>  |  const
(unambiguous, right recursive, but => right assoc.)

i.e. const + (const + const)  
Not a problem for +, but what about - ?

(5 – 3) – 2 = 0
5 – (3 – 2) = 4

1-52



Eliminating Left recursion
<expr> -> <expr> (+ <expr>)*

or

<expr> -> const <exprlist>
<exprlist> -> + const <exprlist> | λ

Still gives the wrong parse tree, but this can
be sorted when generating AST

1-53



Hidden left-factors and hidden left recursion
• Sometimes, left-factors or left recursion are hidden
• Examples:

– The following grammar:
• A -> da | ac B
• B -> ab B | da A | A f

– has two overlapping productions: B -> da A and B =>*daf .
– The following grammar:

• S -> T u | wx
• T -> S q | vv S

– has left recursion on T (T =>* Tuq)

• Solution: expand the production rules by 
substitution to make

• left-recursion or left factors visible and then 
eliminate them

54
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Dangling Else Problem

Example: (from Mini Triangle grammar)

single-Command
::= if Expression then single-Command
| if Expression then single-Command

else single-Command

if a then if b then c1 else c2

single-Command

single-Command

This parse tree?
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Dangling Else Problem

Example: (from Mini Triangle grammar)

single-Command
::= if Expression then single-Command
| if Expression then single-Command

else single-Command

if a then if b then c1 else c2

single-Command

single-Command

or this one ?
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Dangling Else Problem

Example: “dangling-else” problem (from Mini Triangle grammar)

single-Command
::= if Expression then single-Command
| if Expression then single-Command

else single-Command

sC ::= if E then sC endif
|  if E then sC else sC endif

Rewrite Grammar:
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Dangling Else Problem

Example: “dangling-else” problem (from Mini Triangle grammar)

single-Command
::= if Expression then single-Command
| if Expression then single-Command

else single-Command

sC ::= CsC
|  OsC

CsC ::= if E then CsC else CsC
CsC ::= …
OsC ::= if E then sC

|  if E then CsC else OsC

Rewrite Grammar:



Ambiguity
• Sometimes obvious

– Exp ::= Exp + Exp
• Sometimes difficult to spot
• Undecidable Property (known since 1962)

• Engineering approach
– Try a parser generator
– Use a Grammar engineering toolbox

• KfG in AtoCC
• Context Free Grammer tools

– http://smlweb.cpsc.ucalgary.ca/start.html
– http://mdaines.github.io/grammophone/

• Try ACLA 
– (Ambiguity Checking with Language Approximations)
– http://services2.brics.dk/java/grammar/demo.html

59
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What can you do in your project?

• Start writing a CFG
– Define keywords, identifiers, numbers, ..
– Define productions

• Test it with
– kfG Edit
– Context Free Grammer tool 
– ACLA



You may need more than one Grammar
• Abstract Syntax

– To communicate the essentials of the language
– To serve as design pattern for AST
– To serve in the formal specification of the semantics
– May be ambiguous

• Concrete Syntax
– The grammar we use as specification for building a parser
– Must be unambiguous

• Lexical elements (Syntax given as Regular Expressions)
– Identifiers  e.g. Id := [a-z]([a-z]|[0-9])* 
– Keywords (or reserved words)

• if, then, while,
• begin .. end v.s. { .. }

61



Grammar tools

• Demo
– Prefix
– Exp with ambiguity and without
– Dangling else
– LL(1) – first and follow

62
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Learning goals

• Understand the lexical analysis phase of the compiler
• Understand the role of regular expressions
• Understand the structure of the lexical analysis
• Understand the role of finite automata
• Get an overview of the Jlex tool

2



Remember exercise 4 from before lecture 1 ?

• Write a Java program that can read the string “a + n * 1” 
and produce a collection of objects containing the 
individual symbols when blank spaces are ignored (or 
used as separator).

• Today we shall see several ways of solving this exercise

3
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The “Phases” of a Compiler

Syntax Analysis

Contextual Analysis

Code Generation

Source Program

Abstract Syntax Tree

Decorated Abstract Syntax Tree

Object Code

Error Reports

Error Reports
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Syntax Analysis: Scanner

Scanner

Source Program

Abstract Syntax Tree

Error Reports

Parser

Stream of “Tokens”

Stream of Characters

Error Reports

Dataflow chart
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1) Scan: Divide Input into Tokens

An example ac source program:
f b
i a
a = 5
b = a + 3.2
p b

floatdl
f

id
b

intdcl
i

scanner

id
a

id
a

assign
=

id
a

plus
+

...

... fnum
3.2

print
p

id
b

eot

Lexems are “words” in the input, for 
example  keywords, operators, 
identifiers, literals, etc.
Tokens is a datastructure for lexems 
and additional information

inum
5

assign
=
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Developing a Scanner

public class Token {
byte kind; String spelling;
final static byte 

IDENTIFIER = 0; INTLITERAL = 1; OPERATOR   = 2;
BEGIN      = 3; CONST      = 4; ...
...

public Token(byte kind, String spelling) {
this.kind = kind; this.spelling = spelling;

}

...
}

In Java the scanner will normally return instances of Token:
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1) Scan: Divide Input into Tokens

An example ac source program:
f b
i a
a = 5
b = a + 3.2
p b

floatdl id
b

intdcl

scanner

id
a

id
a

assign

id
a

plus

...

... fnum
3.2

print id
b

eot

Lexems are “words” in the input, for 
example  keywords, operators, 
identifiers, literals, etc.
Tokens is a datastructure for lexems 
and additional information

inum
5

assign



9

Developing a Scanner

abstract class Token ..

public class IdentToken extends Token {
String spelling;

...

public IdentToken(String spelling) {
this.spelling = spelling;

}

public class AssignToken extends Token {

...
}

In Java the scanner will normally return instances of Token, 
but we could also use a subclass hierachy:
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Programming Language Specification

– A Language specification has (at least) three parts
• Syntax of the language:

– Lexems/tokens as regular expressions 
» Reserved words

– Grammar (CFG) - usually formal in BNF or EBNF
• Contextual constraints: 

– scope rules (often written in English, but can be formal)
– type rules (formal or informal)

• Semantics: 
– defined by the implementation
– informal descriptions in English 
– formal using operational or denotational semantics



11

Lexical Elements
• Character set

– Ascii vs Unicode
• Identifiers

– Java vs C#
• Operators

– +, -, /, * , …
• Keywords

– If, then, while
• Noise words
• Elementary data

– numbers
• integers
• floating point

– strings
– symbols

• Delimiters
– Begin .. End vs {…}

• Comments
– /*  vs. # vs. !

• Blank space
• Layout

– Free- and fixed-field formats



Java Keywords

abstract continue for new switch assert default if 
package synchronized boolean do goto private this break 
double implements protected throw byte else import 
public throws case enum instanceof return transient 
catch extends int short try char final interface static 
void class finally long strictfp volatile const float native 
super while 

• The keywords const and goto are reserved, even though they are not currently 
used.

• While true and false might appear to be keywords, they are technically 
Boolean literals 

• Similarly, while null might appear to be a keyword, it is technically the null 
literal

12



Lexems
• The Lexem structure can be more detailed and 

subtle than one might expect
– String constants: “”

• Escape sequence: \”, \n, …
• Null string

– Rational constants
• 0.1, 10.01, 
• .1, 10. vs. 1..10

• Design guideline:
– if the lexem structure is complex then examine the 

language for design flaws !!

• Note recent research shows huge difference between novices and 
experienced programmers views on keywords:

– repeat while … do .. end  vs.  while (..) {…}



(Try to) Avoide Weird Stuff

• PL/I
– IF IF = THEN THEN = ELSE; ELSE ELSE = END; END

• C#
– if (@if == then) then = @else; else @else = end;

• C
– a (* b) … call of a with pointer to b or declaration on pointer b 

to a type where a is defined using typedef

• Whitespace language
– Commands composed of sequences of spaces, tab stops and 

linefeeds 14
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Simple grammar for Identifiers

Example:
Start ::= Letter 

| Start Letter

| Start Digit

Letter ::= a | b | c | d | ... | z
Digit  ::= 0 | 1 | 2 | ... | 9

This grammar can be transformed to a regular expression:
[a-z]([a-z]|[0-9])*



Regular Expressions

16

ε The empty string
t Generates only the string t
X Y Generates any string xy such that x is generated by x

and y is generated by Y
X | Y Generates any string which generated either 

by X or by Y
X* The concatenation of zero or more strings generated

by X
(X) For grouping
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Identifier Grammar Easily Transform to RE

Elimination of Left Recursion
N ::= X | N Y

Identifier ::= Letter
| Identifier Letter
| Identifier Digit

N ::= X Y*

Example:

Identifier ::= Letter
| Identifier (Letter|Digit)

Identifier ::= Letter (Letter|Digit)*

Left factorization
X Y | X Z X ( Y | Z )



Regular Grammers

• A grammar is regular if by substituting every 
nonterminal (except the root one) with its righthand 
side, you can reduce it down to a single production for 
the root, with only terminals and operators on the right-
hand side.

• I.e. this grammer is regular:

• Because it can be reduced to:

18



Regular Grammers

• Or rather

• Which is called a regular expression, often written as:

• Sometimes regular grammers are described as:
– Right regular  i.e. having the form  A := a A | b
– Left regular i.e. having the form A := A a | b

• Why are we so interested in Regular Expressions?
– Because there are simple implementation techniques for Res
– REs can be implemented via Finite State Machines (FSM) 

19

( a | b | c | d | ... | z )((a | b | c | d | ... | z)|(0 | 1 | 2 | ... | 9 ))*

[a-z]([a-z]|[0-9])*



ac Token Specification



[0-9]+|[0-9]+.[0-9]+|[a-e,g-h,j-o,q-z]|f|p|i|=|\+|-





24
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How to change code to accept:
0|[1-9][0-9]*(.[0-9]*)



Pause

28



Implement Scanner based on RE by hand

1) Express the “lexical” grammar as RE 
(sometimes it is easier to start with a BNF or an EBNF 
and do necessary transformations)

• For each variant make a switch on the first character by 
peeking the input stream

• For each repetition (..)* make a while loop with the 
condition to keep going as long as peeking the input still 
yields an expected character 

• Sometimes the “lexical” grammar is not reduced to one 
single RE but a small set of REs – in this case a switch or if-
then-else case analysis is used to determine which rule is 
being recognized, before following the first two steps

29
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Developing a Scanner

• Express the “lexical” grammar in EBNF
Token ::= Identifier | Integer-Literal | Operator |

; | : | := | ~ | ( | ) | eot
Identifier ::= Letter (Letter | Digit)*
Integer-Literal ::= Digit Digit*
Operator ::= + | - | * | / | < | > | =
Separator ::= Comment | space | eol
Comment ::= ! Graphic* eol

Now perform substitution and left factorization...
Token ::= Letter (Letter | Digit)* 

| Digit Digit*
| + | - | * | / | < | > | =
| ; | : (=|ε) | ~ | ( | ) | eot

Separator ::= ! Graphic* eol | space | eol
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Developing a Scanner

private byte scanToken() {
switch (currentChar) {

case ‘a’: case ‘b’: ... case ‘z’:
case ‘A’: case ‘B’: ... case ‘Z’:            

scan Letter (Letter | Digit)*
return Token.IDENTIFIER;

case ‘0’: ... case ‘9’: 
scan Digit Digit*
return Token.INTLITERAL ; 

case ‘+’: case ‘-’: ... : case ‘=’:
takeIt();
return Token.OPERATOR;

...etc...
}

Token ::= Letter (Letter | Digit)* 
| Digit Digit*
| + | - | * | / | < | > | =
| ; | : (=|ε) | ~ | ( | ) | eot
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Developing a Scanner

...
return ...

case ‘a’: case ‘b’: ... case ‘z’:
case ‘A’: case ‘B’: ... case ‘Z’:            

scan Letter (Letter | Digit)*
return Token.IDENTIFIER;

case ‘0’: ... case ‘9’: 
...

...
return ...

case ‘a’: case ‘b’: ... case ‘z’:
case ‘A’: case ‘B’: ... case ‘Z’:            

scan Letter 
scan (Letter | Digit)*
return Token.IDENTIFIER;

case ‘0’: ... case ‘9’: 
...

...
return ...

case ‘a’: case ‘b’: ... case ‘z’:
case ‘A’: case ‘B’: ... case ‘Z’:            

acceptIt();
scan (Letter | Digit)*
return Token.IDENTIFIER;

case ‘0’: ... case ‘9’: 
...

...
return ...

case ‘a’: case ‘b’: ... case ‘z’:
case ‘A’: case ‘B’: ... case ‘Z’:            

acceptIt();
while (isLetter(currentChar) 

|| isDigit(currentChar) )
scan (Letter | Digit)

return Token.IDENTIFIER;
case ‘0’: ... case ‘9’: 

...

...
return ...

case ‘a’: case ‘b’: ... case ‘z’:
case ‘A’: case ‘B’: ... case ‘Z’:            

acceptIt();
while (isLetter(currentChar) 

|| isDigit(currentChar) )
acceptIt();

return Token.IDENTIFIER;
case ‘0’: ... case ‘9’: 

...

Let’s look at the identifier case in more detail

Thus developing a scanner is a mechanical task.
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Developing a Scanner

public class Token {
byte kind; String spelling;
final static byte 

IDENTIFIER = 0; INTLITERAL = 1; OPERATOR   = 2;
BEGIN      = 3; CONST      = 4; ...
...

public Token(byte kind, String spelling) {
this.kind = kind; this.spelling = spelling;
if spelling matches a keyword change my kind
automatically

}

...
}

In Java the scanner will normally return instances of Token:
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Developing a Scanner

public class Token {
...

public Token(byte kind, String spelling) {
if (kind == Token.IDENTIFIER) {      

int currentKind = firstReservedWord;      
boolean searching = true;      
while (searching) {        

int comparison = tokenTable[currentKind].compareTo(spelling); 
if (comparison == 0) {         
this.kind = currentKind;          

searching = false;        
} else if (comparison > 0 || currentKind == lastReservedWord) {          

this.kind = Token.IDENTIFIER;         
searching = false;        

} else {          currentKind ++;        }     
}    

} else      
this.kind = kind;

...

The scanner will return instances of Token:
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Developing a Scanner

public class Token {
...

private static String[] tokenTable = new String[] {    
"<int>",    "<char>",    "<identifier>",    "<operator>",    
"array",    "begin",    "const",    "do",    "else",    "end",    
"func",    "if",    "in",    "let",    "of",    "proc",    "record",    
"then",    "type",    "var",    "while",    
".",    ":",    ";",    ",",    ":=",    "~",    "(",    ")",    "[",    "]",    "{",    "}",    ""     
"<error>"  };  

private final static int firstReservedWord = Token.ARRAY,  
lastReservedWord  = Token.WHILE;

...
}

The scanner will return instances of Token:
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Developing a Scanner

...
return ...

case ‘a’: case ‘b’: ... case ‘z’:
case ‘A’: case ‘B’: ... case ‘Z’:            

scan Letter (Letter | Digit)*
return Token.IDENTIFIER;

case ‘0’: ... case ‘9’: 
...

...
return ...

case ‘a’: case ‘b’: ... case ‘z’:
case ‘A’: case ‘B’: ... case ‘Z’:            

scan Letter 
scan (Letter | Digit)*
return Token.IDENTIFIER;

case ‘0’: ... case ‘9’: 
...

...
return ...

case ‘a’: case ‘b’: ... case ‘z’:
case ‘A’: case ‘B’: ... case ‘Z’:            

acceptIt();
scan (Letter | Digit)*
return Token.IDENTIFIER;

case ‘0’: ... case ‘9’: 
...

...
return ...

case ‘a’: case ‘b’: ... case ‘z’:
case ‘A’: case ‘B’: ... case ‘Z’:            

acceptIt();
while (isLetter(currentChar) 

|| isDigit(currentChar) )
scan (Letter | Digit)

return Token.IDENTIFIER;
case ‘0’: ... case ‘9’: 

...

...
return ...

case ‘i’: acceptIt(); if (currentChar == ‘f’)  {acceptIt(); return Token.IF }
else if (currentChar == ‘n’)  {acceptIt(); return Token.IN }

…
case ‘a’: case ‘b’: ... case ‘z’:
case ‘A’: case ‘B’: ... case ‘Z’:            

acceptIt();
while (isLetter(currentChar) 

|| isDigit(currentChar) )
acceptIt();

return Token.IDENTIFIER;
case ‘0’: ... case ‘9’: 

...

Alternative implementation recognizing reserved words

Thus developing a scanner is a mechanical task.
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Developing a Scanner

• Developing a scanner by hand is relatively easy for 
simple token grammars

• But for complex token grammars it can be hard and 
error prone

• The task can be automated
• Programming scanner generator is an example of 

declarative programming
– What to scan, not how to scan

• Most compilers are developed using a generated scanner
• But before we look at doing that, we need some theory!
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FA and the implementation of Scanners

• Regular expressions, (N)DFA-ε and NDFA and DFA’s 
are all equivalent formalism in terms of what languages 
can be defined with them.

• Regular expressions are a convenient notation for 
describing the “tokens” of programming languages.

• Regular expressions can be converted into FA’s (the 
algorithm for conversion into NDFA-ε is 
straightforward)

• DFA’s can be easily implemented as computer 
programs.

will explain this in subsequent slides
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Generating Scanners

• Generation of scanners is based on
– Regular Expressions: to describe the tokens to be recognized
– Finite State Machines: an execution model to which RE’s are 

“compiled”

Recap: Regular Expressions
ε The empty string
t Generates only the string t
X Y Generates any string xy such that x is generated by x

and y is generated by Y
X | Y Generates any string which generated either 

by X or by Y
X* The concatenation of zero or more strings generated

by X
(X) For grouping
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Generating Scanners

• Regular Expressions can be recognized by a finite state machine. 
(often used synonyms: finite automaton (acronym FA)) 

Definition: A finite state machine is an N-tuple (States,Σ,start,δ ,End)
States A finite set of “states”
Σ An “alphabet”: a finite set of symbols from which the 

strings we want to recognize are formed (for example: 
the ASCII char set)  

start A “start state” Start ∈ States
δ Transition relation δ ⊆ States x States x Σ. These are 

“arrows” between states labeled by a letter from the 
alphabet.

End A set of final states. End ⊆ States
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Generating Scanners

• Finite state machine: the easiest way to describe a Finite 
State Machine (FSM) is by means of a picture:

Example: an FA that recognizes M r | M s

M

M

r

s

= final state

= non-final state

= initial state



Converting a RE into an NDFA-ε

42
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Deterministic, and non-deterministic FA

• An FA is called deterministic (acronym: DFA) if for 
every state and every possible input symbol, there is 
only one possible transition to choose from. Otherwise it 
is called non-deterministic (NDFA).

M

M

r

s

Q: Is this FSM deterministic or non-deterministic:
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Deterministic, and non-deterministic FA
• Theorem: every NDFA can be converted into an 

equivalent DFA.

M

M

r

s

DFA ?M
r

s
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Implementing a DFA

Definition: A finite state machine is an N-tuple (States,Σ,start,δ ,End)
States N different states => integers {0,..,N-1} => int data type
Σ byte or char data type. 
start An integer number
δ Transition relation δ ⊆ States x Σ x States.

For a DFA this is a function 
States x Σ -> States
Represented by a two dimensional array (one dimension 
for the current state, another for the current character. The 
contents of the array is the next state.

End A set of final states. Represented (for example) by an array 
of booleans (mark final state by true and other states by 
false)



Comment -> //(Not(Eol))*Eol
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Implementing a Scanner as a DFA

Slightly different from previously shown implementation (but 
similar in spirit):

• Not the goal to match entire input
=> when to stop matching?

– Token(if), Token(Ident i) vs. Token(Ident ifi)

Match longest possible token 

Report error (and continue) when reaching error state.

• How to identify matched token class (not just true|false)

Final state determines matched token class
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FA and the implementation of Scanners

Token definitions
Regular expressions

Scanner DFA
Java or C or ...

Scanner Generator

What a typical scanner generator does:

A possible algorithm:
- Convert RE into NDFA-ε
- Convert NDFA-ε into NDFA
- Convert NDFA into DFA
- generate Java/C/... code

note: In practice this exact 
algorithm is not used. For reasons of 
performance, sophisticated 
optimizations are used.
• direct conversion from RE to DFA
• minimizing the DFA 
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JLex Lexical Analyzer Generator for Java

Definition of tokens

Regular Expressions

JLex

Java File: Scanner Class

Recognizes Tokens

Writing scanners is a rather 
“robotic” activity which can 
be automated.

We will look at an example 
JLex specification (adopted 
from the manual). 

Consult the manual for details 
on how to write your own 
JLex specifications.
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The JLex tool

user code (added to start of generated file)

%%

options

%{
user code (added inside the scanner class declaration)
%}

macro definitions

%%

lexical declaration

Layout of JFLex file:

User code is copied directly into the output class

JLex directives allow you to include code in the lexical analysis class, 
change names of various components, switch on character counting, 
line counting, manage EOF, etc.

Macro definitions gives names for useful regexps

Regular expression rules define the tokens to be recognised 
and actions to be taken
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JLex Regular Expressions

• Regular expressions are expressed using ASCII 
characters (0 – 127) or UNICODE using the %unicode 
directive.

• The following characters are metacharacters.
? * + | ( ) ^ $ . [ ] { } “ \

• Metacharacters have special meaning; they do not 
represent themselves.

• All other characters represent themselves.
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JLex Regular Expressions
• Brackets [ ] match any single character listed within the 

brackets.
– [abc] matches a or b or c.
– [A-Za-z] matches any letter.

• If the first character after [ is ^, then the brackets match any 
character except those listed.
– [^A-Za-z] matches any non-letter.

• Some escape sequences.
– \n matches newline.
– \b matches backspace.
– \r matches carriage return.
– \t matches tab.
– \f matches formfeed.

• If c is not a special escape-sequence character, then \c matches c.
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JLex Regular Expressions
• Let r and s be regular expressions.
• r? matches zero or one occurrences of r.
• r* matches zero or more occurrences of r.
• r+ matches one or more occurrences of r.
• r|s matches r or s.
• rs matches r concatenated with s.

• Parentheses are used for grouping.
("+"|"-")?

• Regular expression beginning with ^ is matched only at the 
beginning of a line.

• Regular expression ending with $ is matched only at the end 
of a line.

• The dot . matches any non-newline character.







Jlex for ac

58
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JLex generated Lexical Analyser
• Class Yylex

– Name can be changed with %class directive
– Default construction with one arg – the input stream

• You can add your own constructors
– The method performing lexical analysis is yylex()

• Public Yytoken yylex() which return the next token
• You can change the name of yylex() with %function directive

– String yytext() returns the matched token string
– Int yylength() returns the length of the token
– Int yychar is the index of the first matched char (if %char used)

• Class Yytoken
– Returned by yylex() – you declare it or supply one already defined
– You can supply one with %type directive

• Java_cup.runtime.Symbol is useful
– Actions typically written to return Yytoken(…)



Performance considerations
• Performance of scanners is important for production 

compilers, for example:
– 30,000 lines per minute (500 lines per second)
– 10,000 characters per second (for an average line of 20 characters)
– For a processor that executes 10,000,000 instructions per second, 

1,000 instructions per input character
– Considering other tasks in compilers, 250 instructions per 

character is more realistic
• Size of scanner sometimes matters

– Including keyword in scanner increases table size
• E.g. Pascal has 35 keywords, including them increases states from 37 to 165
• Uncompressed this increases table entries from 4699 to 20955

• Note modern scanners use explicit control, not table !
– Why?



Other Scanner Generators
• Flex: 

– It produces scanners than are faster than the ones produced by Lex
– Options that allow tuning of the scanner size vs. speed

• JFlex: in Java
• GLA: Generator for Lexical Analyzers

– It produces a directly executable scanner in C
– It’s typically twice as fast as Flex, and it’s competitive with the best 

hand-written scanners
• re2c

– It produces directly executable scanners
• Alex, Lexgen, …
• Others are parts of complete suites of compiler development tools

– JavaCC
– Coco/R
– SableCC
– ANTLR
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Conclusions

• Don’t worry too much about DFAs
• You do need to understand how to specify regular 

expressions
• Note that different tools have different notations for 

regular expressions.
• You would probably only need to use Lex/Flex resp. 

Jlex/JFLex if you also use Yacc resp. CUP

• Sometimes it is easier to develop the scanner by hand 
transforming the RE into a case based direct scanner !

• In your project you can define the token grammar and 
implement a scanner by hand and/or by JFlex
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Learning goals

• To understand top down parsing
• To understand recursive decent parsers
• To understand the role of LL grammers 
• To get an overview of table driven top down parsing
• To get an overview of top down parsing tools
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The “Phases” of a Compiler

Syntax Analysis

Contextual Analysis

Code Generation

Source Program

Abstract Syntax Tree

Decorated Abstract Syntax Tree

Object Code

Error Reports

Error Reports

This lecture
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Syntax Analysis

• The “job” of syntax analysis is to read the source text 
and determine its phrase structure.

• Subphases 
– Scanning
– Parsing
– Construct an internal representation of the source text that 

reifies the phrase structure (usually an AST)

Note: A single-pass compiler usually does not construct an AST.

Reify - To regard or treat (an abstraction) as if it had concrete or material existence
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Syntax Analysis

Scanner

Source Program

Abstract Syntax Tree

Error Reports

Parser

Stream of “Tokens”

Stream of Characters

Error Reports

Dataflow chart

This lecture
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1) Scan: Divide Input into Tokens

An example ac source program:
f b
i a
a = 5
b = a + 3.2
p b

floatdl
f

id
b

intdcl
i

scanner

id
a

id
a

assign
=

id
a

plus
+

...

... fnum
3.2

print
p

id
b

eot

Lexems are “words” in the input, for 
example  keywords, operators, 
identifiers, literals, etc.
Tokens is a datastructure for lexems 
and additional information

inum
5

assign
=
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Look-Ahead

Derivation

LL-Analyse (Top-Down)
Left-to-Right Left Derivative

Look-Ahead

Reduction

LR-Analyse (Bottom-Up)
Left-to-Right Right Derivative

Top-Down vs. Bottom-Up parsing



10

Top Down Parsing Algorithms

• Example parsing of  “Micro-English”

Sentence ::= Subject Verb Object .
Subject ::= I | a Noun | the Noun  
Object ::= me | a Noun | the Noun
Noun ::= cat | mat | rat
Verb ::= like | is | see | sees

The cat sees the rat.
The rat sees me.
I like a cat

The rat like me.
I see the rat.
I sees a rat.
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Left derivations

Sentence 

→ Subject Verb Object .

→ The Noun Verb Object.

→ The cat Verb Object.

→ The cat sees Object.

→ The cat sees a Noun .

→ The cat sees a rat .

Sentence ::= Subject Verb Object .
Subject ::= I | a Noun | the Noun  
Object ::= me | a Noun | the Noun
Noun ::= cat | mat | rat
Verb ::= like | is | see | sees
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Top-down parsing

The cat sees a rat .The cat sees rat .

The parse tree is constructed starting at the top  (root).
Corresponds to following left derivations

Sentence

Subject Verb Object .

Sentence

Noun

Subject

The

Noun

cat

Verb

sees a

Noun

Object

Noun

rat .
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Recursive Descent Parsing

• Recursive descent parsing is a straightforward top-down 
parsing algorithm.

• We will now look at how to develop a recursive descent 
parser from an EBNF specification for a simple LL(1) 
grammar.

• Idea: the parse tree structure corresponds to the “call 
graph” structure of parsing procedures that call each 
other recursively.
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Recursive Descent Parsing

Sentence ::= Subject Verb Object .
Subject ::= I | a Noun | the Noun  
Object ::= me | a Noun | the Noun
Noun ::= cat | mat | rat
Verb ::= like | is | see | sees

Define a procedure parseN for each non-terminal N

private void parseSentence() ;
private void parseSubject();
private void parseObject(); 
private void parseNoun();
private void parseVerb();
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Recursive Descent Parsing: Auxiliary Methods

public class MicroEnglishParser {

private TerminalSymbol currentTerminal

private void accept(TerminalSymbol expected) {
if (currentTerminal matches expected)

currentTerminal = next input terminal ;
else

report a syntax error
}

...
}
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Recursive Descent Parsing: Parsing Methods

private void parseSentence() {
parseSubject();
parseVerb();
parseObject();
accept(‘.’);

}

Sentence ::= Subject Verb Object .
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Recursive Descent Parsing: Parsing Methods

private void parseSubject() {
if (currentTerminal matches ‘I’)

accept(‘I’);
else if (currentTerminal matches ‘a’) {

accept(‘a’);
parseNoun();

}
else if (currentTerminal matches ‘the’) {

accept(‘the’);
parseNoun();

}
else
report a syntax error

}

Subject ::= I | a Noun | the Noun  
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Recursive Descent Parsing: Parsing Methods

private void parseNoun() {
if (currentTerminal matches ‘cat’)

accept(‘cat’);
else if (currentTerminal matches ‘mat’) 

accept(‘mat’);
else if (currentTerminal matches ‘rat’)

accept(‘rat’);
else
report a syntax error

}

Noun ::= cat | mat | rat
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Algorithm to convert EBNF into a RD parser

private void parseN() {
parse X

}

N ::= X

• The conversion of an EBNF specification into a Java 
implementation for a recursive descent parser is so “mechanical” 
that it can easily be automated!

=> JavaCC and Coco/R does that in fact
• We can describe the algorithm by a set of mechanical rewrite rules
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Algorithm to convert EBNF into a RD parser

// a dummy statement

parse ε

parse N where N is a non-terminal

parseN();

parse t where t is a terminal
accept(t);

parse XY

parse X
parse Y
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Algorithm to convert EBNF into a RD parser

parse X*

while (currentToken.kind is in first[X]) {
parse X

}

parse X|Y

switch (currentToken.kind) {
cases in first[X]: 
parse X
break;

cases in first[Y]: 
parse Y
break;

default: report syntax error
}  

Note: first[X] is sometimes called starters(X)



22

Systematic Development of RD Parser

(1) Express grammar in EBNF
(2) Grammar Transformations: 

Left factorization and Left recursion elimination
(3) Create a parser class with

– private variable currentToken
– methods to call the scanner: accept and acceptIt

(4) Implement private parsing methods:
– add private  parseN method for each non terminal  N
– public parse method that 

• gets the first token form the scanner
• calls parseS (S is the start symbol of the grammar)
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Recursive Descent Parsing with AST

Sentence ::= Subject Verb Object .
Subject ::= I | a Noun | the Noun  
Object ::= me | a Noun | the Noun
Noun ::= cat | mat | rat
Verb ::= like | is | see | sees

Define a procedure parseN for each non-terminal N

private AST parseSentence() ;
private AST parseSubject();
private AST parseObject(); 
private AST parseNoun();
private AST parseVerb();
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Recursive Descent Parsing: Parsing Methods

private AST parseSentence() {
AST theAST;
AST subject = parseSubject();
AST verb = parseVerb();
AST object = parseObject();
accept(‘.’);
theAST = new Sentence(subject,verb,object);
return theAST;

}

Sentence ::= Subject Verb Object .



25

Converting EBNF into RD parsers

• The conversion of an EBNF specification into a Java 
implementation for a recursive descent parser is so “mechanical” 
that it can easily be automated!

=> JavaCC “Java Compiler Compiler”
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JavaCC

• JavaCC is a parser generator
• JavaCC can be thought of as “Lex and Yacc” for 

implementing parsers in Java
• JavaCC is based on LL(k) grammars
• JavaCC transforms an EBNF grammar into an LL(k) 

parser
• The lookahead can be change by writing 

LOOKAHEAD(…)
• The JavaCC can have action code written in Java 

embedded  in the grammar
• JavaCC has a companion called JJTree which can be 

used to generate an abstract syntax tree
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JavaCC input format
• One file with extension .jj containing

– Header
– Token specifications
– Grammar

• Example:
TOKEN:
{

<INTEGER_LITERAL: ([“1”-”9”]([“0”-”9”])*|”0”)>
}

void StatementListReturn() :
{}
{

(Statement())* “return” Expression() “;”
}
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JavaCC token specifications use regular expressions 

• Characters and strings must be quoted
– “;”, “int”, “while”

• Character lists […] is shorthand for |
– [“a”-”z”] matches “a” | “b” | “c” | … | “z”
– [“a”,”e”,”i”,”o”,u”] matches any vowel
– [“a”-”z”,”A”-”Z”] matches any letter

• Repetition shorthand with * and +
– [“a”-”z”,”A”-”Z”]* matches zero or more letters
– [“a”-”z”,”A”-”Z”]+ matches one or more letters

• Shorthand with ? provides for optionals:
– (“+”|”-”)?[“0”-”9”]+ matches signed and unsigned integers

• Tokens can be named
– TOKEN : {<IDENTIFIER:<LETTER>(<LETTER>|<DIGIT>)*>}
– TOKEN : {<LETTER: [“a”-”z”,”A”-”Z”] >|<DIGIT:[“0”-”9”]>}
– Now <IDENTIFIER> can be used in defining syntax



ac in BNF and EBNF

prog - > dcls stmts
dcls -> dcl dcls | epsilon
dcl -> floatdcl id

| intdcl id
stmts -> stmt stmts | epsilon
stmt - > id assign val expr

| print id
expr - > plus val expr

| minus val expr
| epsilon

val - > id | fnum | inum

prog - > dcl* stmt*
stmt - > id assign val expr? 

| print id
expr - > plus val expr? 

| minus val expr? 

29
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JavaCC Grammar for ac

SKIP :
{
" "

| "\r"
| "\t"
| "\n"
}

TOKEN : /* OPERATORS */
{
< PLUS : "+" >

| < MINUS : "-" >
| < FLOATDCL : "f" >
| < INTDCL : "i" >
| < PRINT : "p" >
| < ASSIGN : "=" >
}

TOKEN :
{
< INUM : (< DIGIT >)+ >

| < FNUM : (< DIGIT >)+ (".") (< DIGIT >)+ >
| < #DIGIT : [ "0"-"9" ] >
| < ID : ["a"-"e"]|["g"-"h"]|["j"-"o"]|["q"-"z"] >
}

void prog() :
{}
{(dcl())+ (stmt())*
}

void dcl() :
{}
{
< FLOATDCL > <ID > | < INTDCL > <ID >

}

void stmt() :
{}
{
< ID ><ASSIGN > val() (expr())?

| < PRINT > <ID >
}

void val() :
{}
{
< INUM > | < FNUM > | < ID >

}

void expr() :
{}
{

< PLUS > val() (expr())?
| < MINUS > val() (expr())?

}



Adding AST actions for ac
AST prog() :
{Prog itsAST = new Prog(new ArrayList<AST >());
AST dcl;
AST stm;
}
{(
dcl = dcl()
{itsAST.prog.add(dcl);}
)+
(stm = stmt()
{itsAST.prog.add(stm);}
)*
{return itsAST;}

}

AST dcl() :
{Token t;}
{
(< FLOATDCL > t = <ID >)
{return new FloatDcl(t.image);}
| (< INTDCL > t = <ID >)
{return new IntDcl(t.image);}

}

AST stmt() :
{Boolean b = true;
AST v;
Computing e = null;
Token t;
}
{
(t = < ID ><ASSIGN > v = val() ((e = expr()){b = false;})?)
{if (b) return v; else { e.child1 = v; return e;}}

| (< PRINT > t = <ID >)
{return new Printing(t.image);}

}

31
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Generating a parser with JavaCC

• javacc filename.jj 
– generates a parser with specified name
– Lots of .java files

• javac *.java
– Compile all the .java files

• There is a plug-in for eclipse

• Note the parser doesn’t do anything on its own.
• You have to either

– Add actions to grammar by hand
– Use JJTree to generate actions for building AST
– Use JBT to generate AST and visitors 
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JavaCC and JJTree

• JavaCC is a parser generator
– Inputs a set of token definitions, grammar and actions
– Outputs a Java program which performs syntatic analysis

• Finding tokens
• Parses the tokens according to the grammar
• Executes actions

• JJTree is a preprocessor for JavaCC
– Inputs a grammar file
– Inserts tree building actions
– Outputs JavaCC grammar file with actions

• From this you can add code to traverse the tree to do 
static analysis, code generation or interpretation. 
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JavaCC and JJTree



35

Using JJTree
• JJTree is a preprocessor for JavaCC
• JTree transforms a bare JavaCC grammar into a grammar with 

embedded Java code for building an AST
– Classes Node and SimpleNode are generated
– Can also generate classes for each type of node

• All AST nodes implement interface Node
– Useful methods provided include:

• Public void jjtGetNumChildren()- returns the number of children
• Public void jjtGetChild(int i) - returns the i’th child

– The “state” is in a parser field called jjtree
• The root is at Node rootNode()
• You can display the tree with
• ((SimpleNode)parser.jjtree.rootNode()).dump(“ “);

• JJTree supports the building of abstract syntax trees which can be 
traversed using the visitor design pattern
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JBT 

• JBT – Java Tree Builder is an alternative to JJTree
• It takes a plain JavaCC grammar file as input and automatically 

generates the following:
– A set of syntax tree classes based on the productions in the grammar, 

utilizing the Visitor design pattern. 
– Two interfaces: Visitor and ObjectVisitor. Two depth-first visitors: 

DepthFirstVisitor and ObjectDepthFirst, whose default methods simply 
visit the children of the current node. 

– A JavaCC grammar with the proper annotations to build the syntax tree 
during parsing. 

• New visitors, which subclass DepthFirstVisitor or 
ObjectDepthFirst, can then override the default methods and 
perform various operations on and manipulate the generated 
syntax tree. 
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The Visitor Pattern
For object-oriented programming the visitor pattern enables the 

definition of a new operator on an object structure without changing 
the classes of the objects

When using visitor pattern
• The set of classes must be fixed in advance
• Each class must have an accept method
• Each accept method takes a visitor as argument
• The purpose of the accept method is to invoke the visitor which can 

handle the current object.
• A visitor contains a visit method for each class (overloading)
• A method for class C takes an argument of type C

• The advantage of Visitors: New methods without recompilation!



Pause
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LL(1) Grammars

• The presented algorithm to convert EBNF into a parser 
does not work for all possible grammars. 

• It only works for so called simple LL(1) grammars.
• What grammars are LL(1)?
• Basically, an LL(1) grammar is a grammar which can 

be parsed with a top-down parser with a lookahead (in 
the input stream of tokens) of one token.

How can we recognize that a grammar is (or is not) LL(1)?
⇒There is a formal definition
⇒We can deduce the necessary conditions from the parser 

generation algorithm.
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Formal definition of LL(1)

A grammar G is LL(1) iff 
for each set of productions X ::= X1 | X2 | … | Xn :
1. first[X1], first[X2], …, first[Xn] are all pairwise disjoint 
2. If Xi =>* ε then first[Xj]∩ follow[X]=Ø, for 1≤j≤ n.i≠j

If G is ε-free then 1 is sufficient

NOTE: first[X1] is sometimes called starters[X1]

first[X] = {t in Terminals | X =>* t β }
Follow[X] = {t in Terminals | S =>+ α X t β }
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LL(1) Grammars

parse X*

while (currentToken.kind is in first[X]) {
parse X

}  

parse X|Y

switch (currentToken.kind) {
cases in first[X]: 
parse X
break;

cases in first[Y]: 
parse Y
break;

default: report syntax error
}  

Condition: first[X] and first[Y]
must be disjoint sets.

Condition: first[X] must be disjoint 
from the set of tokens that can 
immediately follow X *
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First Sets

Informal Definition:
The starter set of a RE X is the set of terminal symbols that can 
occur as the start of any string generated by X

Example :
first[ (+|-|ε)(0|1|…|9)* ] = {+,-, 0,1,…,9}

Formal Definition:
first[ε] ={}
first[t] ={t} (where t is a terminal symbol)
first[X Y] = first[X] ∪ first[Y]  (if X generates ε)
first[X Y] = first[X] (if not X generates ε)
first[X | Y] = first[X] ∪ first[Y]
first[X*] = first[X]
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´First Sets (ctd)

Informal Definition:
The starter set of RE can be generalized to extended BNF

Formal Definition:
first[N] = first[X] (for production rules N ::= X)

Example :
first[Expression] = first[PrimaryExp (Operator PrimaryExp)*]

= first[PrimaryExp]
= first[Identifiers] ∪ first[(Expression)] 
= first[a | b | c | ... |z] ∪ {(}
= {a, b, c,…, z, (}







A variant on First and Follow sets

Source: https://www.jambe.co.nz/UNI/FirstAndFollowSets.html

https://www.jambe.co.nz/UNI/FirstAndFollowSets.html


First and Follow in KfG Edit













Recursive Decent Parser for ac
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Recursive Decent Parser for ac
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Recursive Decent Parser for ac with AST
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Recursive Decent Parser for ac with AST
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Recursive Decent Parser for ac with AST

57



Table-Driven LL(1) Parsers

• Creating recursive-descent parsers can be 
automated, but
– Size of parser code
– Inefficiency: overhead of method calls and returns

• To create table-driven parsers, we use stack to 
simulate the actions by MATCH() and calls to 
nonterminals’ procedures
– Terminal symbol: MATCH
– Nonterminal symbol: table lookup
– (Fig. 5.8)
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Model of a table-driven 
predictive parser





How to Build LL(1) Parse Table
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ANTLR
• ANTLR is a popular lexer and parser generator in Java.
• Regexp FSM (lexer machine) for tokens
• It allows LL(*) grammars.

– Does top-down parsing
– Uses lookahead tokens to decide which path to take
– Is table driven 
– Each match could 

– invoke a custom action
– write some text via StringTemplate,
– generate a Parse tree (or an Abstract Syntax Tree ANTLR v.3)

– Note LL(*) means that ANTLR uses a parse algorithm that uses k 
lookahead (usually k=1) as often as possible, but can use regular 
expressions or even backtracking when making decision. Theory 
elaborated in 2011 PLDI paper





What can you do in your projects now?

• You should now be able to define the lexical grammar 
for your langauge

• Implement the Lexer (scanner) by hand or using JLex

• Define the CFG for your language
• Check it is LL(1) or LL(n) for some n
• If it is LL(n) you should be able to implement a parser

– Recursive decent by hand
– Recursive decent by using a tool like JavaCC or CoCo/R
– Table driven by using a tool like ANTLR
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Remarks

• Tools
– Many different tools
– Downloading and installing them is part of the exercises
– Judging if a tool is worthwhile using include judging how 

difficult it is to install and how difficult it is to use
– Sometimes it is easier to do things by hand than using a tool
– But if you haven’t tried you don’t know when

– Try out the different tools and techniques on a small language 
or a subset of your own language. 

– Write down proc and cons for each.
– Lo and behold – you have a section for your report!
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Error Reporting
• A common technique is to print the offending line with a pointer 

to the position of the error. 
• The parser might add a diagnostic message like “semicolon 

missing at this position” if it knows what the likely error is.
• The way the parser is written may influence error reporting is:

private void parseAorB () {
switch (currentToken.kind) {
case Token.A: {

acceptIT();
…

}
break;
case Token.B: {

acceptIT();
…

}
break;
default:

report a syntax error
}

}
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Error Reporting

private void parseAorB () {
if (currentToken.kind == Token.A) {

acceptIT();
…

} else {
acceptIT();
…

}
}
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How to handle Syntax errors

• Error Recovery : The parser should try to recover from an error 
quickly so subsequent errors can be reported. If the parser doesn’t 
recover correctly it may report spurious errors.

• Possible strategies:
– Panic-mode Recovery
– Phase-level Recovery
– Error Productions
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Panic-mode Recovery

• Discard input tokens until a synchronizing token (like; or end) is 
found. 

• Simple but may skip a considerable amount of input before 
checking for errors again. 

• Will not generate an infinite loop.
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Phrase-level Recovery

• Perform local corrections
• Replace the prefix of the remaining input with some string to 

allow the parser to continue.
– Examples: replace a comma with a semicolon, delete an 

extraneous semicolon or insert a missing semicolon. Must be 
careful not to get into an infinite loop.
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Recovery with Error Productions

• Augment the grammar with productions to handle common errors

• Example:
param_list 
::= identifier_list : type

|   param_list, identifier_list : type

|   param_list; error identifier_list : type

(“comma should be a semicolon”)
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Learning goals

• Get an overview of bottom up parsing
• Understand what shift/reduce and reduce/reduce 

conflicts are
• Get an overview of JavaCUP
• Get an overview of SableCC
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Syntax Analysis

Scanner

Source Program

Abstract Syntax Tree

Error Reports

Parser

Stream of “Tokens”

Stream of Characters

Error Reports

Dataflow chart

This lecture
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Generation of parsers

• We have seen that recursive decent parsers can be 
constructed by hand or automatically, e.g. JavaCC

• However, recursive decent parsers only work for LL(k) 
grammars
– No Left-recursion
– No Common prefixes (*)

– (*) Note that the LL(*) approach used by ANTLR can deal with 
common prefixes, but not left recursion in general, though 
ANTLR4 can do some left recursion elimination.



ACTOR
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Look-Ahead

Derivation

LL-Analyse (Top-Down)
Left-to-Right Left Derivative

Look-Ahead

Reduction

LR-Analyse (Bottom-Up)
Left-to-Right Right Derivative

Top-Down vs. Bottom-Up parsing



9

Generation of parsers
• Sometimes we need a more powerful language
• The LR languages are more powerful

– Can recognize LR(0), SLR(1), LALR(1), LR(k) grammars 
• bigger class of grammars than LL

– Can handle left recursion!
– Usually more convenient because less need to rewrite the grammar.

• LR parsing methods are the most commonly used for 
automatic tools today (LALR in particular)
– Parsers for LR languages use a bottom-up parsing strategy
– Harder to implement than LL parsers

• but tools exist (e.g. JavaCUP, Yacc, C#CUP and SableCC)

• Bottom-up parsers can handle the largest class of grammars 
that can be parsed deterministically
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Hierarchy
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Bottom Up Parsers: Overview of Algorithms
• LR(0) : The simplest algorithm

– theoretically important but rather weak (not practical)
• SLR(1) : An improved version of LR(0)

– more practical but still rather weak.
• LR(1) : LR(0) algorithm with extra lookahead token.

– very powerful algorithm. Not often used because of large 
memory requirements (very big parsing tables)

– Note: LR(0) and LR(1) use 1 lookahead taken when operating
• 0 resp. 1 refer to token used in table construction.

• LR(k) for k>0, k tokens are use for operation and table 
• LALR : “Watered down” version of LR(1)

– still very powerful, but has much smaller parsing tables
– most commonly used algorithm today
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Fundamental idea

• Read through every construction and recognize the 
construction at the end

• LR:
– Left – the string is read from left to right
– Right – we get a right derivation (in reverse)

• The parse tree is build from bottom up
– Corresponds to a right derivation in reverse
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Bottom up parsing

The cat sees a rat .The cat

Noun

Subject

sees

Verb

a rat

Noun

Object

.

Sentence

The parse tree “grows” from the bottom (leafs) up to the top (root).
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Right derivations

Sentence 

→ Subject Verb Object .

→ Subject Verb a Noun .

→ Subject Verb a rat .

→ Subject sees a rat .

→ The Noun sees a rat .

→ The cat sees a rat .

Sentence ::= Subject Verb Object .
Subject ::= I | a Noun | the Noun  
Object ::= me | a Noun | the Noun
Noun ::= cat | mat | rat
Verb ::= like | is | see | sees
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Bottom up parsing

The cat sees a rat .The cat

Noun

Subject

sees

Verb

a rat

Noun

Object

.

Sentence

The parse tree “grows” from the bottom (leafs) up to the top (root).
Just read the right derivations backwards Sentence 

→ Subject Verb Object .

→ Subject Verb a Noun .

→ Subject Verb a rat .

→ Subject sees a rat .

→ The Noun sees a rat .

→ The cat sees a rat .



Some Terminology

16



17

handles and reductions

The cat sees a rat .     

→ the Noun sees a rat .

→ Subject sees a rat .

→ Subject Verb a rat .
→ Subject Verb a Noun . 

→ Subject Verb Object . 

→ Sentence

Sentence ::= Subject Verb Object .
Subject ::= I | a Noun | the Noun  
Object ::= me | a Noun | the Noun
Noun ::= cat | mat | rat
Verb ::= like | is | see | sees

Handles:
Noun ::= cat
Subject ::= the Noun
Verb ::= sees
Noun ::= rat
Object ::= a Noun
Sentence  ::= 
Subject Verb Object.
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Shifting and reducing

Shift                          → ← the cat sees a rat .
Shift the → ← cat sees a rat .
Reduce the cat → ← sees a rat .
Shift the  → ← Noun sees a rat .
Reduce the Noun → ← sees a rat .
Reduce → ← Subject sees a rat .
Shift                  Subject → ← sees a rat .
Reduce            Subject sees → ← a rat .
Shift            Subject → ← Verb a rat .
Shift            Subject Verb → ← a rat .
Shift           Subject Verb a → ← rat .
Reduce      Subject Verb a rat → ←.
Shift       Subject Verb → ← Noun.
Reduce     Subject Verb a Noun → ←. 
Shift             Subject Verb → ← Object. 
Shift      Subject Verb Object → ←.
Shift  Subject Verb Object . → ←
Reduce → ← Sentence
Finish                Sentence → ←

Sentence ::= Subject Verb Object .
Subject ::= I | a Noun | the Noun  
Object ::= me | a Noun | the Noun
Noun ::= cat | mat | rat
Verb ::= like | is | see | sees
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Shifting and reducing

Shift                          → ← the cat sees a rat .
Shift the → ← cat sees a rat .
Reduce the cat → ← sees a rat .
Reduce the Noun → ← sees a rat .
Reduce                 Subject → ← sees a rat .
Shift             Subject sees → ← a rat .
Shift           Subject Verb a → ← rat .
Shift       Subject Verb a rat → ←.
Reduce     Subject Verb a Noun → ←. 
Reduce     Subject Verb Object → ←.
Shift Subject Verb Object . → ←
Reduce                Sentence → ←

Sentence ::= Subject Verb Object .
Subject ::= I | a Noun | the Noun  
Object ::= me | a Noun | the Noun
Noun ::= cat | mat | rat
Verb ::= like | is | see | sees



The knitting games
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Bottom Up Parsing

• The main task of a bottom-up parser is to find the 
leftmost node in the parse tree that has not yet been 
constructed but all of whose children have been 
constructed.

• The sequence of children is the handle. 
• Creating a parent node N and connecting the children in 

the handle to N is called reducing to N.

(1,6,2) is a handle
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Bottom Up Parsers

• All bottom up parsers have similar algorithm:
– A loop with these parts:

• try to find the leftmost node of the parse tree which has not 
yet been constructed, but all of whose children have been 
constructed. 

– This sequence of children is called a handle
– The sequence of children is built by pushing also called 

shifting elements on a stack
• construct a new parse tree node. 

– This is called reducing
• The difference between different algorithms is only in 

the way they find a handle.
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The LR-parse algorithm

• A stack
– with objects (symbol, state)

• A finite automaton
– With transitions and states

• A parse table
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Bottom-up Parsing

• Shift-Reduce Algorithms
– Shift is the action of moving the next token to the top of the 

parse stack (and record the state)
– Reduce is the action of replacing the handle on the top of the 

parse stack with its corresponding LHS

– Note: In Fischer et. al. the reduce action is a two step process 
where the LHS is prepended the input stream first and next is 
shifted to the parse stack (remember the knitting game) 

Copyright © 2004 Pearson Addison-Wesley. All rights reserved.
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The parse table

• For every state and every terminal
– either shift x

Put next input-symbol on the stack and go to state x
– or reduce production

On the stack we now have symbols to go backwards in the 
production – afterwards do a goto

• For every state and every non-terminal
– Goto x

Tells us, in which state to be in after a reduce-operation
(Note as Fischer et. al. prepends non-terminals to input, they 

have a shift/goto action in their tables)
• Empty cells in the table indicate an error
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Example Grammar

• (0) S’ → S$
– This production augments the grammar

• (1) S → (S)S
• (2) S → ε

• This grammar generates all expressions of matching 
parentheses
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Example - parse table

( ) $ S' S

0 s2 r2 r2 g1

1 s3 r0

2 s2 r2 r2 g3

3 s4

4 s2 r2 r2 g5

5 r1 r1

By reduce we indicate the number of the production
r0 = accept
Never a goto by S'
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Example – parsing
Stack Input Action
$0 ()()$ shift 2
$0(2 )()$ reduce S→ε
$0(2S3 )()$ shift 4
$0(2S3)4 ()$ shift 2
$0(2S3)4(2 )$ reduce S→ε
$0(2S3)4(2S3 )$ shift 4
$0(2S3)4(2S3)4 $ reduce S→ε
$0(2S3)4(2S3)4S5 $ reduce S→(S)S
$0(2S3)4S5 $ reduce S→(S)S
$0S1 $ reduce S’→S
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The resultat

• Read the productions backwards and we get a right 
derivation:

• S’ ⇒ S ⇒ (S)S ⇒(S)(S)S 
⇒(S)(S) ⇒ (S)() ⇒()()
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LR(0)-DFA

• How do we get the parse table?
• We build a DFA and encode it in a table!

– Every state is a set of items

– Transitions are labeled by symbols

– States must be closed

– New states are constructed from states and transitions
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LR(0)-items

Item : 
A production with a selected position marked by a point
X →α.β indicates that on the stack we have α and the first of the 

input can be derived from β
Our example grammar has the following items:

S’ →.S$ S’ →S.$ (S’ →S$.)
S →.(S)S S→(.S)S S→(S.)S
S→(S).S S→(S)S. S→.

Rules with . at the end are the handles
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The DFA for our grammar

S'    .S$→.
S'    S $→ .S S S→.(  )

S S S→(   ).

S S S→  (   ).

S S S→(  ).

S S S→(  ) .

S→.

S

(

)
S

S

S S S→.(  )

S→.

(

(

S S S→.(  )

S→.

0
1

2

3

4
5









Pause
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Shift-reduce-conflicts

• What happens, if there is a shift and a reduce in the  
same cell
– so we have a shift-reduce-conflict
– and the grammar is not LR(0)

• Our example grammar is not LR(0)
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Shift-reduce-conflicts

( ) $ S' S

0 s2/r2 r2 r2 g1

1 r0 s3/r0 r0

2 s2/r2 r2 r2 g3

3 s4

4 s2/r2 r2 r2 g5

5 r1 r1 r1



http://smlweb.cpsc.ucalgary.ca/
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http://smlweb.cpsc.ucalgary.ca/
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LR(0) Conflicts
The LR(0) algorithm doesn’t always work. Sometimes there are 
“problems” with the grammar causing LR(0) conflicts.

An LR(0) conflict is a situation (DFA state) in which there is more 
than one possible action for the algorithm.

More precisely there are two kinds of conflicts:
Shift-reduce 

When the algorithm cannot decide between a shift action or
a reduce action

Reduce-reduce
When the algorithm cannot decide between two (or more) 
reductions (for different grammar rules).
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LR(0) vs. SLR(1)

• LR(0) - when constructing the parse table, we do not 
look at the next symbol in the input before we decide
whether to shift or to reduce
– Note that we do use the next symbol in the input when

looking up in the parse table

• SLR(1) - here we do look at the next symbol
• the parse table is a bit different:

– shift and goto as with LR(0)
– reduce X→α only in cells (X,w) with w∈follow(X)
– this means fewer reduce-actions and therefore this rule

removes at lot of potential s/r- or r/r-conflicts
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LR(1)

• Items are now pairs (A→α.β , t)
– t is a terminal such that t∈follow(A)
– means that the top of the stack is α and the input can be 

derived from βt

– The initial state is generated from (S' →.S$, ?)
– Closure-operation is different
– Shift and Goto is (more or less) the same
– state I with item (A→α., z) gives a reduce A→α in cell (I,z)

– LR(1)-parse tables are very big
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Example

0: S' → S$
1: S → V=E
2: S → E
3: E → V
4: V → x
5: V → *E
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LR(1)-DFA
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LR(1)-parse table

x * = $ S E V x * = $ S E V

1 s8 s6 g2 g5 g3 8 r4 r4

2 acc 9 r1

3 s4 r3 10 r5 r5

4 s11 s13 g9 g7 11 r4

5 r2 12 r3 r3

6 s8 s6 g10 g12 13 s11 s13 g14 g7

7 r3 14 r5
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LALR(1)

• A variant of LR(1) - gives smaller parse tables

• We allow ourselves in the DFA to combine states, 
where the items are the same except the x.

• In our example we combine the states
– 6 and 13
– 7 and 12
– 8 and 11
– 10 and 14
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LALR(1)-parse-table

x * = $ S E V

1 s8 s6 g2 g5 g3

2 acc

3 s4 r3

4 s8 s6 g9 g7

5

6 s8 s6 g10 g7

7 r3 r3

8 r4 r4

9 r1

10 r5 r5
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4 kinds of parsers

• 4 ways to generate the parse table
• LR(0)

– Easy, but only a few grammars are LR(0) 

• SLR(1)
– Relativey easy, a few more grammars are SLR

• LR(1)
– Expensive, but alle common languages are LR(1)

• LALR(1)
– A bit difficult, but simpler and more efficient than LR(1)
– In practice allmost all grammars are LALR(1)
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Parser Conflict Resolution

Most programming language grammars are LR(1). But, in practice, you 
still encounter grammars which have parsing conflicts.

=> a common cause is an ambiguous grammar

Ambiguous grammars always have parsing conflicts (because they are 
ambiguous this is just unavoidable).

In practice, parser generators still generate a parser for such grammars, 
using a “resolution rule” to resolve parsing conflicts deterministically.

=> The resolution rule may or may not do what you want/expect

=> You will get a warning message. If you know what you are doing 
this can be ignored. Otherwise => try to solve the conflict by 
disambiguating the grammar.
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Parser Conflict Resolution

Example: (from Mini Triangle grammar)

single-Command
::= if Expression then single-Command
| if Expression then single-Command

else single-Command

if a then if b then c1 else c2

single-Command

single-Command

This parse tree?
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Parser Conflict Resolution

Example: (from Mini Triangle grammar)

single-Command
::= if Expression then single-Command
| if Expression then single-Command

else single-Command

if a then if b then c1 else c2

single-Command

single-Command

or this one ?
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Parser Conflict Resolution

Example: “dangling-else” problem (from Mini Triangle grammar)

single-Command
::= if Expression then single-Command
| if Expression then single-Command

else single-Command

sC  ::= CsC 
|  OsC

CsC ::= if E then CsC else CsC
CsC ::= …
OsC ::= if E then sC

|  if E then CsC else OsC 

Rewrite Grammar:
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Parser Conflict Resolution

Example: “dangling-else” problem (from Mini Triangle grammar)

single-Command
::= if Expression then single-Command
| if Expression then single-Command

else single-Command

sC  ::= if E then sC • {… else …}
sC  ::= if E then sC •  else sC {…}

LR(1) items (in some state of the parser)
Shift-reduce

conflict!

Resolution rule: shift has priority over reduce. 

Q: Does this resolution rule solve the conflict? What is its effect 
on the parse tree? 
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Parser Conflict Resolution

There is usually also a default resolution rule for shift-reduce 
conflicts, for example the rule which appears first in the grammar 
description has priority.

Reduce-reduce conflicts usually mean there is a real problem with 
your grammar.

=> You need to fix it! Don’t rely on the resolution rule!
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Enough background!

• All of this may sound a bit difficult (and it is)
• But it can all be automated!
• Now lets talk about tools

– CUP (or Yacc for Java)
– SableCC
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Java Cup

• Accepts specification of a CFG and produces an 
LALR(1) parser (expressed in Java) with action routines 
expressed in Java

• Similar to yacc in its specification language, but with a 
few improvements (better name management)

• Usually used together with JLex (or JFlex)
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java_cup_spec ::= package_spec 
import_list 
code_part 
init_code 
scan_code 
symbol_list 
precedence_list 
start_spec 
production_list

Java Cup Specification Structure

• What does it mean?
– Package and import control Java naming
– Code and init_code allow insertion of code in generated output
– Scan code specifies how scanner (lexer) is invoked
– Symbol list and precedence list specify terminal and non-terminal names and 

their precedence
– Start and production specify grammar and its start point
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Calculator JavaCup Specification (calc.cup)
terminal              PLUS, MINUS, TIMES, DIVIDE, LPAREN, RPAREN;
terminal Integer  NUMBER;
non terminal Integer expr;
precedence left PLUS, MINUS;
precedence left TIMES, DIVIDE;
expr  ::= expr PLUS expr  

| expr MINUS expr 
| expr TIMES expr 
| expr DIVIDE expr 
| LPAREN expr RPAREN  
| NUMBER

;
• Is the grammar ambiguous? 
• How can we get PLUS, NUMBER, ...? 

– They are the terminals returned by the scanner.
• How to connect with the scanner? 
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Ambiguous Grammar Error

• If we enter the grammar
Expression ::= Expression PLUS Expression;

• without precedence JavaCUP will tell us:
Shift/Reduce conflict found in state #4

between Expression ::= Expression PLUS Expression .

and Expression ::= Expression . PLUS Expression

under symbol PLUS

Resolved in favor of shifting.

• The grammar is ambiguous!
• Telling JavaCUP that PLUS is left associative helps.
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Evaluate the expression

• The previous specification only indicates the success or 
failure of a parser. No semantic action is associated with 
grammar rules.

• To calculate the expression, we must add java code in 
the grammar to carry out actions at various points.

• Form of the semantic action:
expr:e1 PLUS expr:e2 
{: RESULT = new Integer(e1.intValue()+ e2.intValue());    :}

– Actions (java code) are enclosed within a pair {:   :}
– Labels e2, e2: the objects that represent the corresponding terminal or non-

terminal;
– RESULT:  The type of RESULT should be the same as the type of the 

corresponding non-terminals. e.g., expr is of type Integer, so RESULT is of 
type integer.
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Change the calc.cup

terminal          PLUS, MINUS, TIMES, DIVIDE, LPAREN, RPAREN;
terminal Integer  NUMBER;
non terminal AST expr;
precedence left PLUS, MINUS;
precedence left TIMES, DIVIDE;
expr  ::= expr:e1 PLUS expr:e2 {: RESULT = new Computing(“+”,e1,e2);    :}  

| expr:e1 MINUS expr:e2  {: RESULT = new Computing(“-”,e1,e2);  :} 
| expr:e1 TIMES expr:e2  {: RESULT = new Computing(“*”,e1,e2);  :} 
| expr:e1 DIVIDE expr:e2  {: RESULT = new Computing(“\”,e1,e2);  :} 
| LPAREN expr:e RPAREN {: RESULT = e;    :} 
| NUMBER:e {: RESULT= new IntConsting(e.intValue()); :}
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SableCC

• Object Oriented compiler framework written in Java
– There are also versions for C++ and C#

• Front-end compiler compiler like JavaCC and 
JLex/CUP 

• Lexer generator based on DFA
• Parser generator based on LALR(1)
• Object oriented framework generator:

– Strictly typed Abstract Syntax Tree
– Tree-walker classes
– Uses inheritance to implement actions
– Provides visitors for user manipulation of AST

• E.g. type checking and code generation
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Steps to build a compiler with SableCC
1. Create a SableCC 

specification file
2. Call SableCC
3. Create one or more 

working classes, 
possibly inherited 
from classes 
generated by 
SableCC

4. Create a Main class 
activating lexer, 
parser and working 
classes

5. Compile with Javac
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SableCC Example

Package Prog
Helpers
digit = ['0' .. '9'];
tab = 9;  cr = 13;  lf = 10;  
space = ' ';
graphic = [[32 .. 127] + tab]; 

Tokens
blank = (space | tab | cr | lf)* ;
comment = '//' graphic* (cr | lf);
while = 'while';
begin = 'begin';
end = 'end';
do = 'do';
if = 'if';
then = 'then';
else = 'else';
semi = ';';
assign = '=';
int = digit digit*;
id = ['a'..'z'](['a'..'z']|['0'..'9'])*;

Ignored Tokens
blank, comment;

Productions
prog = stmlist;

stm = {assign} [left:]:id assign [right]:id|
{while} while id do stm |
{begin} begin stmlist end |
{if_then} if id then stm;

stmlist = {stmt} stm |
{stmtlist} stmlist semi stm;
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SableCC output

• The lexer package containing the Lexer and 
LexerException classes

• The parser package containing the Parser and 
ParserException classes

• The node package contains all the classes defining typed 
AST

• The analysis package containing one interface and three 
classes mainly used to define AST walkers based on the 
visitors pattern



JLex/CUP vs. SableCC
• SableCC advantages

– Automatic AST builder for 
multi-pass compilers

– Compiler generator out of 
development cycle when
grammar is stable

– Easier debugging
– Access to sub-node by name, 

not position
– Clear separation of user and 

machine generated code
– Automatic AST pretty-

printer
– Version 3.0 allows

declarative grammar
transformations

71



What can you do now in your projects?

• Extract a core of your language 
• Define CFG for this core

– Transform into LL(1)
– Transform into LALR (probably not necessary)

• Build:
– Recursive decent parser (and lexer) by hand
– Try JavaCC and/or ANTLR
– Try JFlex/CUP
– Try SableCC
– (Try other parser tools, e.g. Coco/R, Gold Parser)

• Conclude which one is most appropriate for your project

72
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Learning goals

• To understand the role of the AST in modern compilers
• Knowledge of Attribute Grammars
• Knowledge about single pass vs. multi pas
• Knowledge of different approaches to AST design
• Understand the interplay between CFG and AST
• Be able to design an AST structure
• Knowledge of AST traversal approaches

2



Remember exercises 2 and 3 from before lecture 1 ?

• Write a Java program that implements a data structure 
for the following tree

• Extend your Java program to traverse the tree depth-first 
and print out information in nodes and leaves as it goes 
along. 

• Today we shall see several ways of solving this exercise

3
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The “Phases” of a Compiler

Syntax Analysis

Contextual Analysis

Code Generation

Source Program

Abstract Syntax Tree

Decorated Abstract Syntax Tree

Object Code

Error Reports

Error Reports

This lecture



Ac in JavaCC with AST
AST prog() :
{Prog itsAST = new Prog(new ArrayList<AST >());
AST dcl;
AST stm;
}
{(

dcl = dcl()
{itsAST.prog.add(dcl);}
)+
(stm = stmt()
{itsAST.prog.add(stm);}
)*
{return itsAST;}

}

AST dcl() :
{Token t;}
{

(< FLOATDCL > t = <ID >)
{return new FloatDcl(t.image);}
| (< INTDCL > t = <ID >)
{return new IntDcl(t.image);}

}

AST stmt() :
{Boolean b = true;
AST v;
Computing e = null;
Token t;
}
{

(t = < ID ><ASSIGN > v = val() ((e = expr()){b = false;})?)
{if (b) return v; else { e.child1 = v; return e;}}

| (< PRINT > t = <ID >)
{return new Printing(t.image);}

}

AST val() :
{Token t;}
{

t = < INUM >
{return new IntConsting(t.image);}

| t = < FNUM >
{return new FloatConsting(t.image);}

| t= < ID >
{return new SymReferencing(t.image);}

}

Computing expr() :
{Boolean b = true;
AST v;
Computing e =  null;
}
{

< PLUS > v = val() (e = expr(){b = false;})?
{if (b) return new Computing("+",null,v); 
else { e.child1 = v; return new Computing("+",null,e);}}

| < MINUS > v = val() (e = expr(){b = false;})?
{if (b) return new Computing("-",null,v); 
else { e.child1 = v; return new Computing("-",null,e);}}

}

5
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Action Routines and Attribute Grammars

• Automatic tools can construct lexer and parser for a given 
context-free grammar
– E.g. JavaCC and JLex/CUP (and Lex/Yacc)

• CFGs cannot describe all of the syntax of programming 
languages
– An ad hoc technique is to annotate the grammar with executable 

rules
– These rules are known as action routines

• Action routines can be formalized Attribute Grammars



Semantic Actions and Values

• Semantic actions
– Associated code sequence that will execute 

when the production is applied
• Semantic values

– For production A -> X1…Xn, a semantic value 
for each symbol

• Terminals: values originate from the scanner
• Nonterminals: to compute a value for A based on 

the values assigned to X1…Xn
– For yacc Xi: $i A: $0
– For JavaCUP X:val 7



Synthesized and Inherited 
Attributes

• Synthesized attributes
– Attributes flow from the leaves of a derivation 

tree toward its root
– Ex.: evaluating expressions (Fig. 7.1)
– Better ex.: Inferred Type

• Inherited attributes
– Attribute values pass from parent to child
– Ex.: counting the position of each x in a string
– Better ex.: expected Type

8
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Example: 4 3 1 $
• Semantic values for nonterminal symbols: 

computed by semantic actions
• Semantic values for terminal symbols: 

established by the scanner

10



• Example: o 4 3 1 $ i.e. Base-8 (octal)
– Problem: the information required 

at a semantic action is not available 
from below

• Semantic actions allowed only on 
reductions (in bottom up parsers)

11



Rule Cloning

• A similar sequence of 
input symbols should 
be treated differently 
depending on the 
context
– Ex.: (Fig. 7.5)
– Redundancy in 

productions

12



Forcing Semantic Actions

• Introducing unit 
productions of the 
form AX
– Semantic actions can 

be associated with the 
reduction of AX

– If a semantic action is 
desired between two 
symbols Xm and Xn,

• a production of the 
form Aλ can be 
introduced

– Ex.: (Fig. 7.6) 13



Aggressive Grammar 
Restructuring

• Reasons to avoid using 
global variables
– Grammar rules are often 

invoked recursively, and 
the global variables can 
introduce unwanted 
interactions

– Global variables can 
make semantic actions 
difficult to write and 
maintain

– Global variables may 
require setting or 
resetting

• More robust solution
– Sketch the parse tree without 

global variables
– Revise the grammar to 

achieve the desired parse 
tree

– Verify the revised grammar 
is still suitable for parser 
construction (e.g. LALR(1))

– Verify the revised grammar 
still generates the same 
language

– (Fig. 7.8)
• Keep the base in the semantic 

values 
• Propagate the value up the 

parse tree

14
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Top-Down Syntax-Directed 
Translation

• Using the recursive-descent parsers
• Semantic actions can be written directly 

into the parser
– Ex.: Lisp-like expressions (Fig. 7.9)

• ( plus 31 ( prod 10 2 20 ) ) $
• Inherited values: parameters passed into a 

method
• Synthesized values: returned by methods

– (Fig. 7.10)

16
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General structure

18

Production: X -> a Y Z
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Single Pass Compiler

Compiler Driver

Syntactic Analyzer

calls

calls

Contextual Analyzer Code Generator

calls

Dependency diagram of a typical Single Pass Compiler:

A single pass compiler makes a single pass over the source text, 
parsing, analyzing and generating code all at once.



Ac Single Pass Compiler
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CODE include code for typechecking, codegeneration, …

Production: X -> a Y Z



Ac Parser (without action code)

21
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Ac Parser for Single Pass Comp.
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Multi Pass Compiler

Compiler Driver

Syntactic Analyzer

calls
calls

Contextual Analyzer Code Generator

calls

Dependency diagram of a typical Multi Pass Compiler:

A multi pass compiler makes several passes over the program. The 
output of a preceding phase is stored in a data structure and used by 
subsequent phases.

input

Source Text

output

AST

input output

Decorated AST

input output

Object Code



Abstract Syntax Trees

• The central data structure for all post-
parsing activities
– AST must  be concise
– AST must be sufficiently flexible

• Concrete vs. abstract trees
– (Fig. 7.3 & 7.4)
– (Fig. 7.11)

24
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Abstract Syntax Trees

• Like a parse tree, but with some details 
omitted 

• Note we could use the parse tree 
– but often, the parse tree keeps unnecessary 

details
– E.g. SableCC AST is equivalent to the parse 

tree if you do not specify grammar 
transformation rules!

– ANTLR4 gives you the parse tree !
• You have to convert this to an AST yourself 26



An Efficient AST Data Structure

• Considering
– AST is typically constructed bottom-up
– Lists of siblings are typically generated by 

recursive rules
– Some AST nodes have a fixed number of 

children, but some may require an arbitrarily 
large number of children

• (Fig. 7.12)
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AST Design and Construction

• Important forces that influence the design 
of an AST
– It should be possible to unparse an AST 

• i.e. reconstitute the program from an AST
• AST must hold sufficient information

– The implementation of an AST should be 
decoupled from the essential information 
represented within the AST

– Different views from different phases of a 
compiler

34



• Process of the design of an appropriate 
AST structure
– An unambiguous grammar for L is devised
– An AST for L is devised
– Semantic actions are placed in the grammar to 

construct the AST
– Passes of the compiler are designed using the 

visitor design pattern

This is what Fischer et. Al. Says –
however sometimes an ambigous grammer may be the right thing
For devising the AST – just think of SableCC version 3.0
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Pause
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Abstract Syntax Trees

• The examples of AST design and construction in 
Fischer et. Al. are some what abstract

• Now we will look at very concrete example taken from 
Brown&Watt’s book: Programming Language 
Processors in Java:
– MiniTriangle language
– how to represent AST as data structures.
– how to refine a recursive decent parser to construct an AST 

data structure.



You may need more than one Grammar
• Concrete Syntax

– The grammar we use as specification for building a parser
– Must be unambiguous
– Usually LL(1), LL(*) or LALR(1)

• Lexical elements (Syntax given as Regular Expressions)
– Identifiers  e.g. Id := [a-z]([a-z]|[0-9])* 
– Keywords (or reserved words)

• Abstract Syntax
– To communicate the essentials of the language
– To serve in the formal specification of the semantics
– May be ambiguous
– To serve as design pattern for AST

39
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Concrete Syntax of Commands

single-Command 
::= V-name := Expression
| Identifier ( Expression )
| if Expression then single-Command

else single-Command
| while Expression do single-Command
| let Declaration in single-Command
| begin Command end

Command ::= single-Command 
| Command ; single-Command
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Abstract Syntax of Commands

Command 
::= V-name := Expression AssignCmd
| Identifier ( Expression ) CallCmd
| if Expression then Command

else Command IfCmd
| while Expression do Command WhileCmd
| let Declaration in Command LetCmd
| Command ; Command SequentialCmd
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Even more Abstract Syntax of Commands

Command 
::= V-name Expression AssignCmd
| Identifier Expression CallCmd
| Expression Command Command IfCmd
| Expression Command WhileCmd
| Declaration Command LetCmd
| Command Command SequentialCmd

The possible form of AST structures can be completely determined 
by the AST grammar
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AST Representation: Possible Tree Shapes

Command ::= VName := Expression AssignCmd
| ...

AssignCmd

V E
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AST Representation: Possible Tree Shapes

Command ::= 
...
| Identifier ( Expression ) CallCmd
...

CallCmd

Identifier E

Spelling
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AST Representation: Possible Tree Shapes

Command ::= 
...
| if Expression then Command 

else Command IfCmd
...

IfCmd

E C1 C2
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AST

LHS

Tag1 Tag2 …

abstract

concrete

abstract

AST Representation: Java Data Structures

public abstract class AST { ... }

Example: Java classes to represent Mini Triangle AST’s
1) A common (abstract) super class for all AST nodes

2) A Java class for each “type” of node.
• abstract as well as concrete node types

LHS ::= ...      Tag1
| ...      Tag2
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Example: Mini Triangle Commands ASTs

public abstract class Command extends AST { ... }  

public class AssignCommand extends Command { ... }  
public class CallCommand extends Command { ... }  
public class IfCommand extends Command { ... }  
etc.

Command 
::= V-name := Expression AssignCmd
| Identifier ( Expression ) CallCmd
| if Expression then Command 

else Command IfCmd
| while Expression do Command WhileCmd
| let Declaration in Command LetCmd
| Command ; Command SequentialCmd



48

Example: Mini Triangle Command ASTs

Command ::= V-name := Expression AssignCmd
| Identifier ( Expression ) CallCmd
| ...

public class AssignCommand extends Command { 
public Vname V;        // assign to what variable?
public Expression E;   // what to assign?
... 

}  

public class CallCommand extends Command {
public Identifier I;   //procedure name
public Expression E;   //actual parameter
...

}
...
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AST Terminal Nodes

public abstract class Terminal extends AST { 
public String spelling;
...

}  

public class Identifier extends Terminal { ... }

public class IntegerLiteral extends Terminal { ... }

public class Operator extends Terminal { ... }



50

AST Construction

public class AssignCommand extends Command { 
public Vname V;        // Left side variable
public Expression E;   // right side expression
public AssignCommand(Vname V; Expression E) {

this.V = V; this.E=E;
}
...

}  

public class Identifier extends Terminal {
public class Identifier(String spelling) {

this.spelling = spelling; 
}
...

}

Examples:
First, every concrete AST class needs a constructor.
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AST Construction

private void parseN() {
parse X

}

N ::= X

We will now show how to refine our recursive descent parser to 
actually construct an AST.

Remember:
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AST Construction
We will now show how to refine our recursive descent parser to actually 
construct an AST.

private N parseN() {
N itsAST;
parse X at the same time constructing itsAST
return itsAST;

}

N ::= X
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private void parseCommand() {
parse single-Command ( ; single-Command )*

}

Example: “Generation” of parseCommand

Command ::= single-Command ( ; single-Command )*

private void parseCommand() {
parse single-Command
parse ( ; single-Command )*

}

private void parseCommand() {
parseSingleCommand();
parse ( ; single-Command )*

}

private void parseCommand() {
parseSingleCommand();
while (currentToken.kind==Token.SEMICOLON) {

parse ; single-Command
}

}

private void parseCommand() {
parseSingleCommand();
while (currentToken.kind==Token.SEMICOLON) {

parse ;
parse single-Command

}
}

private void parseCommand() {
parseSingleCommand();
while (currentToken.kind==Token.SEMICOLON) {

acceptIt();
parseSingleCommand();

}
}
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Example: Construction of Mini Triangle ASTs

// old (recognizing only) version:
private void parseCommand() {
parseSingleCommand();
while (currentToken.kind==Token.SEMICOLON) {

acceptIt();
parseSingleCommand();

}
}

Command ::= single-Command ( ; single-Command )*

// AST-generating version
private Command parseCommand() {
Command itsAST;
itsAST = parseSingleCommand();
while (currentToken.kind==Token.SEMICOLON) {

acceptIt();
Command extraCmd = parseSingleCommand();
itsAST = new SequentialCommand(itsAST,extraCmd);

}
return itsAST;

}
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Contextual Analysis
Identification and type checking are combined into a depth-first traversal of the AST.

Ident Ident Ident Ident Ident CharLit Ident Ident Op IntLit

n Integer c Char c ‘&’ n n + 1

SimpleT SimpleT SimpleV SimpleV SimpleV

VarDec VarDec VnameExpr IntExpr

BinaryExpression

AssignCommand

CharExpr

AssignCommand

SequentialCommandSequentialDeclaration

LetCommand

Program



56

Depth-First Traversal
Depth-first traversal depends on the structure of the AST - it depends
on the number and kind of descendants of each node. Organize it as a
collection of functions:   analyzeNodeType

analyzeProgram(Program P) {
… analyzeCommand(P.C) … }

analyzeIfCommand(IfCommand C) {
… analyzeExpression(C.E) … 
… analyzeCommand(C.C1)… analyzeCommand(C.C2)… }
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Depth-First Traversal
It turns out (later in the course) that code generation also requires a
traversal of the AST. So we expect the code generator to be
organized similarly:

generateProgram(Program P) {
… generateCommand(P.C) … }

generateIfCommand(IfCommand C) {
… generateExpression(C.E) … 
… generateCommand(C.C1)… generateCommand(C.C2)… }
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Implementing Tree Traversal

• “Traditional” OO approach
• Visitor approach

– GOF
– Using static overloading
– Reflective
– (dynamic)
– (SableCC style)

• “Functional” approach
• Active patterns in Scala (or F#)
• (Aspect oriented approach)
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Implementing Tree Traversal: Traditional

• “Traditional” OO approach add a method to each class, 
so for each node in the AST we have a method that 
knows how to traverse its children.

• Note the AST is a composit
– thus we can use the composit pattern
– Composite lets clients treat individual objects and 

compositions of objects uniformly
•



ac traditional OO AST traversal
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Implementing Tree Traversal: Traditional

• “Traditional” OO approach add a method to each class, 
so for each node in the AST we have a method that 
knows how to traverse its children.

• Note the AST is a composit, thus we can use the 
composit pattern 

• Scatters code over a large number of classes
• Requires recompilation of AST classes each time a 

method needs changing
• Could be preferable as long as we are changing the AST 

often. 
• Solution could later be refactored to Visitor pattern
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Implementing Tree Traversal: Visitor

• Solution using Visitor:
– Visitor is an interface or an abstract class that has a different 

method for each type of object on which it operates
– Each operation is a subclass of Visitor and overloads the type-

specific methods
– Objects that are operated on, accept a Visitor and call back 

their type-specific method passing themselves as operands
– Object types are independent of the operations that apply to 

them
– New operations can be added without modifying the object 

types



63

Visitor Solution

NodeVisitor

VisitAssignment( AssignmentNode )
VisitVariableRef( VariableRefNode )

TypeCheckingVisitor

VisitAssignment( AssignmentNode )
VisitVariableRef( VariableRefNode )

CodeGeneratingVisitor

VisitAssignment( AssignmentNode )
VisitVariableRef( VariableRefNode )

Node

Accept( NodeVisitor v )

VariableRefNode

Accept(NodeVisitor v)
{v->VisitVariableRef(this)}

AssignmentNode

Accept(NodeVisitor v)
{v->VisitAssignment(this)}

• Nodes accept visitors and call 
appropriate method of the visitor

• Visitors implement the operations 
and have one method for each type 
of node they visit



Double Dispatch
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http://en.wikipedia.org/wiki/File:VisitorClassDiagram.svg
http://en.wikipedia.org/wiki/File:Visitor_pattern_in_LePUS3.gif
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Flavours of the Visitor Pattern

• GOF style as on previous slides
– acASTGOFVisitor

• Reflective Visitor
– acASTreflective

• Exploiting static overloading
– acASTVisitor

66
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Implementing Tree Traversal: instanceof
Another possibility is to use a “functional” approach and
implement a case-analysis on the class of an object.

Type check(Expr e) {
if (e instanceof IntLitExpr)

return representation of type int
else if (e instanceof BoolLitExpr) 

return representation of type bool
else if (e instanceof EqExpr) {

Type t = check(((EqExpr)e).left);
Type u = check(((EqExpr)e).right);
if (t == representation of type int &&

u == representation of type int)
return representation of type bool

...



ac with functional AST traversal
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Implementing Tree Traversal: instanceof

This approach leads to a messy nested if, which can’t be
converted into a switch because Java has no mechanism for
switching on the class of an object.

Also this technique is not very object-oriented: instead of
explicitly using instanceof, we prefer to arrange for analysis
of an object’s class to be done via the built-in mechanisms of
overloading and dynamic method dispatch.



Scala active patterns

sealed abstract class AST
case class Prog(prog:List[AST]) extends AST
case class Assigning(id:String,child1:AST) extends AST
case class Computing(operation:String,child1:AST,child2:AST) extends AST
case class ConvertingToFloat(child:AST) extends AST
case class Printing(id:String) extends AST
case class FloatConsting(v:String) extends AST
case class FloatDcl(id:String) extends AST
case class Intconsting(v:String) extends AST
case class IntDcl(id:String) extends AST
case class SymDeclaring(id:String) extends AST
case class SymReferencing(id:String) extends AST

def prettyprint(t: AST): void = t match {
case Prog(prog) => prog.map(prettyprint)
case Assigning(id,child1) => print(id + " = ");prettyprint(child1);print(" ")
case Computing(op, ch1,ch2) => prettyprint(ch1);print(" " + op + " ")
case Converting(ch) => print(" i2f ");prettyprint(ch)
case Printing(id) => print("p " + id + " ")
case FloatConsting(v) => print(v)
case FloatDcl(id) => print("f " + id + " ")
case IntConsting(v) => print(v)
case IntDcl(id) => print("f " + id + " ")
case SymReferencing(id) => print(id)
}
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Summary

• The AST is a central data structure in modern compilers
– Generic very general AST structure
– Designed based on (Abstract) grammar

• Parser builds AST
– Action code, e.g. JavaCC, CUP/Yacc/C#CUP (, ANTLR)
– Done by tool, e.g. SableCC, JavaCC+JJT or JBT (, ANTLR)

• AST traversal
– Traditional OO
– Visitor Pattern
– Functional style
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What can you do in your project now?

• Start deciding on an AST design for your compiler
– Generic vs. Abstract Syntax based (classic OOP)
– Experiment with AST traversal strategies

• Compare approaches
– By hand
– By tool
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Learning Goals

• Understand the purpose of the Contextual Analysis 
phase of the compiler

• Knowledge about scope and type rules
• Knowledge about Symbol Tables
• Knowledge about strategies for implementing this phase

2
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The “Phases” of a Compiler

Syntax Analysis

Contextual Analysis

Code Generation

Source Program

Abstract Syntax Tree

Decorated Abstract Syntax Tree

Object Code

Error Reports

Error Reports
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Programming Language Specification

– A language specification has (at least) three parts:
• Syntax of the language: usually formal: EBNF
• Contextual constraints: 

– scope rules 
» often written in English, but can be formal
» (see chapter 6 on p. 86-93 in Transitions and Trees)

– type rules 
» formal or informal
» See chapter 13 on p.185-210 in Transitions and Trees)

• Semantics: 
– defined by the implementation
– informal descriptions in English 
– formal using operational or denotational semantics

» See Transitions and Trees
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Contextual Constraints

Syntax rules alone are not enough to specify the format of 
well-formed programs. 

Example 1:
let const m~2;
in  m + x 

Example 2:
let const m~2 ;

var   n:Boolean
in begin

n := m<4;
n := n+1

end

Undefined! Scope Rules

Type error! Type Rules
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Scope Rules

Scope rules regulate visibility of identifiers. They relate 
every applied occurrence of an identifier to a binding 
occurrence
Example 1
let const m~2;

var   r:Integer
in  

r := 10*m

Binding occurrence

Applied occurrence

Terminology:

Static binding vs. dynamic binding

Static scope/block structured scope vs. dynamic scope

Implicit vs. explicit binding       (see p. 86-93 in Transitions and Trees)

Example 2:
let const m~2
in  m + x

?
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Type Rules

• In order to "tame" the behaviour of programs we can 
make more or less restrictive type rules

• The validity of these rules is controlled by the type 
cheking algorithm

• Details depend upon the type system
– Type systems can be very complicated

• Lets look at them later
– Simple type system (next lecture)
– More complex type systems (later lecture)
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Type Rules

Type rules regulate the expected types of arguments and 
types of returned values for the operations of a language. 

Examples

Terminology:

Static typing vs. dynamic typing

Type rule of < : 
E1 < E2 is type correct and of type Boolean
if E1 and E2 are type correct and of type Integer

Type rule of while: 
while E do C is type correct
if E of type Boolean and C type correct

See Chapter  13 in Trans. & Trees
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Typechecking
• Static typechecking

– All type errors are detected at compile-time
– Pascal and C are statically typed
– Most modern languages have a large emphasis on static typechecking

• Dynamic typechecking
– Scripting languages such as JavaScript, PhP, Perl and Python do run-time 

typechecking 
• Mix of Static and Dynamic

– object-oriented programming requires some runtime typechecking: e.g. 
Java has a lot of compile-time typechecking but it is still necessary for 
some potential runtime type errors to be detected by the runtime system

• Static typechecking involves calculating or inferring the types of 
expressions (by using information about the types of their 
components) and checking that these types are what they should 
be (e.g. the condition in an if statement must have type Boolean).
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Contextual Analysis Phase

• Purposes:
– Finish syntax analysis by deriving context-sensitive 

information
• Scoping
• (static) type checking 

– Start to interpret meaning of program based on its syntactic 
structure

– Prepare for the final stage of compilation: Code generation
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Contextual Analyzer

• Which contextual constraints might the compiler add?
– Is identifier x declared before it is used?
– Which declaration of x does an occurrence of x refer to?
– Is x an Integer, Boolean, array or a function?
– Is an expression type-consistent?
– Are any names declared but not used?
– Has x been initialized before it is being accessed?
– Is an array reference out of bounds?
– Does a function bar produce a constant value?
– Where can x be stored? (heap, stack, …)
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Why contextual analysis can be hard

• Questions and answers involve non-local information
• Answers mostly depend on values, not syntax
• Answers may involve computations

Solution alternatives:
• Abstract syntax tree 

– specify non-local computations by walking the tree
• Identification tables (sometimes called symbol tables) 

– central store for facts + checking code
• Language design

– simplify language
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To simplify the language design or not?

• Syntax vs. types
– Bool expressions and Int expressions as syntactic categories
– One syntactic category of Expressions with types

• Psychology of syntax errors vs. type errors
– Most C programmers accept syntax errors as their fault, but 

regard typing errors as annoying constraints imposed on them

Bexp := true
| false
| Bexp Bop Bexp

Bop := & | or | …

IntExp := Literal
| IntExp Iop IntExp

Iop := + | - | * | / | …

Exp := Literal
| Exp op Exp

Op := & | or | + | - | * | / | …vs
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Language Issues

Example Pascal:
Pascal was explicitly designed to be easy to implement 

with a single pass compiler:
– Every identifier must be declared before its first use.

var n:integer;

procedure inc;
begin

n:=n+1
end

Undeclared Variable!  

procedure inc;
begin

n:=n+1
end;

var n:integer;

?
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Language Issues

Example Pascal:
– Every identifier must be declared before it is used. 
– How to handle mutual recursion then?

procedure ping(x:integer)
begin

... pong(x-1); ...
end;

procedure pong(x:integer)
begin

... ping(x); ...
end;



C was designed for a single pass compiler

Mutual recursion problem:
– Every identifier must be declared

before it is used. 
– How to handle mutual recursion 

then?

17

void ping(int x)
{

pong(x-1); ...
}

void pong(int x)
{

ping(x); ...
}

void pong(int x);

void ping(x:integer)

{
pong(x-1); ...

}

Void pong(int x)

{
ping(x); ...

}

OK!
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Language Issues

Example Pascal:
– Every identifier must be declared before it is used. 
– How to handle mutual recursion then?

forward procedure pong(x:integer)

procedure ping(x:integer)
begin

... pong(x-1); ...
end;

procedure pong(x:integer)
begin

... ping(x); ...
end;

OK!
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Language Issues

Example SML:
– Every identifier must be declared before it is used. 
– How to handle mutual recursion then?

fun ping(x:int)=
... pong(x-1) ...

fun pong(x:int)=
... ping(x) ...

;

OK!and
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Language Issues

Example Java:
– identifiers can be declared before they are used. 
– thus a Java compiler needs at least two passes  

Class Example {

void inc() { n = n + 1; }

int n;

void use() { n = 0 ; inc(); }

}
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Scope of Variable
• Range of program that can reference that variable (ie 

access the corresponding data object by the variable’s 
name)

• Variable is local to program or block if it is declared 
there

• Variable is non-local to program unit if it is visible there 
but not declared there

• Static vs. Dynamic scope
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Static Scoping
• Scope computed at compile time, based on program text
• To determine the name of a used variable we must find statement 

declaring variable
• Subprograms and blocks generate hierarchy of scopes

– Subprogram or block that declares current subprogram or 
contains current block is its static parent

• General procedure to find declaration:
– First see if variable is local; if yes, done
– If non-local to current subprogram or block recursively search 

static parent until declaration is found
– If no declaration is found this way, undeclared variable error 

detected
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Example
program main;

var x : integer;

procedure sub1;

var x : integer;

begin { sub1 }

… x …

end; { sub1 }

begin { main }

… x …

end; { main }



Example (from p. 88 in Transitions and Trees)
begin

var x:= 0;
var y:= 42

proc p is x:= x+3;
proc q is call p;

begin
var x:=9;
proc p is x := x+1;
call q;
y := x

end
end

24

Value of y is 9, assuming static scope for procedures and variables

Assuming static scope for procedures and variables,
What is the value assigned to y ?
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Dynamic Scope

• Now generally  thought to have been a mistake 
• Main example of use: original versions of LISP

– APL, PostScript
– (Note: Scheme uses static scope)
– Perl allows variables to be declared to have dynamic scope

• Determined by the calling sequence of program units, 
not static layout

• Name bound to corresponding variable most recently 
declared among still active subprograms and blocks
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Example

program main;

var x : integer;

procedure sub1;

begin { sub1 }

… x …

end; { sub1 }

procedure sub2;
var x : 

integer;

begin { sub2 
}

… call sub1 …

end; { sub2 }

… call  sub2…

end; { main }



Example (from p. 88 in Transitions and Trees)
begin

var x:= 0;
var y:= 42

proc p is x:= x+3;
proc q is call p;

begin
var x:=9;
proc p is x := x+1;
call q;
y := x

end
end

27

Value of y is 10, assuming dynamic scope for procedures and variables

Value of y is 12, assuming static scope for procedures and dynamic of variables

Assuming dynamic scope for procedures and variables,
What is the value assigned to y ?



Formal rules
(from p. 89-93 in Transitions and Trees)
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Pause

29



Organization of a Compiler

30
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Identification Table

• The identification table (also often called symbol table) 
is a dictionary-style data structure in which we somehow 
store identifier names and relate each identifier to its 
corresponding attributes.

• Typical operations:
– Empty the table
– Add an entry (Identifier -> Attribute)
– Find an entry for an identifier
– (open and close scope)



32

Identification Table

• The organization of the identification table depends on 
the programming language.

• Different kinds of “block structure” in languages:
– Monolithic block structure: e.g. ac, BASIC, COBOL
– Flat block structure: e.g. Fortran (and functions in C)
– Nested block structure => Modern “block-structured” PLs (e.g. 

Algol, Pascal, C, C++, Scheme, Java,…)

a block = an area of text in the program that corresponds to some 
kind of boundary for the visibility of identifiers.

block structure = the textual relationship between blocks in a 
program.



C# scope definition
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Different kinds of Block Structure... a picture

Monolithic Flat Nested
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Monolithic Block Structure

A language exhibits monolithic block structure if 
the only block is the entire program. 

=> Every identifier is visible throughout the entire 
program

Very simple scope rules:

• No identifier may be declared more than once

• For every applied occurrence of an identifier I
there must be a corresponding declaration.

Monolithic
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Flat Block Structure

A language exhibits flat block structure if the 
program can be subdivided into several disjoint 
blocks 

There are two scope levels: global or local.
Typical scope rules:

• a globally defined identifier may be redefined 
locally

• several local definitions of a single identifier 
may occur in different blocks (but not in the 
same block)

• For every applied occurrence of an identifier 
there must be either a local declaration within 
the same block or a global declaration.  

Flat
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Nested Block Structure

A language exhibits nested block structure if 
blocks may be nested one within another (typically 
with no upper bound on the level of nesting that is 
allowed). 

There can be any number of scope levels (depending 
on the level of nesting of blocks):
Typical scope rules:

• no identifier may be declared more than once 
within the same block (at the same level).

• for any applied occurrence there must be a 
corresponding declaration, either within the 
same block or in a block in which it is nested.  

Nested
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Identification Table
For a typical programming language, i.e. statically scoped language 
and with nested block structure we can visualize the structure of all 
scopes within a program as a kind of tree.
Global
A

B

A1

A2

A3

Global

A B

A1 A2 A3
= “direction” of identifier lookup

Lookup path for an applied 
occurence in A3

At any one time (in analyzing the program) only a single 
path on the tree is accessible.
=> We don’t necessarily need to keep the whole “scope” 
tree in memory all the time.



A Symbol Table Interface

• Methods 
– OpenScope()
– CloseScope()
– EnterSymbol(name, type)
– RetreiveSymbol(name)
– DeclaredLocally(name)

• Ex.
– (Fig. 8.2) Code to build the symbol table for 

the AST in Fig. 8.1

39



40



Ac SymbolTableFilling
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One Symbol Table or Many?

• Two common approaches to 
implementing block-structured symbol 
tables
– A symbol table associated with each scope
– Or a single, global table

42



An Individual Table for Each Scope

• Because name scope are opened and closed in a 
last-in first-out (LIFO) manner, a stack is an 
appropriate data structure for a search
– The innermost scope appears at the top of stack
– OpenScope(): pushes a new symbol table
– CloseScope(): pop

• Disadvantage
– Need to search a name in a number of symbol tables
– Cost depending on the number of nonlocal references 

and the depth of nesting
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Individual Table for each scope

Global
A

B

A1

A2

A3

Global

A B

A1 A2 A3
= “direction” of identifier lookup

Lookup path for an applied 
occurence in A3

At any one time (in analyzing the program) only a single 
path on the tree is accessible.
=> We can keep a stack of identification tables, one for 
each “active” scope.



One Symbol Table

• All names in the same table
– Uniquely identified by the scope name or 

depth
• RetrieveSymbol() need not chain through scope 

tables to locate a name

45



Entering and Finding Names
• Examine the time needed to insert symbols, retrieve 

symbols, and maintain scopes
– In particular, we pay attention to the cost of retrieving symbols
– Names can be declared no more than once in each scope, but 

typically referenced multiple times

• Various approaches
– Unordered list

• Insertion: fast, Retrieval: linear scan, Impractically slow 
– Ordered list

• Fast retrieval , but expensive insertion
– Binary search trees

• Insert, search: O(log n), 
– Balanced trees

• Insert, search: O(log n) – avoids worst case for binary trees
– Hash tables

• Insert, search: O(1), given sufficiently large table, a good hash function 
and appropriate collision-handling techniques
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Advanced Features

• Extensions of the simple symbol table 
framework to accommodate advanced 
features of modern programming 
languages
– Name augmentation (overloading)
– Name hiding and promotion
– Modification of search rules
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Implicit Declarations

• In some languages, the appearance of a name in 
a certain context serves to declare the name as 
well
– E.g.: labels in C
– In Fortran: inferred from the identifier’s first letter
– In Ada: an index is implicitly declared to be of the 

same type as the range specifier
– A new scope is opened for the loop so that the loop 

index cannot clash with an existing variable
• E.g. for (int i=1; i<10; i++) { … }

– Variables in dynamic languages like Python
48



Symbol Table Summary

• The symbol table organization in this 
chapter efficiently represents scope-
declared symbols in a block-structured 
language

• Most languages include rules for symbol 
promotion to a global scope

• Issues such as inheritance, overloading, 
and aggregate data types must be 
considered
– Records, objects and classes
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Declaration Processing 
Fundamentals

• Attributes in the symbol table
– Internal representations of declarations
– Identifiers are used in many different ways in a 

modern programming language
• Variables, constants, types, procedures, classes, and fields
• Every identifier will not have the same set of attributes

– We need a data structure to store the variety of 
information

• Using a struct that contains a tag, and a union for each 
possible value of the tag

• Using object-based approach, Attributes and appropriate 
subclasses
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Type Descriptor Structures
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Attributes as pointers to Declaration AST’s
Program

LetCommand

Ident

VarDecl

x int

Ident

SequentialDecl

VarDecl

a bool

Ident

LetCommand

VarDecl

y int

IdentIdent
Id table

Level Ident Attr
1 x •
1 a •
2 y •

Ident
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The Standard Environment

• Most programming languages have a set of predefined 
functions, operators etc.

• We call this the standard environment
At the start of identification the ID table is not empty but... 

needs to be initialized with entries representing the 
standard environment.
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Scope for Standard Environment
Should the scope level for the standard environment be the same as 

the globals (level 1) or outside the globals (level 0)?
– C: level 1
– Mini Triangle: level 0

• Consequence:
1 let
2   var false : Integer
3 in
4   begin
5     false := 3;
6     putint ( false )
7   end

is a perfectly correct Mini Triangle program
• Similar with Integer or putint. . .
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Contextual Analysis -> Decorated AST

Contextual Analysis

Decorated Abstract Syntax Tree

Error Reports

Abstract Syntax Tree

Contextual analysis:
• Scope checking: verify that all applied occurrences of 

identifiers are declared
• Type checking: verify that all operations in the program are 

used according to their type rules.
Annotate AST:

• Applied identifier occurrences => declaration
• Expressions => Type
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Contextual Analysis
Identification and type checking are combined into a depth-first traversal of the AST.

Ident Ident Ident Ident Ident CharLit Ident Ident Op IntLit

n Integer c Char c ‘&’ n n + 1

SimpleT SimpleT SimpleV SimpleV SimpleV

VarDec VarDec VnameExpr IntExpr

BinaryExpression

AssignCommand

CharExpr

AssignCommand

SequentialCommandSequentialDeclaration

LetCommand

Program
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Implementing Tree Traversal

• “Traditional” OO approach
• Visitor approach

– GOF
– Using static overloading
– Reflective
– (dynamic)
– (SableCC style)

• “Functional” approach
• Active patterns in Scala (or F#)
• (Aspect oriented approach)



What can you do in your project now?

• Start designing and defining:
– Scope rules for your language

• Informal (in structured English)
• Formally (when you have read chapter 6 in Trans. & Trees)

• Start thinking about designing and defining
– the type system for your language

• Informal (in structured English)
• Formally (when you have read chapter 13 in Trans. & 

Trees)
• Start thinking about implementing

– Symbol table(s)
– Scope cheking
– (simple) type cheking
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Languages and Compilers
(SProg og Oversættere)

Lecture 11
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Aalborg University



Learning Goals

• Understand how (simpel) type checking is implemented
• Understand that type checking is language dependent 

and thus different from language to language
• Understand that similar principles apply to many 

different languages

2
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Programming Language Specification

– A language specification has (at least) three parts:
• Syntax of the language: usually formal: EBNF
• Contextual constraints: 

– scope rules 
» often written in English, but can be formal
» (see p. 86-93 in Transitions and Trees)

– type rules 
» formal or informal
» See p.185-210 in Transitions and Trees)

• Semantics: 
– defined by the implementation
– informal descriptions in English 
– formal using operational or denotational semantics

» See Transitions and Trees
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The “Phases” of a Compiler

Syntax Analysis

Contextual Analysis

Code Generation

Source Program

Abstract Syntax Tree

Decorated Abstract Syntax Tree

Object Code

Error Reports

Error Reports
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Contextual Analysis -> Decorated AST

Contextual Analysis

Decorated Abstract Syntax Tree

Error Reports

Abstract Syntax Tree

Contextual analysis:
• Scope checking: verify that all applied occurrences of 

identifiers are declared
• Type checking: verify that all operations in the program are 

used according to their type rules.
Annotate AST:

• Applied identifier occurrences => Type or ref to declaration
• Expressions => Type
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Type Checking

• In a statically typed language every expression E either:
– Is ill-typed
– Or has a static type that can be computed without actually evaluating E

• When an expression E has static type T this means that when E is 
evaluated then the returned value will always have type T

• => This makes static type checking possible!

• Note in languages with subtyping the value returned by E with 
static type T maybe of type T´ where T’ is a subtype of T,    
written T’ < T
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Type Checking: How Does It Work

For most statically typed programming languages, type 
checking is a bottom up algorithm over the AST:

• Types of expression AST  leaves are known 
immediately:
– literals => obvious
– variables => from the ID table
– named constants => from the ID table

• Types of internal nodes are inferred from the type of the 
children and the type rule for that kind of expression
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Type Checking: How Does It Work
Example: the type of < operation

4

BinOp

Operator

Type rule of < : 
E1 < E2 is type correct and of type Boolean
if E1 and E2 are type correct and of type Integer

<3

Int.Expr Int.Expr
int Int x int->bool int

bool
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Type Checking: How Does It Work
Example: the type of + operation

4

BinOp

Operator

Type rule of + : 
E1 + E2 is type correct and of type Integer
if E1 and E2 are type correct and of type Integer

<3

Int.Expr Int.Expr
int int x int->int int

int
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Type Checking: How Does It Work
General: the type of a binary operation expression

Lit2

BinOp

Operator

Type rule: 
If op is an operation of type T1xT2->R then 
E1 op E2 is type correct and of type R if E1 and E2
are type correct and have types compatible with T1 and 
T2 respectively

<Lit1

Expr Expr
T1 T1 x T2 -> R T2

R
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Type Checking: How Does It Work
Example:  Type of a variable (applied occurrence)

VarDecl

x

Ident type

SimpleVName

x

Ident
type

During Identification/SymbolTableFilling:
EnterSymbol(x,type)

During typeChecking:
RetreiveSymbol(x) -> type
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Attributes as pointers to Declaration AST’s
Program

LetCommand

Ident

VarDecl

x int

Ident

SequentialDecl

VarDecl

a bool

Ident

LetCommand

VarDecl

y int

IdentIdent
Id table

Level Ident Attr
1 x •
1 a •
2 y •

Ident
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Type Checking: How Does It Work
Example:  Type of a variable (applied occurrence)

VarDecl

x

Ident type

SimpleVName

x

Ident
type
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Type checking
Commands which contain expressions:

IfCommand

Expression Command Command
check that this
has type Boolean

typecheck typecheck

deduce that this command is correctly typed

WhileCommand  is similar.

Type rule of IfCommand: 
if E do C1 else C2 is type correct
if E of type Boolean and C1 and C2 are type correct
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Type checking
Function applications:

FunctionApp

Name Expression
after identification,
we know the type of
this function: e.g.
f : Integer → Boolean

deduce that this has type Boolean, 
and record the type in the AST

check that this
has type Integer
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Type checking
Function definitions:

func f(x : ParamType) : ResultType ~ Expression

Typecheck the function body and
calculate its type. 
Check that the type is ResultType. 
Then deduce
f : ParamType → ResultType
e.g.
f : Integer → Boolean
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Type checking
Operators in expressions (again):

For each operator we know that the operands must have certain
types, and that the result has a certain type. This information can
be represented by giving the operators function types:

+ : Integer × Integer → Integer

< : Integer × Integer → Boolean

<

check that this
has type Integer

check that this
has type Integer

deduce that this has type Boolean, 
and record the type in the AST
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Contextual Analysis
Identification and type checking are combined into a depth-first traversal of the AST.

Ident Ident Ident Ident Ident CharLit Ident Ident Op IntLit

n Integer c Char c ‘&’ n n + 1

SimpleT SimpleT SimpleV SimpleV SimpleV

VarDec VarDec VnameExpr IntExpr

BinaryExpression

AssignCommand

CharExpr

AssignCommand

SequentialCommandSequentialDeclaration

LetCommand

Program



An example using GOF visitor

• Implementation of Mini Triangle 
Contextual Analyzer
– Programming Language Processors in Java 

Compilers and Interpreters

• Full working example in Java
– http://www.dcs.gla.ac.uk/~daw/books/PLPJ/Tr

iangle-tools-2.1.zip
– Full working version in C# in General Course 

Materials on Moodle 19

http://www.dcs.gla.ac.uk/%7Edaw/books/PLPJ/Triangle-tools-2.1.zip
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Example: Implementation of Mini Triangle 
Contextual Analyzer

Mini Triangle Abstract Syntax

• Expression: Compute its type, make annotation, return type.

• Commands: Check. Returns void.

• Declaration: Check and enter into id-table, returns void.

• Identifier: (applied occurrence) make annotation, return 
corresponding declaration. 

Program ::= Command Program
Command 
::= V-name := Expression           AssignCmd
| Identifier ( Expression ) CallCmd
| if Expression then Command 

else Command     IfCmd
| while Expression do Command    WhileCmd
| let Declaration in Command     LetCmd
| Command ; Command              SequentialCmd

V-name ::= Identifier SimpleVName
…
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RECAP: Mini Triangle Abstract Syntax (ctd)

Declaration 
::= const Identifier ~ Expression ConstDecl
| var Identifier : TypeDenoter  VarDecl
| Declaration ; Declaration     SequentialDecl

TypeDenoter ::= Identifier SimpleTypeDenoter

Expression 
::= Integer-Literal            IntegerExpression
| V-name                     VnameExpression
| Operator Expression        UnaryExpression
| Expression Op Expression   BinaryExpression
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RECAP: AST representation (ctd)

Declaration
::= const Identifier ~ Expression ConstDecl
| var Identifier : TypeDenoter VarDecl
| Declaration ; Declaration SequentialDecl

AST

Declaration Expression

ConstDecl VarDecl SequentialDecl
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RECAP: AST representation (ctd)

Declaration
::= const Identifier ~ Expression ConstDecl
| var Identifier : TypeDenoter VarDecl
| Declaration ; Declaration SequentialDecl

public class ConstDecl extends Declaration { 
public Identifier I;  // constant name
public Expression E;  // constant value
...

}
public class VarDecl extends Declaration {
...

...
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Representing the Decorated AST (in Java)

public abstract class Expression extends AST {
// Every type-correct expression has a static type
public Type type;
...

}

1) We add some instance variables to some of the AST node classes.

public class Identifier extends Token {
// For applied occurrences only: where was this id declared?
public Declaration decl;
...

}

...
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Attributes as pointers to Declaration AST’s
Program

LetCommand

Ident

VarDecl

x int

Ident

SequentialDecl

VarDecl

a bool

Ident

LetCommand

VarDecl

y int

IdentIdent
Id table

Level Ident Attr
1 x •
1 a •
2 y •

Ident
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Representing the Decorated AST (in Java)

public abstract class VName extends AST {
// The type of this variable or constant name
public Type type;
// Is it a variable? (otherwise it is a constant)
public boolean variable;

}

...
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Traversal over the AST: Visitor Design Pattern

public interface Visitor {
// Programs
public Object visitProgram(Program p,Object arg);

// Commands
public Object visitAssignCommand

(AssignCommand c,Object arg);
public Object visitCallCommand

(CallCommand c,Object arg);
...
// Expressions
public Object visitVnameExpression

(VnameExpression e,Object arg);
public Object visitUnaryExpression

(UnaryExpression e,Object arg);
...  

For passing 
extra

arguments/info
to a traversal

Traversal may compute a value
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Traversal over the AST: Visitor Design Pattern
public abstract class AST {
...
public abstract Object visit(Visitor v,Object arg);

}  

public class AssignCommand extends AST {
...
public Object visit(Visitor v,Object arg) {

return v.visitAssignCommand(this,arg);
}

}  
public class IfCommand extends AST {
...
public Object visit(Visitor v,Object arg) {

return v.visitIfCommand(this,arg);
}

}  

In every concrete AST class add:
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Example: Implementation of Mini Triangle 
Contextual Analyzer

public class Type {
private byte kind; // INT, BOOL or ERROR
public static final byte 
BOOL=0, INT=1, ERROR=-1;

private Type(byte kind) { ... }

public boolean equals(Object other) { ... }

public static Type boolT = new Type(BOOL);
public static Type intT  = new Type(INT);
public static Type errorT  = new Type(ERROR);

}

Mini Triangle Types
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Example: Implementation of Mini Triangle 
Contextual Analyzer

public class Checker implements Visitor {

private IdentificationTable idTable;

public void check(Program prog) {
idTable = new IdentificationTable();
// initialize with standard environment
idTable.enter(“false”,...);
...
idTable.enter(“putint”,...);
prog.visit(this,null); 

}

...

Contextual Analyzer as an AST visitor

Checker is a traversal of AST

Start AST traversal with this checker
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What the Checker Visitor Does
visitProgram Check whether program is well-formed and 

return null.
visit…Command Check whether the command is well-formed and 

return null.
visit…Expression Check expression, decorate it with its type and 

return the type.
visitSimpleVName Check whether name is declared. Decorate it 

with its type and a flag whether it is a variable. 
Return its type.

visit…Declaration Check that declaration is well-formed. Enter 
declared identifier into ID table. Return null. 

visitSimpleTypeDen Check that type denoter is well-formed. Decorate 
with its type. Return the type.

visitIdentifier Check whether identifier is declared. Decorate 
with link to its declaration. Return declaration.  
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Example: Implementation of Mini Triangle 
Contextual Analyzer

public class Checker implements Visitor {
...

//Checking commands

public Object visitAssignCommand (AssignCommand com,Object arg)
{

Type vType = (Type) com.V.visit(this,null);
Type eType = (Type) com.E.visit(this,null);
if (! com.V.variable)

report error: v is not a variable
if (! eType.equals(vType) )

report error incompatible types in assignCommand
return null;

}

...
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Example: Implementation of Mini Triangle 
Contextual Analyzer

...

public Object visitIfCommand (IfCommand com,Object arg) 
{

Type eType = (Type)com.E.visit(this,null);
if (! eType.equals(Type.boolT) )

report error: expression in if not boolean
com.C1.visit(this,null);
com.C2.visit(this,null);
return null;

}

...



34

Example: Implementation of Mini Triangle 
Contextual Analyzer

...
public Object visitSequentialCommand

(SequentialCommand com,Object arg)
{

com.C1.visit(this,null);
com.C2.visit(this,null);

}

public Object visitLetCommand (LetCommand com,Object arg)
{

idTable.openScope();
com.D.visit(this,null); // enters declarations into idTable
com.C.visit(this,null);
idTable.closeScope();
return null;

}

...
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Example: Implementation of Mini Triangle 
Contextual Analyzer

// Expression Checking
public Object visitIntegerExpression

(IntegerExpression expr,Object arg)
{

expr.type = Type.intT;  // decoration
return expr.type;

}

public Object visitVnameExpression
(VnameExpression expr,Object arg)

{
Type vType = (Type) expr.V.visit(this,null);
expr.type = vType; // decoration
return expr.type;

}
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Example: Implementation of Mini Triangle 
Contextual Analyzer

public Object visitBinaryExpression
(BinaryExpression expr,Object arg) { 

Type e1Type = expr.E1.visit(this,null);
Type e2Type = expr.E2.visit(this,null);
OperatorDeclaration opdecl = 

(OperatorDeclaration) expr.O.visit(this,null);
if (opdecl==null) {

// error: operator not defined
expr.type = Type.error;

} else if (opdecl instanceof BinaryOperatorDecl) {
// check binary operator

} else {
// error: operator not binary
expr.type = Type.errorT; 

}
return expr.type;

}   
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Example: Implementation of Mini Triangle 
Contextual Analyzer

public Object visitBinaryExpression
(BinaryExpression expr,Object arg) { 

...
} else if (opdecl instanceof BinaryOperatorDecl) {

BinaryOperatorDecl bopdecl = 
(BinaryOperatorDecl) opdecl;

if (! e1Type.equals(bopdecl.operand1Type) )
// error: first argument wrong type

if (! e2Type.equals(bopdecl.operand2Type) )
// error: second argument wrong type

expr.type = bopdecl.resultType;   
} else {
// error: operator not binary
...

}
return expr.type;

}   
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Example: Implementation of Mini Triangle 
Contextual Analyzer

// Declaration checking
public Object visitVarDeclaration

(VarDeclaration decl,Object arg) {
decl.T.visit(this,null);
idTable.enter(decl.I.spelling,decl);
return null;

}

public Object visitConstDeclaration
(ConstDeclaration decl,Object arg) {

decl.E.visit(this,null);
idTable.enter(decl.I.spelling,decl);
return null;

}

...
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Implementing type checking from type rules

(conditional)

Γ |- Ε: bool, Γ |- C1: T, Γ |− C2: T
Γ |- if E then C1 else C2: T

public Object visitIfExpression (IfExpression com,Object arg) 
{

Type eType = (Type)com.E.visit(this,null);
if (! eType.equals(Type.boolT) )

report error: expression in if not boolean
Type c1Type = (Type)com.C1.visit(this,null);
Type c2Type = (Type)com.C2.visit(this,null);
if (! c1Type.equals(c2Type) )

report error: type mismatch in expression branches
return c1Type;

}
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Implementing type checking from type rules

(conditional)
Γ |- Ε: TE, TE=bool, Γ |- C1: T1, Γ |− C2: T2 , T1=T2

Γ |- if E then C1 else C2: T1

public Object visitIfExpression (IfExpression com,Object arg) 
{

Type eType = (Type)com.E.visit(this,null);
if (! eType.equals(Type.boolT) )

report error: expression in if not boolean
Type c1Type = (Type)com.C1.visit(this,null);
Type c2Type = (Type)com.C2.visit(this,null);
if (! c1Type.equals(c2Type) )

report error: type mismatch in expression branches
return c1Type;

}



Pause
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Implementing Tree Traversal

• “Traditional” OO approach
• Visitor approach

– GOF
– Using static overloading
– Reflective
– (dynamic)
– (SableCC style)

• “Functional” approach
• Active patterns in Scala (or F#)
• (Aspect oriented approach)
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Consequences of using Visitor

• Addition of new operations is easy
– New operations can be created by simply adding a new visitor

• Gathers related operations together
– All operation related code is in the visitor
– Code for different operations are in different sub-classes of 

visitor 
– Unrelated operations are not mixed together in the object classes

• Adding a new concrete type in the object structure is hard
– Each Visitor has to be recompiled with an appropriate method 

for the new type



Flavours of the Visitor Pattern
• Traditional OO style

– actASTtraditionalOO

• GOF style
– acASTGOFVisitor

• Exploiting static overloading
– acASTVisitor

• Reflective Visitor
– acASTreflective

49

Full working versions in
General Course Materials
On Moodle



Type Checking Using Reflective 
Visitor

• Using the visitor pattern (in Chap. 7)
– SemanticsVisitor: a subclass of Visitor

• The top-level visitor for processing declarations 
and doing semantic checking on the AST nodes

– TopDeclVisitor
• A specialized visitor invoked by SemanticsVisitor 

for processing declarations
– TypeVisitor

• A specialized visitor used to handle an identifier 
that represents a type or a syntactic form that 
defines a type (such as an array)

50



An abstract java like OO language
Program -> ClassDeclaration *

ClassDeclaration -> class Modifiers Name extends Parent { Fields* Constructor* Method* }

Fields -> Type Name*

Constructor -> ..

Method -> Modifiers Type Name ( Parameter* ){ Statement* }

Statement -> Assignment
| ..
| IfTesting
| WhileLooping
| DoWhileLooping
| ForLooping
| Continuing | Breaking | Returning | Switching | Label Statement

IfTesting -> if Exp then Statement else Statement

51
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Variable and Type Declarations

• Simple variable declarations
– A type name and a list of identifiers

• Visitor actions: (Fig. 8.13)
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Handling Type Names
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Type Declarations

• A name and a description of the type to be 
associated with it
– Visit method: (Fig. 8.16)
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Other Semantic Analysis

• Reachability
– …; return; a = a+1; ..
– Adds a isReachable instance variable to AST
– Warning issued if set to false
– Also adds terminatesNormally

• Throws analysis
– In Java exceptions are part of the type system

• Checked/unchecked exceptions
– modifiers return-type method-name (param-list) throws-clause
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Semantic Checking Summary
• This phase of the compiler implements 

algorithms for checking the language scope and 
type rules
– Define your scope and type rules

• If compiler is implemented in an OO language 
and use an AST choose between:
– Traditional OO
– (Traditional) Visitor
– Reflective Visitor

70



What can you do in your project now?

• Start defining the type system for your
language
– Informal now
– Formalize later

• Start implementing the type checker for your
language

• Recommendation: 
– Start with simple types
– Add composit and complex types later

71
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Learning goals
• Understand primitive and composit types

– How implementations may affect types in languages
– Pointer and references
– Constructed datatypes:

• Arrays
• Records/structs
• Unions or variant records

– Structural and Name Equivalence
– Recursive Types
– E.g.: List = Unit + (Int × List)
– Implicit versus explicit type conversions

• Understand some of the principles behind more advanced
type systems
– Polymorphism
– Subtyping

2
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Types revisited
• Fisher et al. and Sebesta, to some extent, may leave you with the 

impression that types in languages are simple and type checking 
is a minor part of the compiler

• However, type system design and type checking and/or 
inferencing algorithms is one of the hottest topics in programming 
language research at present! 

• Types:
– Have to be an integral part of the language design

• Syntax 
• Contextual constraints (static type checking)
• Code generation (space allocation and dynamic type checking)

– Provides a precise criterion for safety and sanity of a design.
• Language level
• Program level

– Close connections with logics and semantics.
• The Curry–Howard correspondence 
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Typechecking
• Static typechecking

– All type errors are detected at compile-time
– Mini Triangle is statically typed
– Most modern languages have a large emphasis on static typechecking

• Dynamic typechecking
– Scripting languages such as JavaScript, PhP, Perl and Python do run-time 

typechecking 
• Mix of Static and Dynamic

– object-oriented programming requires some runtime typechecking: e.g. 
Java has a lot of compile-time typechecking but it is still necessary for 
some potential runtime type errors to be detected by the runtime system

• Static typechecking involves calculating or inferring the types of 
expressions (by using information about the types of their 
components) and checking that these types are what they should 
be (e.g. the condition in an if statement must have type Boolean).
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Static Typechecking

• Static (compile-time) or dynamic (run-time)
– static is often desirable: finds errors sooner, doesn’t degrade 

performance
• Verifies that the programmer’s intentions (expressed by

declarations) are observed by the program
• A program which typechecks is guaranteed to behave 

well at run-time
– at least: never apply an operation to the wrong type of value

more: eg. security properties
• A program which typechecks respects the high-level

abstractions
– eg: public/protected/private access in Java
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Why are Type declarations important?

• Organize data into high-level structures
essential for high-level programming

• Document the program
basic information about the meaning of 
variables and functions, procedures or methods

• Inform the compiler
example: how much storage each value needs

• Specify simple aspects of the behaviour of functions
“types as specifications” is an important idea
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Why type systems are important
• Economy of execution

– E.g. no null pointer checking is needed in SML
• Economy of small-scale development

– A well-engineered type system can capture a large number of trivial programming 
errors thus eliminating a lot of debugging

• Economy of compiling
– Type information can be organised into interfaces for program modules which 

therefore can be compiled separately
• Economy of large-scale development

– Interfaces and modules have methodological advantages allowing separate teams to 
work on different parts of a large application without fear of code interference

• Economy of development and maintenance in security areas
– If there is any way to cast an integer into a pointer type (or object type) the whole 

runtime system is compromised – most vira and worms use this method of attack
• Economy of language features

– Typed constructs are naturally composed in an orthogonal way, thus type systems 
promote orthogonal programming language design and eliminate artificial 
restrictions 
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Why study type systems and programming languages?

The type system of a language has a strong effect on the “feel”
of programming.

Examples:
• In original Pascal, the result type of a function cannot be an
array type. In Java, an array is just an object and arrays can
be used anywhere.

• In SML, programming with lists is very easy; in Java it is
much less natural.

To understand a language fully, we need to understand its type
system. The underlying typing concepts appearing in
different languages in different ways, help us to compare
and understand language features.
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Java Example

Type definitions and declarations are essential aspects of
high-level programming languages.

class Example {
int a;
void set(int x) {a=x;}
int  get() {return a;}

}

Example e = new Example();

Where are the type definitions and declarations in the above code?
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SML example

Type definitions and declarations are essential aspects of
high-level programming languages.

Where are the type definitions and declarations in the above code?

datatype ’a tree =
INTERNAL of {left:’a tree,right:’a tree}

| LEAF of {contents:’a}

fun sum(tree: int tree) =
case tree of
INTERNAL{left,right} => sum(left) + sum(right)

| LEAF{contents} => contents



• Types are either primitive or constructed. 
• Primitive types are atomic with no internal structure as 

far as the program is concerned
– Integers, float, char, …

• Arrays, unions, structures, functions, … can be treated 
as constructor types

• Pointers (or references) and String are treated as basic 
types in some languages and as constructed types in 
other languages

Types
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Specification of Primitive Data Types
• Basic attributes of a primitive type usually used by the compiler 

and then discarded
• Some partial type information may occur in data object
• Values usually match with hardware types: 

– 8 bits, 16 bits, 32 bits, 64 bits
• Operations: primitive operations with hardware support, and user-

defined/library operations built from primitive ones
• But there are design choices to be made!
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Integers – Specification
• The set of values of type Integer is a finite set 

– {-maxint … maxint } 
– typically -2^31 through 2^31 – 1
– –2^30 through 2^30 - 1
– not the mathematical set of integers (as operations may overflow).

• Standard collection of operators:
– +, -, *,  /,  mod,  ~ (negation)

• Standard relational operators:
– =, <, >, <=, >=, =/=

• The language designer has to decide 
– which representation to use
– The collection of operators and relations
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Integers - Implementation

• Implementation:
– Binary representation in 2’s complement arithmetic
– Three different standard representations:

• First kind:
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Floating Points
• IEEE standard 754 specifies both a 32- and 64-bit standard
• At least one supported by most hardware
• Some hardware also has proprietary representations
• Numbers consist of three fields:

– S (sign), E (exponent), M (mantissa)

• Every non-zero number may be uniquely written as

(-1)S * 2 E * M

where 1 ≤ M < 2 and S is either 0 or 1

S     E              M
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Language design issue

• Should my language support floating points?
• Should it support IEEE standard 754 

– 32 bit, 64 bits or both
• Should my language support native floating points?
• Should floating points be the only number 

representation in my language?
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Other Primitive Data

• Short integers (C) - 16 bit, 8 bit
• Long integers (C) - 64 bit
• Boolean or logical - 1 bit with value true or false 

(often stored as bytes)
• Byte - 8 bits
• Java has

– byte, short, int, long, float, double, char, boolean
• C# also has

– sbyte, ushort, uint, ulong
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Characters

• Character - Single 8-bit byte - 256 characters 
• ASCII is a 7 bit 128 character code
• Unicode is a 16-bit character code (Java)
• In C, a char variable is simply 8-bit integer numeric data
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Enumerations

• Motivation: Type for case analysis over a small number of 
symbolic values

• Example: (Ada)
Type DAYS is {Mon, Tues, Wed, Thu, Fri, Sat, Sun}

• Implementation: Mon  0; … Sun  6
• Treated as ordered type (Mon < Wed)
• In C, always implicitly coerced to integers
• Java didn’t have enum until Java 1.5
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Java Type-safe enum
Remember

private void parseSingleCommand() {
switch (currentToken.kind) {

case Token.IDENTIFIER : ...
case Token.IF : ...
... more cases ...
default: report a syntax error

}
}

public class Token {
byte kind; String spelling;
final static byte 

IDENTIFIER = 0; INTLITERAL = 1; OPERATOR   = 2;
BEGIN      = 3; CONST      = 4; ...
...

...
}
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Java Type-safe enum

Can now be written as
public class Token {

String spelling;
enum kind {IDENTIFIER, INTLITERAL, OPERATOR,

BEGIN, CONST, ... }
...

...
}

private void parseSingleCommand() {
switch (currentToken.kind) {

case IDENTIFIER : ...
case IF : ...
... more cases ...
default: report a syntax error

}
}
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Pointers

• A pointer type is a type in which the range of values 
consists of memory addresses and a special value, nil (or 
null)

• Each pointer can point to an object of another data 
structure
– Its l-value is its address; its r-value is the address of another 

object
• Accessing r-value of r-value of pointer called 

dereferencing
• Use of pointers to create arbitrary data structures
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Pointer Aliasing

• A:= B
– Numeric assignment

A: A:
B: B:

– Pointer assignment
A: A:
B: B:

7.2 0.4
0.4 0.4

7.2

0.4 0.4
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Problems with Pointers

• Dangling Pointer
A: Delete  A
B:

• Garbage (lost heap-dynamic variables)

A: A:
B: B:

7.2

0.4 0.4

7.2

0.4
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SML references
• An alternative to allowing pointers directly
• References in SML can be typed
• … but they introduce some abnormalities

• SML reference cells
– Different types for location and contents

x : int non-assignable integer value
y : int ref      location whose contents must be integer
!y                 the contents of location y 
ref x             expression creating new cell initialized to x

– SML assignment
operator := applied to memory cell and new contents

– Examples
y  :=  x+3    place value of x+3 in cell y;  requires x:int
y  :=  !y + 3 add 3 to contents of y and store in location y

•
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References in Java and C#

• Similar to SML both Java and C# use references to heap 
allocated objects

class Point {
int x,y;
public Point(int x, int y) {

this.x=x; this.y=y;
}

public void move(int dx, int dy) {
x=x+dx; y=y+dy;

} 
}
…
Point p = new Point(2,3);
p.move(5,6);
Point q = new Point(0,0);
p = q;
p.move(3,7);
q = null;
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Nullable Types in C# 

• T? same as System.Nullable<T>

• null literal conversions

• Nullable conversions

int? x = 123;
double? y = 1.25;

int? x = null;
double? y = null;

int i = 123;
int? x = i; // int --> int?
double? y = x; // int? --> double?
int? z = (int?)y; // double? --> int?
int j = (int)z; // int? --> int
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Strings
• Can be implemented as 

– a primitive type as in SML 
– an object as in Java 
– an array of characters (as in C and C++)

• If primitive, operations are built in
• If object or array of characters, string operations 

provided through a library

• String implementations:
– Fixed declared length
– Variable length with declared maximum
– Unbounded length

• Linked list of fixed length strings
• null terminated contiguous array
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Arrays
An array is a collection of values, all of the same type, indexed by
a range of integers (or sometimes a range within an enumerated type).

In Ada:   a : array (1..50) of Float;      (static arrays)
In Java:   float[] a;                               (dynamic arrays)

Most languages check at runtime that array indices are within the
bounds of the array:  a(51)  is an error. (In C you get the contents of the
memory location just after the end of the array!) 

If the bounds of an array are viewed as part of its type, then array
bounds checking can be viewed as typechecking, but in general it is 
impossible to do it statically: consider  a(f(1))  for an arbitrary function f.
Static typechecking is a compromise between expressiveness and
computational feasibility. More about this later
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Array Layout and Component Access
• Component access through subscripting, both for lookup 

(r-value) and for update (l-value)

• Component access should take constant time (ie. 
looking up the 5th element takes same time as looking up 
100th element)

• L-value of A[i] = VO + (E * i)
= α + (E * (i – LB))

• Computed at compile time
• VO = α - (E * LB)

• More complicated for multiple dimensions



Pause

31



32

Composite Data Types
• Composite data types are sets of data objects built from 

data objects of other types

• Data type constructors are arrays, structures, unions, 
lists, …

• It is useful to consider the structure of types and type 
constructors independently of the form which they take 
in particular languages.
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Products and Records
If T and U are types, then T × U (written (T * U) in SML) is the type
whose values are pairs (t,u) where t has type T and u has type U.

Mathematically this corresponds to the cartesian product of sets. More
generally we have tuple types with any number of components. The
components can be extracted by means of projection functions.

Product types more often appear as record types, which attach a label
or field name to each component. Example in Ada and C:

type T is
record

x : Integer;
y : Float

end record

struct T {
int x;
float y;

}
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Products and Records

type T is
record

x : Integer;
y : Float

end record

If v is a value of type T then v contains
an Integer and a Float. Writing v.x and v.y 
can be more readable than fst(v) and snd(v). 

Record types are mathematically equivalent to
products.

An object can be thought of as a record in which some fields are
functions, and a class definition as a record type definition in which
some fields have function types. Object-oriented languages also
provide inheritance, leading to subtyping relationships between
object types.
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Variant Records
In Pascal, the value of one field of a record can determine the presence
or absence of other fields. Example: type T = record

x : integer;
case b : boolean of

false : (y : integer);
true : (z : boolean)

end

It is not possible for static
type checking to eliminate all type
errors from programs which use
variant records in Pascal:
the compiler cannot check consistency between the tag field and the
data which is stored in the record. The following code passes the
type checker in Pascal: var r : T, a : integer;

begin
r.x := 1; r.b := true; r.z := false;
a := r.y * 5

end
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Variant Records in Ada
Ada handles variant records safely. Instead of a tag field, the type
definition has a parameter, which is set when a particular record is
created and then cannot be changed.

type T(b : Boolean) is record
x : Integer;
case b is

when False => y : Integer;
when True  => z : Boolean

end case
end record;

declare r : T(True), a : Integer;
begin

r.x := 1; r.z := False;
a := r.y * 5;

end;

r does not have field y, and never will

this type error can be detected statically
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Disjoint Unions
The mathematical concept underlying variant record types is the
disjoint union. A value of type T+U is either a value of type T or a
value of type U, tagged to indicate which type it belongs to:

T+U = { left(x) | x ∈ T } ∪ { right(x) | x ∈ U } 
SML and other functional languages support disjoint unions by
means of algebraic datatypes, e.g.

datatype X = Alpha String | Numeric Int
The constructors Alpha and Numeric can be used as functions to build
values of type X, and pattern-matching can be used on a value of type
X to extract a String or an Int as appropriate.
An enumerated type is a disjoint union of copies of the unit type (which
has just one value). Algebraic datatypes unify enumerations and disjoint
unions (and recursive types) into a convenient programming feature.
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Variant Records and Disjoint Unions

The Ada type: type T(b : Boolean) is record
x : Integer;
case b is

when False => y : Integer;
when True  => z : Boolean

end case
end record;

can be interpreted as

(Integer × Integer) + (Integer × Boolean)

where the Boolean parameter b plays the role of the left or right tag.

Note C also has union types 
but they are unsafe as no check is performed on field selection
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Functions
In a language which allows functions to be treated as values, we need
to be able to describe the type of a function, independently of its
definition.
In Ada, defining function f(x : Float) return Integer is … 

produces a function f whose type is
function (x : Float) return Integer

the name of the parameter is insignificant (it is a bound name) so this
is the same type as function (y : Float) return Integer

In SML this type is written Float → Int

In Scala this type is written Float => Int
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Functions and Procedures

Float × Int → Int

A function with several parameters can be viewed as a function with
one parameter which has a product type:

function (x : Float, y : Integer) return Integer

In Ada, procedure types are different from function types:
procedure (x : Float, y : Integer)

whereas in Java a procedure is simply a function whose result type
is void. In SML, a function with no interesting result could be
given a type such as    Int → ( )     where ( ) is the empty product type
(also known as the unit type)  although in a purely functional language
there is no point in defining such a function.
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Structural and Name Equivalence
At various points during type checking, it is necessary to check that two
types are the same. What does this mean?

structural equivalence: two types are the same if they have the same
structure: e.g. arrays of the same size and type, records with the same
fields.

name equivalence: two types are the same if they have the same name.

Example: if we define type A = array 1..10 of Integer;
type B = array 1..10 of Integer;
function f(x : A) return Integer is …
var b : B; 

then  f(b)  is correct in a language which uses structural equivalence,
but incorrect in a language which uses name equivalence.
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Structural and Name Equivalence
Different languages take different approaches, and some use both kinds.

Ada uses name equivalence. 
Triangle uses structural equivalence.
Haskell uses structural equivalence for types defined by type (these are viewed as 
new names for existing types) and name equivalence for types defined by data
(these are algebraic datatypes; they are genuinely new types).

Structural equivalence is sometimes convenient for programming, but
does not protect the programmer against incorrect use of values whose
types accidentally have the same structure but are logically distinct.

Name equivalence is easier to implement in general, especially in a
language with recursive types.
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Recursive Types
Example: a list is either empty, or consists of a value (the head)

and a list (the tail)

SML: datatype List = Nil
| Cons (Int * List)

Cons 2 (Cons 3 (Cons 4 Nil)) represents [2,3,4]

Abstractly: List = Unit + (Int × List)

In SML, the implementation uses pointers, but the programmer does
not have to think in terms of pointers.
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Recursive Types

Java: class List {
int head;
List tail;

}

The Java definition does not mention pointers, 
but we use the explicit null pointer null to represent the empty list.
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Equivalence of Recursive Types

In the presence of recursive types, defining structural equivalence is
more difficult.

We expect List = Unit + (Int × List)

and NewList = Unit + (Int × NewList)

to be equivalent, but complications arise from the (reasonable)
requirement that List = Unit + (Int × List)

and NewList = Unit + (Int × (Unit + (Int × NewList)))

should be equivalent.
It is usual for languages to avoid this issue by using name equivalence
for recursive types, but recent research on co-inductive types show it is 
Possible and (sometimes) useful to have structural equivalence on recursive types
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Other Practical Type System Issues

• Implicit versus explicit type conversions
– Explicit  user indicates (Ada, SML)
– Implicit  built-in (C int/char) -- coercions

• Overloading – meaning  based on context
– Built-in 
– Extracting meaning – parameters/context

• Polymorphism
• Subtyping
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Coercions Versus Conversions

• When A has type real and B has type int, many 
languages allow coercion implicit in

A := B
• In the other direction, often no coercion allowed; 

must use explicit conversion:
– B := round(A); Go to integer nearest B
– B := trunc(A); Delete fractional part of B
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Explicit vs. Implicit conversion
Autoboxing/Unboxing

• In Java 1.4 you had to write:
Integer x = Integer.valueOf(6);
Integer y = Integer.valueOf(2 * x.IntValue);

• In Java 1.5 you can write:
Integer x = 6; //6 is boxed
Integer y = 2*x + 3; //x is unboxed, 15 is boxed
– Autoboxing wrap ints into Integers
– Unboxing extract ints from Integers



Explicit vs. Implicit conversion
Autoboxing/Unboxing

• Extending a language can imply difficult design 
compromises. In Java 1.5 we can write:

• Integer x = 3; (an integer object)
• int y = 3;         (an integer)
• Integer z = 3;  (an integer)
• .. x==y ..         (true due to auto unboxing)
• .. y == z ..       (true due to auto unboxing)
• .. x == z ..       (false due to object comparisson) 

• I.e. the convenience of autoboxing/unboxing leads to the == 
operator no longer being transitive 

• Note: Not a problem in C# as autoboxing/unboxing is 
handled by the run-time system.

49
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Polymorphism
Polymorphism describes the situation in which a particular operator or
function can be applied to values of several different types. There is a
fundamental distinction between:
• ad hoc polymorphism, usually called overloading, in which a single

name refers to a number of unrelated operations. 
• Examples: +  and static overloading of methods

•bounded or Subtype polymorphism (inheritance polymorphism)
•parametric polymorphism (generics), in which the same computation 
can be applied to a range of different types which have structural 
similarities.

Most languages have some support for overloading.
Parametric polymorphism is familiar from functional programming,
but less common (or less well developed) in imperative languages. 
Generics (or Parametric Polymorphism) has recently had a lot of 
attention in OO languages.
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Parametric polymorphism (generics)

datatype ’a tree =
INTERNAL of {left:’a tree,right:’a tree}

| LEAF of {contents:’a}

fun tw(tree: ‘a tree, comb: ‘a*‘a->’a) =
case tree of
INTERNAL{left,right} => comb(tw(left),tw(right))

| LEAF{contents} => contents
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public class List
{

private object[] elements;
private int count;

public void Add(object element) {
if (count == elements.Length) Resize(count * 2);
elements[count++] = element;

}

public object this[int index] {
get { return elements[index]; }
set { elements[index] = value; }

}

public int Count {
get { return count; }

}
}

Parametric polymorphism (generics)

public class List<ItemType>
{

private ItemType[] elements;
private int count;

public void Add(ItemType element) {
if (count == elements.Length) Resize(count * 2);
elements[count++] = element;

}

public ItemType this[int index] {
get { return elements[index]; }
set { elements[index] = value; }

}

public int Count {
get { return count; }

}
}

List intList = new List();

intList.Add(1);
intList.Add(2);
intList.Add("Three");

int i = (int)intList[0];

List intList = new List();

intList.Add(1);           // Argument is boxed
intList.Add(2);           // Argument is boxed
intList.Add("Three");     // Should be an error

int i = (int)intList[0];  // Cast required

List<int> intList = new List<int>();

intList.Add(1);           // No boxing
intList.Add(2);           // No boxing
intList.Add("Three");     // Compile-time error

int i = intList[0];       // No cast required



Implementing generic types

• Type erasure, e.g:
– <T extends Addable> T add(T a, T b) { … }
– can be compiled, type-checked, and called the same 

way as:
– Addable add(Addable a, Addable b) { … }

• Template:
• Apply the template to the provided template 

arguments. E.g calling template
– <class T> T add(T a, T b) { … }
– as add<int>(1, 2) 
– actual function int __add__T_int(int a, int b)

53



The Hindley-Milner Type inference Algorithm

• First used in SML
• A Theory of Type 

Polymorphism in 
Programming
– Robin Milner (1977)

• Algoritmn basically 
builds and solves 
equations over type 
expressions

• Now in use in:
– Haskell, C#, F#, Visual 

Basic .Net 9.0

54
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Subtyping
The interpretation of a type as a set of values, and the fact that one set
may be a subset of another set, make it natural to think about when
a value of one type may be considered to be a value of another type.

Example: the set of integers is a subset of the set of real numbers.
Correspondingly, we might like to consider the type Integer to be a
subtype of the type Float. This is often written  Integer <: Float.

The subtype relation enjoys the following properties:
X <: X (indempotent)
X<:Y and Y<:Z then X<:Z  (transitivity)

Different languages provide subtyping in different ways, including
(in some cases) not at all. In object-oriented languages, subtyping
arises from inheritance between classes.
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Subtyping and Polymorphism

abstract class Shape {
abstract float area( ); }

the idea is to define several classes of Shape,
all of which define the area function

class Square extends Shape {
float side;
float area( ) {return (side * side); } }

class Circle extends Shape {
float radius;
float area( ) {return ( PI * radius * radius); } }

Square <: Shape 

Circle <: Shape 

Objects can be thought of as (extendible) records of fields and methods.
That is why Square <: Shape and Circle <: Shape
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Subtyping and Polymorphism
float totalarea(Shape[] s)  {

float t = 0.0;
for (int i = 0; i < s.length; i++) {

t = t + s[i].area( ); };
return t;

}

totalarea  can be applied to any array whose elements are subtypes
of Shape. (This is why we want  Square[] <: Shape[]  etc.)

This is an example of a concept called bounded polymorphism.
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Subtyping for Product Types
The rule is:

if  A <: T  and  B <: U  then  A × B <: T × U

This rule, and corresponding rules for other structured types, can be
worked out by following the principle:

T <: U  means that whenever a value of type U is expected, it is
safe to use a value of type T instead.

What can we do with a value v of type T × U ?
• use fst(v) , which is a value of type T
• use snd(v) , which is a value of type U
If w is a value of type A × B then fst(w) has type A and can be used
instead of fst(v). Similarly snd(w) can be used instead of snd(v).
Therefore w can be used where v is expected.
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Subtyping for Function Types

if  T <: A  and  B <: U  then  A → B <: T → U

Suppose we have  f : A → B and g: T → U  and we want to use
f  in place of g. 

It must be possible for the result of f to be used in place of the result
of g ,  so we must have   B <: U. 

It must be possible for a value which could be a parameter of g to be
given as a parameter to f ,  so we must have   T <: A. 

Therefore:

Compare this with the rule for product types, and notice the
contravariance: the condition on subtyping between A and T is the
other way around.
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Correctness of Type Systems

How does a language designer (or a programmer) know that
correctly-typed programs really have the desired run-time
properties?

To answer this question we need to see how to specify type
systems, and how to prove that a type system is sound.

To do this we can use techniques similar to those from SOS

To prove soundness we also need to specify the semantics
(meaning) of programs - what happens when they are run.

So studying types will lead us to a deeper understanding of
the meaning of programs.
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Connection with Semantics
• Type system is part of the static semantics

– Static semantics: the well-formed programs
– Dynamic semantics: the execution model

• Safety theorem: types predict behaviour.
– Types describe the states of an abstract machine model.
– Execution behaviour must cohere with these descriptions.
– Theorem: If Γ |- E:τ and E→ E’ then Γ |- E’:τ
– See Theorem 13.9 p. 196 in Transitions and Trees

• Thus a type is a specification and a type checker is a 
theorem prover.

• Type checking is the most successful formal method!
– In principle there are limits.
– In practice there is no end in sight.

• Examples:
– Using types for low-level languages, say inside a compiler.
– Extending the expressiveness of type systems for high-level 

languages.
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Summary

• Static typing is important
• Type system has to be an integral part of the 

language design
• There are a lot of nitty-gritty decisions about 

primitive data types
• Composite types are best understood 

independently of language manifestation to ensure 
correctness of implementation

• Type systems can (and should) be formalised



1

Languages and Compilers
(SProg og Oversættere)

Lecture 13
Programming Language Design 

Expressions and Statements
Bent Thomsen

Department of Computer Science
Aalborg University

With acknowledgement to Simon Gay, John Mitchell and Elsa Gunter who’s slides this lecture is based on.



Learning goals

• Overview of common language constructs and design 
questions

• Understand 
– Explicit sequence control vs. Implicit sequence control

• Evaluation of expressions
• Statements

– Structured sequence control vs. unstructured sequence control
• Conditional Selection
• Loop constructs
• Jumps

2
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Syntactic Elements

• Declarations and Definitions
– Scopes and visibility 
– always before use or not, initialization or not, 

• Expressions
• Statements
• Subprograms

• Separate subprogram definitions (Module system)
• Separate data definitions
• Nested subprogram definitions
• Separate interface definitions
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Sequence control

• Implicit and explicit sequence control
– Expressions

• Precedence rules
• Associativity

– Statements
• Sequence
• Conditionals
• Loop constructs
• unstructured vs. structured sequence control
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Expression Evaluation

• Determined by 
– operator evaluation order 
– operand evaluation order

• Operators:
– Most operators are either infix or prefix (some 

languages have postfix)
– Order of evaluation determined by operator 

precedence and associativity
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Example

• What is the result of:
3 + 4 * 5 + 6

• Possible answers:
– 41 = ((3 + 4) * 5) + 6
– 47 = 3 + (4 * (5 + 6))
– 29 = (3 + (4 * 5)) + 6 = 3 + ((4 * 5) + 6)
– 77 = (3 + 4) * (5 + 6)

• In most languages, 3 + 4 * 5 + 6 = 29
• … but it depends on the precedence of operators
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An Ambiguous Expression Grammar

How to parse 3+4*5?

<expr> → <expr> <op> <expr>  |  const
<op> → +  |  *

<expr>

<expr> <expr>

<expr> <expr>

<op><op>

<op>

const const const+ *

<expr>

<expr> <expr>

<expr> <expr><op>

const const const+ *

<op>
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Expressing Precedence in grammar

• We can use the parse tree to indicate precedence levels 
of the operators

<expr> → <expr> + <term>  |  <term>
<term> → <term> * const  |  const

<expr>

<expr> <term>

<term> <term>

const const

const*

+

In LALR parsers we can specify
Precedence which translates into
Solving shift-reduce conflicts

Note in LL(1) parsers we have to use
Left recursion elimination

Expr → Term Expr1 .
Expr1 →+ Term Expr1
| .
Term → const Term1 .
Term1 →* const Term1
| .



9

Operator Precedence

• Operators of highest 
precedence evaluated 
first (bind more tightly).

• Precedence for operators 
usually given in a table, 
e.g.:

• In APL, all infix 
operators have same 
precedence

Level Operator Operation

Highest ** abs not Exp, abs, 
negation

* / mod rem

+ - Unary

+ - & Binary

= <= < > => Relations

Lowest And or xor Boolean

Precedence table for ADA
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C precedence levels
• Precedence Operators     Operator names
• 17         tokens, a[k], f() Literals, subscripting, function call
• .,->          Selection
• 16         ++, -- Postfix increment/decrement
• 15*        ++, -- Prefix inc/dec 
• ∼, -, sizeof  Unary operators, storage
• !,&,*         Logical negation, indirection
• 14         typename      Casts
• 13         *, /, %       Multiplicative operators
• 12         +,- Additive operators
• 11         <<, >>        Shift
• 10         <,>,<=, >=    Relational
• 9          ==, !=        Equality
• 8          &             Bitwise and 
• 7          ∧ Bitwise xor
• 6          |             Bitwise or
• 5          &&            Logical and
• 4          ||            Logical or
• 3          ?:            Conditional
• 2          =, +=, -=, *=, Assignment
• /=, %=, <<=, >>=, 
• &=, ∧=, |= 
• 1          ,             Sequential evaluation

Programming Language design and Implementation -4th Edition
Copyright©Prentice Hall,  2000
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Associativity

• When we have sorted precedence we need to 
sort associativity!

• What is the value of:
7 – 5 – 2

• Possible answers:
– In Pascal, C++, SML associate to the left
7 – 5 – 2 = (7 – 5) – 2 = 0

– In APL, associate to the right
7 – 5 – 2 = 7 – (5 – 2) = 4
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Again we can use syntax
• Operator associativity can also be indicated by a grammar

<expr> -> <expr> + <expr>  |  const  (ambiguous)

<expr> -> <expr> + const  |  const  (unambiguous)

<expr><expr>

<expr>

<expr> const

const

const

+

+

In LALR parsers we can specify
Associativity which translates into
Solving shift-reduce conflicts
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Operand Evaluation Order

• Example:
A := 5;
f(x) = {A := x+x; return x};
B := A + f(A);

• What is the value of B?
• 10 or 15?
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Example

• If assignment returns the assigned value, what is the 
result of

x = 5;
y = (x = 3) + x;

• Possible answers: 6 or 8
• Depends on language, and sometimes compiler

– C allows compiler to decide
– SML forces left-to-right evaluation

• Note assignment in SML returns a unit value
• .. but we could define a derived assignment operator in 

SML as fn (x,v)=>(x:=v;v)
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Solution to Operand Evaluation Order
• Disallow all side-effects

– “Purely” functional languages try to do this – Miranda, 
Haskell

– It works!
– Consequence

• No two-way parameters in functions
• No non-local references in functions

– Problem: 
• I/O, error conditions such as overflow are inherently side-

effecting
• Programmers want the flexibility of two-way parameters 

(what about C?) and non-local references
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Solution to Operand Evaluation Order

• Disallow all side-effects in expressions but allow 
in statements
– Problem: not applicable in languages with nesting of 

expressions and statements
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Solution to Operand Evaluation Order

• Fix order of evaluation
– SML does this – left to right
– Problem: makes some compiler optimizations hard or 

impossible
• Leave it to the programmer to be sure the order 

doesn’t matter
– Problem: Usually requires lots of brackets
– Problem: error prone

– Fortress: Parallel evaluation unless specified to be 
sequential
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Short-circuit Evaluation

• Boolean expressions:
• Example: x <> 0 andalso y/x > 1
• Problem: if andalso is ordinary operator and 

both arguments must be evaluated, then y/x will 
raise an error when x = 0

• Similar problem for conditional expressions
• Example (x == 0)?0:sum/x
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Boolean Expressions

• Most languages allow (some version of) 
if…then…else, andalso, orelse
not to evaluate all the arguments

•if true then A else B
– doesn’t evaluate B

•if false then A else B
– doesn’t evaluate A

•if b_exp then A else B
– Evaluates b_exp, then applies previous rules
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Boolen Expressions

• Bexp1 andalso Bexp2
– If Bexp1 evaluates to false, doesn’t evaluate Bexp2

• Bexp1 orelse Bexp2
– If Bexp1 evaluates to true, doesn’t evaluate Bexp2
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Short-circuit Evaluation – Other Expressions

• Example: 0 * A = 0
• Do we need to evaluate A?

• In general, in  f(x,y,…,z) are the arguments to f
evaluated before f is called and the values are passed?  
Or are the unevaluated expressions passed as arguments 
to f allowing f to decide which arguments to evaluate 
and in which order?
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Eager Evaluation

• If a language requires all arguments to be evaluated 
before a function is called, the language does eager 
evaluation and the arguments are passed using pass by 
value (also called call by value) or pass by reference
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Lazy Evaluation

• If a language allows a function to determine 
which arguments to evaluate and in which order, 
the language does lazy evaluation and the 
arguments are passed using pass by name (also 
called call by name)
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Lazy Evaluation

• Lazy evaluation is mainly done in purely 
functional languages

• Some languages support a mix
• The effect of lazy evaluation can be implemented 

in functional languages with eager evaluation
– Use thunking fn()=>exp and pass function instead 

of exp
• C# 2.0 has a Lazy evaluation construct: 

– yield return which can be used with Iterators 



Call by name
• In call-by-name evaluation, the arguments to a function are not 

evaluated before the function is called — rather, they are 
substituted directly into the function body (using capture-avoiding 
substitution) and then left to be evaluated whenever they appear 
in the function.

• If an argument is not used in the function body, the argument is 
never evaluated 

• If it is used several times, it is re-evaluated each time it appears 
– (in Pure lazy functional languages memorization can be used – why?)

• Algol 60 introduced call-by-name.
• Long consider too expensive and weird 

– but now in Scala
– Can be simulated in C# using Expression<T> parameters

• The classical use case for call-by-name is Jensens device

25
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Arithmetic Expressions

• Design issues for arithmetic expressions:
1. What are the operator precedence rules?
2. What are the operator associativity rules?
3. What is the order of operand evaluation?
4. Are there restrictions on operand evaluation side effects?
5. Does the language allow user-defined operator overloading?

• C++, Ada, C# allow user defined overloading
• Can lead to readability problems

6. What mode mixing is allowed in expressions?
• Are operators of different types, e.g. int and float allowed
• How is type conversion done



Pause
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Syntactic Elements

• Definitions
• Declarations
• Expressions
• Statements
• Subprograms

• Separate subprogram definitions (Module system)
• Separate data definitions
• Nested subprogram definitions
• Separate interface definitions
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Control of Statement Execution

• Sequential
• Conditional Selection
• Looping Construct
• Must have all three to provide full power of a 

Computing Machine
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Basic sequential operations

• Skip (in C it is just a blanck statement with ;)
• Assignments

– Most languages treat assignment as a basic operation
– Some languages have derived assignment operators such as:

• += and  *= in C

• I/O
– Some languages treat I/O as basic operations
– Others like, C, SML, Java treat I/O as functions/methods

• Sequencing
– C;C

• Blocks
– begin …end
– {…}
– let .. in .. end
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Assignment Statements

• Simple assignments:
– A = 10 or  A := 10 or  A is 10 or =(A,10)
– In SML assignment is just another (infix) function 

•:= : ‘‘a ref * ‘‘a -> unit

• More complicated assignments:
1. Multiple targets  (PL/I)
A, B = 10 

2. Conditional targets (C, C++, and Java)
(first==true)? total : subtotal = 0

3. Compound assignment operators (C, C++, and Java)
sum += next;
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Assignment Statements

• More complicated assignments (continued):
4. Unary assignment operators (C, C++, and Java)

a++; (increment a with one but return a)
++a; (increment a with one but return a+1)
What does ++a–- evaluate to?

C, C++, and Java treat = as an arithmetic binary operator
e.g. 
a = b * (c = d * 2 + 1) + 1

This is inherited from ALGOL 68
– = Can be bad if it is overloaded for the relational operator for 

equality e.g. (PL/I)  A = B = C;
– Note difference from C
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Assignment Statements

• Assignment as an Expression
– In C, C++, and Java,  the assignment statement produces a 

result
– So, they can be used as operands in expressions

e.g.
while ((ch = getchar())!=EOF){…}

– Disadvantage
• Another kind of expression side effect
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Conditional Selection

• Design Considerations:
– What controls the selection
– What can be selected: 

• FORTRAN IF:  IF (boolean_expr) statement
IF (.NOT. condition) GOTO 20

...

...
20 CONTINUE

• Modern languages allow any kind of 
program block

– What is the meaning of nested selectors
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Conditional Selection

• Single-way
– IF … THEN …

– Controlled by boolean expression
• Two-way

– IF … THEN … ELSE

– Controlled by boolean expression
– IF … THEN … usually treated as degenerate form 

of 
IF … THEN … ELSE

– IF…THEN together with IF..THEN…ELSE require 
disambiguating associativity
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Two-Way Selection Statements

• Nested Selectors
• e.g. (Java)  if ... 

if ... 
...

else ...
• Which if gets the else?  
• Java's static semantics rule: else goes with the nearest 
if
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Two-Way Selection Statements

• ALGOL 60's solution - disallow direct nesting

if ... then      if ... then
begin            begin
if ...           if ... then ...
then ...       end
else ...     else ...

end
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Two-Way Selection Statements
• FORTRAN 90 and Ada solution – closing special words

– e.g. (Ada)
if ... then         if ... then

if ... then         if ... then
...                 ...

else                end if
...             else

end if              ...
end if              end if

– Advantage: readability 

• ELSEIF
– Equivalent to nested if…then…else…
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Multi-Way Conditional Selection

• SWITCH

– Typically controlled by scalar type
– Each selection has own block of statements it 

executes
– What if no selection is given?

• Language gives default behavior
• Language forces total coverage, typically with 

programmer-defined default case
– One block of code for whole switch
– Selection specifies program point in block
– break used for early exit from block
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Switch on String in C#
Color ColorFromFruit(string s) {

switch(s.ToLower()) {
case "apple":

return Color.Red;
case "banana":

return Color.Yellow;
case "carrot":

return Color.Orange;
default:

throw new InvalidArgumentException();

}
}
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Switch on Type in F#



Pattern matching in C# 7.0

42
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Loops

• Main types:
• Counter-controlled iterators (For-loops)
• Logical-test iterators
• Iterations based on data structures
• Recursion
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For-loops

• Controlled by loop variable of scalar type with 
bounds and increment size

• Scope of loop variable?
– Extends beyond loop?
– Within loop?

• When are loop parameters calculated?
– Once at start
– At beginning of each pass
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Iterative Statements

ALGOL 60  Design choices:

1. Control expression can be int or real; its scope is whatever 
it is declared to be

2. Control variable has its last assigned value after loop 
termination

3. The loop variable cannot be changed in the loop, but the 
parameters can, and when they are, it affects loop control

4. Parameters are evaluated with every iteration, making it very 
complex and difficult to read 
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Iterative Statements

Pascal:
• Syntax: 

for variable := initial (to | downto) final do statement
• Design Choices:

1. Loop variable must be an ordinal type of usual scope
2. After normal termination, loop variable is undefined
3. The loop variable cannot be changed in the loop; the loop parameters can 

be changed, but they are evaluated just once, so it does not affect loop 
control

4. Just once
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Iterative Statements

Ada:
• Syntax:

for var in [reverse] discrete_range loop ...
end loop

• Design choices:
1. Type of the loop variable is that of the discrete range; its scope 

is the loop body (it is implicitly declared)
2. The loop variable does not exist outside the loop
3. The loop variable cannot be changed in the loop, but the 

discrete range can;  it does not affect loop control
4. The discrete range is evaluated just once
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Iterative Statements

C:
• Syntax:

for ([expr_1] ; [expr_2] ; [expr_3]) statement
– The expressions can be whole statements, or even statement sequences, 

with the statements separated by commas
– The value of a multiple-statement expression is the value of the last 

statement in the expression
e.g.,
for (i = 0, j = 10; j == i;  i++) …

– If the second expression is absent, it is an infinite loop
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Iterative Statements

• C Design Choices:
1. There is no explicit loop variable
2. Loop variable, if there is one, has whatever was assigned last
3. Everything can be changed in the loop
4. The first expression is evaluated once, but the other two are 

evaluated with each iteration
• This loop statement is the most flexible
• But also rather difficult to analyze ..
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Iterative Statements

C++:
• Differs from C in two ways:

1. The control expression can also be Boolean
2. The initial expression can include variable definitions (scope 

is from the definition to the end of the loop body)
Java:
• Differs from C++ in that the control expression must be 

Boolean
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Logic-Test Iterators

• While-loops
– Test performed before entry to loop

• repeat…until and do…while
– Test performed at end of loop
– Loop always executed at least once

• Design Issues:
1. Pretest or posttest?
2. Should this be a special case of the counting loop statement 

(or a separate statement)?
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Iterative Statements

C , C++, and Java – break:
• Unconditional; for any loop or switch; one level only 

(except Java’s can have a label)
• There is also a continue statement for loops; it skips 

the remainder of this iteration, but does not exit the loop
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Counter-Controlled Loops: Examples

• Python
for loop_variable in object:
- loop body

[else:
- else clause]

– The object is often a range, which is either a list of values 
in brackets ([2, 4, 6]), or a call to the range function 
(range(5), which returns 0, 1, 2, 3, 4

– The loop variable takes on the values specified in the 
given range, one for each iteration

– The else clause, which is optional, is executed if the loop 
terminates normally
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Iterative Statements

• Iteration Based on Data Structures
– Concept: use order and number of elements of some data 

structure to control iteration
– Control mechanism is a call to a function that returns the next 

element in some chosen order, if there is one; else exit loop
– C's for can be used to build a user-defined iterator
– e.g.   for (p=hdr; p; p=next(p)) 

{ ... }

– Perl has a built-in iterator for arrays and hashes
e.g., 
foreach $name (@names) 
{ print $name }
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C# Foreach Loops

foreach (T x in C) S

is implemented as

IEnumerable<T> c = C;
IEnumerator<T> e = c.GetEnumerator();
while (e.MoveNext())
{ T x = e.Current; S }



Recursion

• Recursion can simplify the solution of a problem, often 
resulting in shorter, more easily understood source code 
– i.e. Recursion is a technique that solves a problem by solving a 

smaller problem of the same type
– How do I write recursive functions?

• Determine the base case(s) 
– the one for which you know the answer

• Determine the general case(s) 
– the one where the problem is expressed as a smaller 

version of itself
• Iteration can be used in place of recursion and visa versa

– An iterative algorithm uses a looping construct
– A recursive algorithm uses a branching structure
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Recursion vs. iteration

• Recursive implementation

int Factorial(int n)
{
if (n==0)  
return 1;

else
return n * Factorial(n-1);

}

• Iterative implementation

int Factorial(int n) 
{
int fact = 1;

for(int count = 2; 
count <= n; 
count++)

fact = fact * count;

return fact;
}

57



Counter-Controlled Loops: Examples

• F#
– Because counters require variables, and functional 

languages do not have variables, counter-controlled 
loops must be simulated with recursive functions
let rec forLoop loopBody reps = 

if reps <= 0 then ()

else
loopBody()

forLoop loopBody, (reps – 1)

- This defines the recursive function forLoop with the 
parameters loopBody (a function that defines the 
loop’s body) and the number of repetitions

- () means do nothing and return nothing

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-58



Recursion vs. iteration

• Recursion can simplify the solution of a problem, often 
resulting in shorter, more easily understood source code 

• Recursive solutions are often less efficient, in terms of 
both time and space, than iterative solutions
– Well this is what the literature says …
– This is usually true for languages such as C, Java and C# as 

method calls can be expensive and deep recursions can take up 
a lot of stack space

– However, on modern hardware, functions calls call, especially 
tail recursive calls can be cheap. Thus modern functional 
languages like Haskell, SML, Scala and F# encourage 
recursion

59
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Gotos

• Requires notion of program point
• Transfers execution to given program point
• Basic construct in machine language
• Implements loops
• Makes programs hard to read and reason about
• Hard to know how a program got to a given point
• Generally thought to be a bad idea in a high level 

language
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Fortran Control Structure
10 IF (X .GT. 0.000001) GO TO 20
11 X = -X

IF (X .LT. 0.000001) GO TO 50
20 IF (X*Y .LT. 0.00001) GO TO 30

X = X-Y-Y
30  X = X+Y

...
50 CONTINUE

X = A
Y = B-A
GO TO 11
… 
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Historical Debate

• Dijkstra, Go To Statement Considered Harmful
– Letter to Editor, C ACM, March 1968
– Now on web: http://www.acm.org/classics/oct95/

• Knuth, Structured Prog. with go to Statements
– You can use goto, but do so in structured way …

• Continued discussion
– Welch, GOTO (Considered Harmful)n, n is Odd

• General questions
– Do syntactic rules force good programming style?
– Can they help?
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Spaghetti code

Programming Language design and Implementation -4th Edition
Copyright©Prentice Hall,  2000
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Structured programming

• Issue in 1970s: Does this limit what programs can be written?
• Resolved by Structure Theorem of Böhm-Jacobini.
• Here is a graph version of theorem originally developed by 

Harlan Mills:

Programming Language design and Implementation -4th Edition
Copyright©Prentice Hall,  2000
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Advance in Computer Science

• Standard constructs that structure jumps
if … then … else … end
while … do … end
for … { … }
case … 

• Modern style
– Group code in logical blocks 
– Avoid explicit jumps except for function return
– Cannot jump into middle of block or function body

• But there may be situations when “jumping” is the right 
thing to do!
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Exceptions: Structured Exit 

• Terminate part of computation 
– Jump out of construct
– Pass data as part of jump
– Return to most recent site set up to handle exception
– Unnecessary activation records may be deallocated

• May need to free heap space, other resources
• Two main language constructs

– Declaration to establish exception handler
– Statement or expression to raise or throw exception 

Often used for unusual or exceptional condition, but not necessarily.
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Summary of Control of Statement Execution

• Sequential
• Conditional Selection
• Looping Construct
• Must have all three to provide full power of a 

Computing Machine
• Sometimes jumps are needed!



What can you do in your projects now?

• Revisit your token grammer and CFG
• Test front end implementation techniques:

– Recursive decent by hand
– JavaCC, ANTLR, Jflex/CUP, SableCC
– Use a toy language or a subset of your own language

• Generate AST
• Make a pretty printing tree walker 

– Composit, Visitor (GOF, static overloading, reflexsive)
– Test that programs you input come out roughly the same!

• Make a scope and type checking tree walker

68
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Languages and Compilers
(SProg og Oversættere)

Lecture 14-1
Programming Language Design – Subprograms

Bent Thomsen
Department of Computer Science

Aalborg University



Learning Goals

• Gain insigt into abstractions in programming languages
– The principle of Abstraction

• Programming language design evaluation methods

2
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Syntactic Elements

• Declarations and Definitions
– Scopes and visibility 
– always before use or not, initialization or not, 

• Expressions
• Statements
• Subprograms

• Separate subprogram definitions (Module system)
• Separate data definitions
• Nested subprogram definitions
• Separate interface definitions
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Subprograms
1. A subprogram has a single entry point

2. The caller is suspended during execution of the 
called subprogram

3. Control always returns to the caller when the called 
subprogram’s execution terminates

Functions or Procedures?

• Procedures provide user-defined statements
• Abstractions over statements

• Functions provide user-defined operators
• Abstractions over expressions

• Methods used for both functions and procedures
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Subprograms

• Specification: name, signature, actions
– C/C++: typ0 f(typ1 para1, typ2 para2, ...) { ... }
– SML: fun f para1 para2 = ...
– Pascal: function f(para1 : typ1, para2 : typ2, ...) : retval;

var retval : typ0;
begin  ...  end

• Signature: number and types of input arguments, number and 
types of output results
– Sometimes this is called the subprogram protocol

• Actions: direct function relating input values to output values; 
side effects on global state and subprogram internal state

• May depend on implicit arguments in form of non-local 
variables



Copyright © 2009 Addison-Wesley. All rights reserved.
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Local Referencing Environments

• Local variables can be stack-dynamic 
- Advantages

• Support for recursion
• Storage for locals is shared among some subprograms

– Disadvantages
• Allocation/de-allocation, initialization time
• Indirect addressing
• Subprograms cannot be history sensitive

• Local variables can be static
– Advantages and disadvantages are the opposite of those for stack-

dynamic local variables
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Subprogram As Abstraction

• Subprograms encapsulate local variables and specifics 
of algorithm applied
– Once compiled, programmer cannot access these 

details in other programs
– In most languages subprogram definitions are not 

executables, but e.g. in Python a function definition is 
executed to bind the function name in the current 
local namespace to a function object 

• Application of subprogram does not require user to 
know details of input data layout (just its type)
– Form of information hiding



Copyright © 2009 Addison-Wesley. All rights reserved.
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Basic Definitions

• Function declarations in C and C++ are often called prototypes
• A subprogram declaration provides the protocol, but not 

necessarily the body, of the subprogram
• A formal parameter is a (dummy) variable listed in the 

subprogram header and used in the subprogram
• An actual parameter represents a value or address used in the 

subprogram call statement
• A subprogram definition provides the body, of the subprogram 

and may provide the protocol



Copyright © 2009 Addison-Wesley. All rights reserved.
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Actual/Formal Parameter Correspondence

• Positional
– The binding of actual parameters to formal parameters is by position: 

the first actual parameter is bound to the first formal parameter and so 
forth

– Safe and effective
– E.g. in C# PrintOrderDetails("Gift Shop", 31, "Red Mug");

• Keyword
– The name of the formal parameter to which an actual parameter is to 

be bound is specified with the actual parameter
– Advantage: Parameters can appear in any order, thereby avoiding 

parameter correspondence errors
– Disadvantage: User must know the formal parameter’s names
– E.g. in C# PrintOrderDetails(orderNum: 31, productName: "Red Mug", sellerName: "Gift Shop");



Copyright © 2009 Addison-Wesley. All rights 
reserved.
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Formal Parameter Default Values
• In certain languages (e.g., C++, Python, Ruby, Ada, PHP), formal parameters 

can have default values (if no actual parameter is passed)
– In C++, default parameters must appear last because parameters are positionally 

associated

• Variable numbers of parameters
– C# methods can accept a variable number of parameters as long as they are of the same 

type—the corresponding formal parameter is an array preceded by params
– In Ruby, the actual parameters are sent as elements of a hash literal and the corresponding 

formal parameter is preceded by an asterisk. 
– In Python, the actual is a list of values and the corresponding formal parameter is a name with 

an asterisk
– In Lua, a variable number of parameters is represented as a formal parameter with three 

periods; they are accessed with a for statement or with a multiple assignment from the three 
periods
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Subprogram Parameters

• Formal parameters: names (and types) of arguments to 
the subprogram used in defining the subprogram body

• Actual parameters: arguments supplied for formal 
parameters when subprogram is called

• Actual/Formal Parameter Correspondence:
– attributes of variables are used to exchange information

• Name – Call-by-name
• Memory Location – Call-by reference
• Value  

– Call-by-value (one way from actual to formal parameter)
– Call-by-value-result (two ways between actual and formal 

parameter)
– Call-by-result (one way from formal to actual parameter)



Copyright © 2009 Addison-Wesley. All rights reserved.
1-12

Pass-by-Value (In Mode)

• The value of the actual parameter is used to initialize the 
corresponding formal parameter
– Normally implemented by copying
– Can be implemented by transmitting an access path but not 

recommended (enforcing write protection is not easy)
– Disadvantages (if by physical move): additional storage is required 

(stored twice) and the actual move can be costly (for large parameters)
– Disadvantages (if by access path method): must write-protect in the 

called subprogram and accesses cost more (indirect addressing)
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Pass-by-Reference (Inout Mode)

• Pass an access path
• Also called pass-by-sharing
• Advantage: Passing process is efficient (no copying and 

no duplicated storage)
• Disadvantages

– Slower accesses (compared to pass-by-value) to formal 
parameters

– Potentials for unwanted side effects (collisions)
– Unwanted aliases (access broadened)



Copyright © 2009 Addison-Wesley. All rights reserved.
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Pass-by-Result (Out Mode)

• When a parameter is passed by result, no value is 
transmitted to the subprogram; the corresponding 
formal parameter acts as a local variable; its value is 
transmitted to caller’s actual parameter when control 
is returned to the caller, by physical move
– Require extra storage location and copy operation

• Potential problem: sub(p1, p1); whichever 
formal parameter is copied back will represent the 
current value of p1



Copyright © 2009 Addison-Wesley. All rights reserved.
1-15

Pass-by-Value-Result (inout Mode)

• A combination of pass-by-value and pass-by-
result

• Sometimes called pass-by-copy
• Formal parameters have local storage
• Disadvantages:

– Those of pass-by-result
– Those of pass-by-value 



Copyright © 2009 Addison-Wesley. All rights reserved.
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Pass-by-Name (Inout Mode)

• By textual substitution 
– (or thunking – i.e. passing a function)

• Formals are bound to an access method at the time of 
the call, but actual binding to a value or address takes 
place at the time of a reference or assignment

• Allows flexibility in late binding
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Design Considerations for Parameter Passing

1. Efficiency
2. One-way or two-way

- These two are in conflict with one another!
– Good programming  limited access to variables, 

which means one-way whenever possible

– Efficiency  pass by reference is fastest way to pass 
structures of significant size

– Also, functions should not allow reference parameters
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Parameters that are Subprograms

• It is sometimes convenient to pass subprogram 
names or even subprograms as parameters

• Issues:
1. Are parameter types checked?
2. What is the correct referencing environment for a 

subprogram that was sent as a parameter?

• Note this is first class functions or lambdas which is 
now becoming part of mainstream languages!!
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Parameters that are Subprogram Names: 
Parameter Type Checking

• C and C++: functions cannot be passed as parameters but pointers 
to functions can be passed and their types include the types of the 
parameters, so parameters can be type checked

• FORTRAN 95 type checks
• Ada does not allow subprogram parameters; an alternative is 

provided via Ada’s generic facility
• Java until Java 8 did not allow method names to be passed as 

parameters
• C# supports functions a parameters through delegates

– Delegates can now be anonymous or lambda expression 
– We talk about first class functions

• Functional languages supports functions as first class 
functions



Criteria in a good language design

• The criterias from Sebesta’s book are well 
established ”rules of thumb” 

• But until recently they had litlle or no research 
backing.

• Since 2009 a new directions in programming 
language design research has emerged
– could be called Evidence based Programming Language 

Design
– Use of social science methods
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Table 1.1   
Language 
evaluation 

criteria and the 
characteristics 

that affect them



What is orthognality?

• “The number of independent primitive concepts has 
been minimized in order that the language be easy to 
describe, to learn, and to implement. On the other hand, 
these concepts have been applied “orthogonally” in 
order to maximize the expressive power of the language 
while trying to avoid deleterious superfluities”
– Adriaan van Wijngaarden et al., Revised Report on the 

Algorithmic Language ALGOL 68, section 0.1.2, Orthogonal 
design
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What is orthogonality?

• “A precise definition is difficult to produce, but 
languages that are called orthogonal tend to have a small 
number of core concepts and a set of ways of uniformly 
combining these concepts. The semantics of the 
combinations are uniform; no special restrictions exist 
for specific instances of combinations.” – David 
Schmidt
– Ex: 

• A[4+(F(X)-1)] OK in Algol but not in Fortran IV
• Pascal, only values from the scalar types can be results 

from function procedures. In contrast, ML allows a 
function to return a value from any legal type whatsoever.
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What is lack of orthogonality?

• The C language is somewhat inconsistent in its 
treatment of concepts and thus not as orthogonal as it 
could be 

• Examples of exceptions follow:
– Structures (but not arrays) may be returned from a function.
– An array can be returned if it is inside a structure.
– A member of a structure can be any data type 

• (except void, or the structure of the same type).
– An array element can be any data type (except void).
– Everything is passed by value (except arrays).
– Void can be used as a type in a structure, but a variable of this 

type cannot be declared in a function.

24
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Tennent’s Language Design principles



Principle of correspondence

• Example in Pascal:
var i : integer; 
begin
i := -j; 
write(i) 

end

and
procedure p(i : integer); 
begin
write(i) 

end; 
begin p(-j) end 

• Are equivalent

26



Example of missing correspondence
In Pascal:

procedure inc(var i : integer);
begin

i := i + 1
end;

var x : integer;
begin

x := 1;
inc(x);
writeln(x);

end

No corresponding declaration

However C has correspondence

void inc(int *i) {
*i = *i + 1;

}

int x = 1;
inc(&x);
printf("%d", x);

int x = 1;
{

int *i = &x;
*i = *i + 1;

}
printf("%d", x);

27
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The Concept of Abstraction
• The concept of abstraction is fundamental in programming (and 

computer science)
• Tennents principle of abstraction 

– is based on identifying all of the semantically-meaningful syntactic 
categories of the language and then designing a coherent set of abstraction 
facilities for each of these.

• Nearly all programming languages support process (or command) 
abstraction with subprograms (procedures)

• Many programming languages support expression abstraction
with functions

• Nearly all programming languages designed since 1980 have 
supported data abstraction:
– Abstract data types
– Objects
– Modules



Cognitive Dimensions

• Developed by Thomas Green, Univ. of Leeds
• Used to analyze the usability of information artifacts
• Applied to discover useful things about usability 

problems that are not easily analyzed using conventional 
techniques 

• Framework (as opposed to model or theory)



Cognitive Dimensions (2)
• Focused on notations, such as

– Music, Dance 
– Programming languages

• And on information handling devices, such as
– Spreadsheets
– Database query systems
– IDEs

• Gives descriptions of aspects, attributes, or ways that a 
user thinks about a system, called dimensions

• The 14 dimensions (and more have been added)



Dimensions

• Abstraction
– types and availability of abstraction mechanisms

• Hidden dependencies
– important links between entities are not visible

• Premature commitment
– constraints on the order of doing things

• Secondary notation
– extra information in means other than formal syntax

• Viscosity
– resistance to change

• Visibility
– ability to view components easily



Abstractions

• Types and availability of abstraction mechanisms

• An abstraction is a class of entities or grouping of 
elements to be treated as one entity (thereby lowering 
viscosity).

• Abstraction barrier: 
– minimum number of new abstractions that must be mastered 

before using the system (e.g. Z)
• Abstraction hunger:

– require user to create abstractions



Abstraction features

• Abstraction-tolerant systems:
– permit but do not require user abstractions 

(e.g. word processor styles)
• Abstraction-hating systems:

– do not allow definition of new abstractions
(e.g. spreadsheets)

• Abstraction changes the notation.



Abstraction implications

• Abstractions are hard to create and use
• Abstractions must be maintained

– useful for modification and transcription
– increasingly used for personalisation

• Involve the introduction of an abstraction manager sub-
device
– including its own viscosity, hidden dependencies, 

juxtaposability etc.



Hidden Dependencies

• Important links between entities are not visible
• Examples:

– class hierarchies
– HTML links
– spreadsheet cells



Secondary Notation

• Extra information in means other than formal syntax
• Examples:

– Comments in programming languages
– Pop-up boxes for icons
– Well-designed icons



Viscosity

• Resistance to change
– Fixed mental model
– Hard-coded structure

• Examples:
– Technical literature, with cross-references and section 

headings (because introducing a new section requires many 
changes to cross-references)



Further Dimmensions

• Closeness of mapping
– closeness of representation to 

domain

• Consistency
– similar semantics expressed in 

similar forms

• Diffuseness
– verbosity of language

• Error-proneness
– notation invites mistakes

• Hard mental operations
– high demand on cognitive 

resources

• Progressive evaluation
– work-to-date checkable any 

time

• Provisionality
– degree of commitment to 

actions or marks

• Role-expressiveness
– component purpose is readily 

inferred

• And more …
– several new dimensions still 

under discussion



Supplementary Material

• Cognitive Dimensions of Notations website 
www.cl.cam.ac.uk/~afb21/CognitiveDimensions

• 10th Anniversary CD of Notations  Workshop 
www.cl.cam.ac.uk/~afb21/CognitiveDimensions/works
hop2005/index.html

http://www.cl.cam.ac.uk/%7Eafb21/CognitiveDimensions
http://www.cl.cam.ac.uk/%7Eafb21/CognitiveDimensions/workshop2005/index.html


PLATEAU - ACM SIGPLAN workshop on
Evaluation and usability of

programming languages and tools
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Programming Language design

• Designing a new programming language or extending an 
existing programming language usually follows an 
iterative approach:

1. Create ideas for the programming language or 
extensions

2. Describe/define the programming language or 
extensions

3. Implement the programming language or extensions
4. Evaluate the programming language or extensions
5. If not satisfied, goto 1

41



Discount Method for Evaluating 
Programming Languages

1. Create tasks specific to the language being tested - tasks 
that the participants of the experiment should solve. 
Estimate the time needed for each task (max 1 hour)

2. Create a short sample sheet of code examples in the 
language being tested, which the participants can use as a 
guideline for solving the tasks.

3. Prepare setup (e.g. use of NotePad++ and recorder) and do 
a sample test with 1 person. 
– Adjust tasks if needed

4. Perform the test on each participant, i.e. make them solve 
the tasks defined in step 1. (Use approx. 5 test persons)

5. Each participant should be interviewed briefly after the test, 
where the language and the tasks can be discussed.

6. Analyze the resulting data to produce a list of problems
– Cosmetic problems, Serious problems, Critical problems
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Discount Method for Evaluating 
Programming Languages

• Method inspired by the Discount Usability Evaluation 
(DUE) method and Instant Data Analysis (IDA) method

• Reference:
– Svetomir Kurtev, Tommy Aagaard Christensen, and Bent 

Thomsen. 
– Discount method for programming language evaluation. 
– In Proceedings of the 7th International Workshop on 

Evaluation and Usability of Programming Languages and 
Tools (PLATEAU 2016). ACM, New York, NY, USA, 1-8. 
DOI: https://doi.org/10.1145/3001878.3001879 
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What can you do in your project now?

• Design abstractions
– Functions and/or Procedures or ..

• Evaluate your language design
– Revisit Sebesta’s design criteria
– Tennent’s principles
– Cognitive dimmensions
– Discount Method for Evaluating Programming Languages
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Languages and Compilers
(SProg og Oversættere)

Lecture 14 – 2
Interpreters

Bent Thomsen
Department of Computer Science

Aalborg University

With acknowledgement to Norm Hutchinson whose slides this lecture is based on.



Learning goals

• To get an undertanding of interpretation
– Recursive interpretation
– Iterative interpretation

2
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The “Phases” of a Compiler

Syntax Analysis

Contextual Analysis

Code Generation

Source Program

Abstract Syntax Tree

Decorated Abstract Syntax Tree

Object Code

Error Reports

Error Reports

The rest of the lectures except one
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What’s next?

• interpretation

• code generation 
– code selection
– register allocation
– instruction ordering

Source program

annotated AST

front-end

Object code

Code generationinterpreter
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What’s next?

• intermediate code

• interpretation

• code generation 
– code selection
– register allocation
– instruction ordering

Source program

annotated AST

front-end

Object code

Code generationinterpreter

intermediate
code generation
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Intermediate code

• language independent
– no (or few) structured types, 

only basic types (char, int, float)
– no structured control flow,

only (un)conditional jumps

• linear format
– Java byte code
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The usefulness of Interpreters

• Quick implementation of new language
– Remember bootstrapping 

• Testing and debugging
• Portability via Abstract Machine
• Hardware emulation
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Interpretation

• recursive interpretation
– operates directly on the AST [attribute grammar]
– simple to write
– thorough error checks
– very slow: speed of compiled code 100 times faster

• iterative interpretation
– operates on intermediate code
– good error checking
– slow: 10x



9

Recursive interpretation

• Two phased strategy
– Fetch and analyze program

• Recursively analyzing the phrase structure of source
• Generating AST
• Performing semantic analysis

– Recursively via visitor
– Execute program

• Recursively by walking the decorated AST
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Change the calc.cup

terminal          PLUS, MINUS, TIMES, DIVIDE, LPAREN, RPAREN;
terminal Integer  NUMBER;
non terminal Integer expr;
precedence left PLUS, MINUS;
precedence left TIMES, DIVIDE;
expr  ::= expr:e1 PLUS expr:e2 

{: RESULT = new Integer(e1.intValue()+ e2.intValue()); :}  
| expr:e1 MINUS expr:e2  
{: RESULT = new Integer(e1.intValue()- e2.intValue());  :} 

| expr:e1 TIMES expr:e2  
{: RESULT = new Integer(e1.intValue()* e2.intValue());  :} 

| expr:e1 DIVIDE expr:e2  
{: RESULT = new Integer(e1.intValue()/ e2.intValue());  :} 

| LPAREN expr:e RPAREN {: RESULT = e;    :} 
| NUMBER:e {: RESULT= e; :}
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Recursive Interpreter for Mini Triangle

public abstract class Value { }

public class IntValue extends Value {
public short i;

}

public class BoolValue extends Value {
public boolean b;

}

public class UndefinedValue extends Value { }

Representing Mini Triangle values in Java:
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Recursive Interpreter for Mini Triangle

public class MiniTriangleState {
public static final short DATASIZE = …;

//Code Store
Program program; //decorated AST
//Data store
Value[] data = new Value[DATASIZE];
//Register …
byte status;
public static final byte //status value

RUNNING = 0, HALTED = 1, FAILED = 2;
}

A Java class to represent the state of the interpreter:
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Recursive Interpreter for Mini Triangle

public class MiniTriangleProcesser
extends MiniTriangleState implements Visitor {

public void fetchAnalyze () {
//load the program into the code store after
//performing syntactic and contextual analysis

}
public void run () {

… // run the program
public Object visit…Command

(…Command com, Object arg) {
//execute com, returning null (ignoring arg)

}
public Object visit…Expression

(…Expression expr, Object arg) {
//Evaluate expr, returning its result

}
public Object visit…

}
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Recursive Interpreter for Mini Triangle

public Object visitAssignCommand 
(AssignCommand com, Object arg) {

Value val = (Value) com.E.visit(this, null);
assign(com.V, val);
return null;

}

public Objects visitCallCommand 
(CallCommand com, Object arg) {

Value val = (Value) com.E.visit(this, null);
CallStandardProc(com.I, val);
return null;

}

public Object visitSequentialCommand 
(SequentialCommand com, Object arg) {

com.C1.visit(this, null);
com.C2.visit(this, null);
return null;

} 
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Recursive Interpreter for Mini Triangle
public Object visitIfCommand 

(IfCommand com, Object arg) {
BoolValue val = (BoolValue) com.E.visit(this, null);
if (val.b) com.C1.visit(this, null);
else com.C2.visit(this, null);
return null;

}

public Object visitWhileCommand 
(WhileCommand com, Object arg) {

for (;;) {
BoolValue val = (BoolValue) com.E.visit(this, null)
if (! Val.b) break;
com.C.visit(this, null);

}
return null;

}



16

Recursive Interpreter for Mini Triangle

public Object visitIntegerExpression
(IntegerExpression expr, Object arg){

return new IntValue(Valuation(expr.IL));
}
public Object visitVnameExpression

(VnameExpression expr, Object arg) {
return fetch(expr.V);

}
…
public Object visitBinaryExpression

(BinaryExpression expr, Object arg){
Value val1 = (Value) expr.E1.visit(this, null);
Value val2 = (Value) expr.E2.visit(this, null);
return applyBinary(expr.O, val1, val2);

}
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Recursive Interpreter for Mini Triangle

public Object visitConstDeclaration
(ConstDeclaration decl, Object arg){

KnownAddress entity = (KnownAddress) decl.entity;
Value val = (Value) decl.E.visit(this, null);
data[entity.address] = val;
return null;

}
public Object visitVarDeclaration

(VarDeclaration decl, Object arg){
KnownAddress entity = (KnownAddress) decl.entity;
data[entity.address] = new UndefinedValue();
return null;

}
public Object visitSequentialDeclaration

(SequentialDeclaration decl, Object arg){
decl.D1.visit(this, null);
decl.D2.visit(this, null);
return null;

}
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Recursive Interpreter for Mini Triangle
Public Value fetch (Vname vname) {

KnownAddress entity =
(KnownAddress) vname.visit(this, null);

return data[entity.address];
}
Public void assign (Vname vname, Value val) {

KnownAddress entity =
(KnownAddress) vname.visit(this, null);

data[entity.address] = val;
}
Public void fetchAnalyze () {

Parser parse = new Parse(…);
Checker checker = new Checker(…);
StorageAllocator allocator = new StorageAllocator();
program = parser.parse();
checker.check(program);
allocator.allocateAddresses(program);

}
Public void run () {

program.C.visit(this, null);
}
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Recursive Interpreter and Semantics

• Code for Recursive Interpreter is very close to a 
denotational semantics 

• (see chapter 14 p. 211-221 in Transitions and Trees)
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Recursive Interpreter and Semantics

public Object visitBinaryExpression
(BinaryExpression expr, Object arg){

Value val1 = (Value) expr.E1.visit(this, null);
Value val2 = (Value) expr.E2.visit(this, null);
return applyBinary(expr.O, val1, val2);

}

• Code for Recursive Interpreter can be derived from 
big step semantics
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Recursive Interpreter and Semantics

public Object visitAssignCommand 
(AssignCommand com, Object arg) {

Value val = (Value) com.E.visit(this, null);
assign(com.V, val);
return null;

}

Public void assign (Vname vname, Value val) {
KnownAddress entity =

(KnownAddress) vname.visit(this, null);
data[entity.address] = val;

}

• Code for Recursive Interpreter can be derived from 
big step semantics
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Recursive Interpreters

• Usage
– Quick implementation of high-level language

• LISP, SML, Prolog, … , all started out as interpreted 
languages

– Scripting languages
• If the language is more complex than a simple command 

structure we need to do all the front-end and static 
semantics work anyway.

• Web languages
– JavaScript, PhP, ASP where scripts are mixed with 

HTML or XML tags 
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Iterative interpretation

• Follows a very simple scheme:

• Typical source language will have several instructions
• Execution then is just a big case statement 

– one for each instruction

Initialize
Do {

fetch next instruction
analyze instruction
execute instruction

} while (still running)
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Iterative Interpreters

• Command languages
• Query languages

– SQL
• Simple programming languages

– Basic
• Virtual Machines
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Mini-Shell

Script ::=  Command*
Command ::=  Command-Name Argument* end-of-line
Argument ::=  Filename

|    Literal
Command-Name ::=  create

|     delete
|     edit
| list
|     print
|     quit
|     Filename
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Mini-Shell Interpreter

Public class MiniShellCommand {
public String    name;
public String[]  args;

}

Public class MiniShellState {
//File store…
public …

//Registers
public byte status; //Running or Halted or Failed

public static final byte // status values
RUNNING = 0, HALTED = 1, FAILED = 2;

}
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Mini-Shell Interpreter
Public class MiniShell extends MiniShellState {

public void Interpret () {
… // Execute the commands entered by the user

// terminating with a quit command
}
public MiniShellCommand readAnalyze () { 

… //Read, analysze, and return 
//the next command entered by the user

}
public void create (String fname) {

… // Create empty file wit the given name
}
public void delete (String[] fnames) {

… // Delete all the named files
}
…
public void exec (String fname, String[] args) {

… //Run the executable program contained in the
… //named files, with the given arguments

}
}
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Mini-Shell Interpreter
Public void interpret () {

//Initialize
status = RUNNING;
do {

//Fetch and analyse the next instruction
MiniShellCommand com = readAnalyze();

// Execute this instruction
if (com.name.equals(“create”))

create(com.args[0]);
else if (com.name.equals(“delete”))

delete(com.args)
else if …

else if (com.name.equals(“quit”))
status = HALTED;

else status = FAILED;
} while (status == RUNNING);

}
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Hypo: a Hypothetic Abstract Machine 

• 4096 word code store 
• 4096 word data store 
• PC: program counter, starts at 0 
• ACC: general purpose register 
• 4-bit op-code 
• 12-bit operand 
• Instruction set:
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Hypo Interpreter Implementation (1)
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Hypo Interpreter Implementation (2)



Other iterative interpreters

• Java Virtual Machine (JVM)
• .Net CLR
• Dalvik VM

• Note: LLVM is not a traditional virtual machine !
– However LLVM provides an IR that can be used for further 

compilation

32
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Interpreters are everywhere on the web

Web-Client
Web-Server

DBMS

Database
Output

SQL 
commands

PHP
Script

HTML-Form 
(+JavaScript)

Reply

WWW

Submit
Data

Call PHP
interpreter

Response Response

LAN

Web-Browser

Database
Server
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Interpreters versus Compilers

Q: What are the tradeoffs between compilation and interpretation?

Compilers typically offer more advantages when 
– programs are deployed in a production setting
– programs are “repetitive”
– the instructions of the programming language are complex

Interpreters typically are a better choice when
– we are in a development/testing/debugging stage
– programs are run once and then discarded 
– the instructions of the language are simple 
– the execution speed is overshadowed by other factors

• e.g. on a web server where communications costs are much higher than 
execution speed 



What can you do in your project now

• Build a recursive interpreter!
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The “Phases” of a Compiler

Syntax Analysis

Contextual Analysis

Code Generation

Source Program

Abstract Syntax Tree

Decorated Abstract Syntax Tree

Object Code

Error Reports

Error Reports

The rest of the lectures except one
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What’s next?

• interpretation

• intermediate code

• code generation 
– code selection
– register allocation
– instruction ordering

Source program

annotated AST

front-end

Object code

Code generationinterpreter

intermediate
code generation

Last lecture

Next lecture

This lecture
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The Code generation “Phases” of a Compiler

Analyze/Optimize

Analyze/optimize

Object Code Generation

Annotated ATS 
Intermediate Code

Intermediate Code

Intermediate Code

Object Code

Error Reports

Error Reports



Intermediate Representations

• Abstract Syntax Tree
– Convenient for semantic analysis phases
– Convenient for recursive interpretation
– We can generate code directly from the AST, but...
– What about multiple target architectures?

• Intermediate Representation
– "Neutral" architecture
– Easy to translate to native code
– Can abstracts away complicated runtime issues

• Stack Frame Management
• Memory Management
• Register Allocation

5



Overview

• Semantic gap between high-level source languages and 
target machine language

• Examples
– Early C++ compilers

• cpp: preprocessor
• cfront: translate C++ into C
• C compiler

6



Another Example

• LaTeX
– TeX: designed by Donald Knuth
– dvi: device-independent intermediate representation
– Ps: PostScript
– pixels

• Portability enhanced

7



Challenges 

• Challenges
– An intermediate language (IL) must be precisely defined
– Translators and processors must be crafted for an IL
– Connections must be made between levels so that feedback 

from intermediate steps can be related to the source program
• Other concerns

– Efficiency

• Compiler suites that host multiple source languages and 
target multiple instruction sets obtain great leverage 
from a middle-end
– Ex: s source languages, t target languages

• s*t vs. s+t

• 8



s*t vs. s+t

9



IL Advantages

• An IL simplifies development and testing of system 
components
– simplify the pioneering and prototyping of news ideas

• An IL allows various system components to interoperate by 
facilitating access to information about the program
– E.g. variable names and types, and source line numbers could be useful in 

the debugger
– It allows components and tools to interface with other products

• An IL enables the crafting of a retargetable code generator, 
which greatly enhances its portability
– Pascal: P-code
– Ada: DIANA (Descriptive Intermediate Attributed Notation for 

Ada)
– C: RTL
– Java: JVM
– C#: CIL
– Python: Python Byte Code

10
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Code Generation

A compiler translates a program from a high-level language into an 
equivalent program in a low-level language. 

JVM Program

Java Program

Compile

Run

Result

TAM Program

Triangle Program

Compile

Run

Result

x86 Program

C Program

Compile

Run

Result

We shall look at this in more detail the next couple of lectures
Note that code generation is specific to the target, but we try to generalize
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What are (some of) the issues

High Level 
Program

Low-level Language 
Processor

How to model high-level computational structures and data 
structures in terms of low-level memory and machine instructions.

Procedures
Expressions

Variables
Arrays

Records

Objects
Methods

Registers

Machine Instructions

Bits and Bytes
Machine Stack

How to model ?



Easy for Java (or Java like) on the JVM

For other Languages on the JVM some thoughts
Are needed on a suitable mapping

13
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The JVM

We now look at the JVM as an example of a real-world runtime 
system for a modern object-oriented programming language.

The material in this lecture is interesting because:

1) it will help understand some things about the JVM 

2) JVM is probably the most common and widely used VM in the 
world.

3) You’ll get a better idea what a real VM looks like.

4) You may choose the JVM as a target for your own compiler
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Abstract Machines

An abstract machine implements an intermediate language “in 
between” the high-level language (e.g. Java) and the low-level 
hardware (e.g. Pentium)

Java

Pentium

Java

Pentium

JVM (.class files)

High level

Low level

Java compiler

Java JVM interpreter
or JVM JIT compiler

Implemented in Java: 
Machine independent
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Class Files and Class File Format

The JVM is an abstract machine in the true sense of the word.

The JVM spec. does not specify implementation details (can be 
dependent on target OS/platform, performance requirements etc.) 

The JVM spec defines a machine independent “class file format” 
that all JVM implementations must support.

.class files

JVM

load

External representation
platform independent

internal representation
implementation dependent

objects

classes

methods

integers
arrays

primitive types



Java Virtual Machine

• Class files: 
– binary encodings of the data and instructions in a Java program

• Design principles
– Compactness

• Instructions in nearly zero-address form

• Class file contains:
– Table of constants.
– Tables describing the class

• name, superclass, interfaces
• attributes, constructor

– Tables describing fields and methods
• name, type/signature
• attributes (private, public, etc)

– The code for methods.
17
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ClassFile {

u4 magic; //always (0xCAFEBABE)
u2 minor_version;
u2 major_version;
u2 constant_pool_count;
cp_info constant_pool[constant_pool_count-1];
u2 access_flags;
u2 this_class;
u2 super_class;
u2 interfaces_count;
u2 interfaces[interfaces_count];
u2 fields_count;
field_info fields[fields_count];
u2 methods_count;
method_info methods[methods_count];
u2 attributes_count;
attribute_info attributes[attributes_count];

}
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Data Types

JVM (and Java) distinguishes between two kinds of types:

Primitive types:
• boolean: boolean
• numeric integral: byte, short, int, long, char
• numeric floating point: float, double
• internal, for exception handling: returnAddress

• Used by jsr, jsr_w, ret instructions

Reference types:
• class types
• array types
• interface types

Note: Primitive types are represented directly, reference types are 
represented indirectly (as pointers to array or class instances)
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Internal Architecture of JVM

Execution
engine

Class
loader
subsystem

method
area heap Java

stacks
pc
registers

native
method
stacks

Runtime data area

class files

Native 
Method
Interface

Native
Method
Libraries



Class Loading

• Classes are loaded lazily when first accessed
– Though some JVMs do eager loading

• Class name must match file name
• Super classes are loaded first (transitively)
• The bytecode is verified
• Static fields are allocated and given default values
• Static initializers are executed

21
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JVM: Runtime Data Areas

Besides OO concepts, JVM also supports multi-threading. Threads are 
directly supported by the JVM.

=> Two kinds of runtime data areas: 
1) shared between all threads
2) private to a single thread

Shared Thread 1 Thread 2

pc

Java
Stack

Native
Method
Stack

pc

Java
Stack

Native
Method
Stack

Garbage Collected
Heap

Method area
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Java Stacks

JVM is a stack based machine

JVM instructions
• implicitly take arguments from the stack top
• put their result on the top of the stack

The stack is used to
• pass arguments to methods
• return result from a method
• store intermediate results in evaluating expressions
• store local variables
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Expression Evaluation on a Stack Machine

Example 1: Computing (a * b) + (1 - (c * 2))
on a stack machine.

LOAD a //stack: a
LOAD b //stack: a b
MULT //stack: (a*b)
LOAD #1 //stack: (a*b) 1
LOAD c //stack: (a*b) 1 c
LOAD #2 //stack: (a*b) 1 c 2
MULT //stack: (a*b) 1 (c*2)
SUB //stack: (a*b) (1-(c*2))
ADD //stack: (a*b)+(1-(c*2))

Note the correspondence between the instructions and the expression 
written in postfix notation:  a b * 1 c 2 * - +
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Expression Evaluation on a Stack Machine

Example 2: Computing (0 < n) && odd(n)
on a stack machine.

LOAD #0 //stack: 0
LOAD n //stack: 0 n
LT //stack: (0<n)
LOAD n //stack: (0<n) n
CALL odd //stack: (0<n) odd(n)
AND //stack: (0<n)&&odd(n)

This example illustrates that calling functions/procedures fits in just 
as naturally with the stack machine evaluation model as operations 
that correspond to machine instructions.

In register machines this is much more complicated, because a stack 
must be created in memory for managing subroutine calls/returns.
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JVM Interpreter

The core of a JVM interpreter is basically this:
do { 

byte opcode = fetch an opcode;
switch (opcode) {

case opCode1 :
fetch operands for opCode1;
execute action for opCode1;
break;

case opCode2 :
fetch operands for opCode2;
execute action for opCode2;
break;

case ...
} while (more to do)



The JVM interpreter loop in the HVM
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Threaded Code

Control flow behavior:
[based on: James R. Bell. Threaded Code. Communications of the ACM, vol. 16 no. 6, 

June 1973, pp. 370–372]

byte code: threaded code:

28

Switch-Cased statement often translated into a jump table
Indexing through a jump table is expensive.
Idea: Use the address of the code for an operation as the 
opcode for that operation.



29

Instruction-set: typed instructions!

JVM instructions are explicitly typed: different opCodes for 
instructions for integers, floats, arrays and reference types.

This is reflected by a naming convention in the first letter of the 
opCode mnemonics:

Example: different types of “load” instructions

iload
lload
fload
dload
aload

integer load
long load
float load
double load
reference-type load
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Instruction set: kinds of operands

JVM instructions have three kinds of operands:
- from the top of the operand stack
- from the bytes following the opCode
- part of the opCode

One instructions may have different “forms” supporting different kinds 
of operands.

Example: different forms of “iload”.

iload_0
iload_1
iload_2
iload_3

Assembly code Binary instruction code layout
26
27
28
29

21 niload n

wide iload n 196 n21
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Instruction-set: accessing arguments and locals

locals: indexes #args .. #args+#locals-1

args: indexes 0 .. #args-1

arguments and locals area inside a stack frame

Instruction examples:
iload_1
iload_3
aload 5
aload_0

istore_1
astore_1
fstore_3

0:
1:
2:
3:

• A load instruction: loads something 
from the args/locals area to the top 
of the operand stack.

• A store instruction takes something 
from the top of the operand stack 
and stores it in the argument/local 
area
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Instruction-set: non-local memory access

In the JVM, the contents of different “kinds” of  memory can be 
accessed by different kinds of instructions.

accessing locals and arguments: load and store instructions

accessing fields in objects: getfield, putfield

accessing static fields: getstatic, putstatic

Note: static fields are a lot like global variables. They are allocated 
in the “method area” where also code for methods and 
representations for classes are stored.

Q: what memory area are getfield and putfield accessing?
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Instruction-set: operations on numbers

add: iadd, ladd, fadd, dadd
subtract: isub, lsub, fsub, dsub
multiply: imul, lmul, fmul, dmul
…

Arithmetic

Conversion

i2l, i2f, i2d
l2f, l2d, f2s

f2i, d2i, …
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Instruction-set …

Operand stack manipulation
pop, pop2, dup, dup2, dup_x1, swap, …

Control transfer
Unconditional : goto, goto_w, jsr, ret, …
Conditional: ifeq, iflt, ifgt, …
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Instruction-set …

Method invocation:
invokevirtual

usual instruction for calling a method on an object.
invokeinterface

same as invokevirtual, but used when the called method is declared 
in an interface. (requires different kind of method lookup)

invokespecial
for calling things such as constructors. These are not dynamically 
dispatched (also known as invokenonvirtual)

invokestatic
for calling methods that have the “static” modifier (these methods 
“belong” to a class, rather an object)

Returning from methods:
return, ireturn, lreturn, areturn, freturn, …
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Instruction-set: Heap Memory Allocation

Create new class instance (object):
new

Create new array:
newarray

for creating arrays of primitive types.
anewarray, multianewarray

for arrays of reference types
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Example

class Factorial {

int fac(int n) {
int result = 1;
for (int i=2; i<n; i++) {

result = result * i;
}
return result;

}
}

As an example on the JVM, we will take a look at the compiled code 
of the following simple Java class declaration.
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Compiling and Disassembling

% javac Factorial.java
% javap -c -verbose Factorial
Compiled from Factorial.java
public class Factorial extends java.lang.Object {

public Factorial();
/* Stack=1, Locals=1, Args_size=1 */

public int fac(int);
/* Stack=2, Locals=4, Args_size=2 */

}

Method Factorial()
0 aload_0
1 invokespecial #1 <Method java.lang.Object()>
4 return
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Compiling and Disassembling  ...

// address: 0    1 2      3
Method int fac(int) // stack: this n result i  
0 iconst_1        // stack: this n result i 1     
1 istore_2        // stack: this n result i      
2 iconst_2        // stack: this n result i 2     
3 istore_3        // stack: this n result i
4 goto 14
7 iload_2         // stack: this n result i result
8 iload_3         // stack: this n result i result i
9 imul            // stack: this n result i result i
10 istore_2
11 iinc 3 1
14 iload_3        // stack: this n result i i
15 iload_1        // stack: this n result i i n
16 if_icmple 7    // stack: this n result i
19 iload_2        // stack: this n result i result
20 ireturn             
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JASMIN

• JASMIN is an assembler for the JVM
– Takes an ASCII description of a Java class
– Input written in a simple assembler like syntax

• Using the JVM instruction set
– Outputs binary class file
– Suitable for loading by the JVM

• Running JASMIN
– jasmin myfile.j

• Produces a .class file with the name specified by the 
.class directive in myfile.j 
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Example: out.j

.class public out

.super java/lang/Object

.method public <init>()V
aload_0
invokespecial java/lang/Object/<init>()V
return

.end method

.method public static main([Ljava/lang/String;)V
.limit stack 2

getstatic java/lang/System/out Ljava/io/PrintStream;
ldc “Hello World”
invokevirtual java/io/PrintStream/println(Ljava/lang/String;)V

return
.end method
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The result: out.class
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Jasmin file format

• Directives
– .catch . Class .end .field .implements .interface .limit .line
– .method .source .super .throws .var

• Instructions
– JVM instructions: ldc, iinc bipush

• Labels
– Any name followed by : - e.g. Foo: 
– Cannot start with = : . *
– Labels can only be used within method definitions 
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The JVM as a target for different languages

When we talk about Java what do we mean?
• “Java” isn’t just a language, it is a platform
• The list of languages targeting the JVM is very long! 

– (Fortress), Scala, Clojure, Kotlin are currently very hot
– http://en.wikipedia.org/wiki/List_of_JVM_languages

JVM

java.* javax.* org.*

Java Groovy AspectJ Languages

APIs / Libraries

http://en.wikipedia.org/wiki/List_of_JVM_languages
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• Java has a lot of APIs and libraries
– Core libraries (java[x].*)
– Open source libraries
– Third party commercial libraries

• What is it that we are reusing when we use these tools?
– We are reusing the bytecode
– We are reusing the fact that the JVM has a nice spec

• This means that we can innovate on top of this binary 
class file nonsense 

Reusability
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Not just one JVM, but a whole family

• JVM (J2EE & J2SE)
– SUN Classis, SUN HotSpots, Oracle, IBM, BEA, …

• CVM, KVM (J2ME)
– Small devices.
– Reduces some VM features to fit resource-constrained 

devices.
• JCVM (Java Card)

– Smart cards.
– It has least VM features.

• And there are also lots of other JVMs
– E.g. HVM (www.icelab.dk)



47

Java Platform & VM & Devices
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Hardware implementations of the JVM

http://www.jopdesign.com/cyclone/top.jpg


Pause
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s*t vs. s+t

50
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The common intermediate format nirvana

• If we have n languages and need to have them running 
on m machines we need m*n compilers!

• If we have one common intermediate format we only 
need n front-ends and m back-ends, i.e. m+n

• ”Why haven’t you taught us about the common 
intermediate language?”
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Strong et al. “The Problem of Programming Communication with Changing 
Machines: A Proposed Solution” C.ACM. 1958
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Quote

This concept is not particularly new or original. It has 
been discussed by many independent persons as long 
ago as 1954. It might not be difficult to prove that “this 
was well-known to Babbage,” so no effort has been 
made to give credit to the originator, if indeed there was 
a unique originator.
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Interlanguage Working

• Smooth interoperability between components written in different 
programming languages is a dream with a long history

• Distinct from, more ambitious and more interesting than, UNCOL
– The benefits accrue to users, not to compiler-writers!

• Interoperability is more important than performance, especially 
for niche languages, e.g.
– For years we thought nobody used functional languages because they were 

too slow
– But a bigger problem was that you couldn’t really write programs that did 

useful things (graphics, guis, databases, sound, networking, crypto,...)
– We didn’t notice, because we never tried to write programs which did 

useful things...
– However, with languages like F# and Scale, interoperating via .Net resp. 

the JVM, things are changing …
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Interlanguage Working

• Bilateral or Multilateral?
• Unidirectional or bidirectional?
• How much can be mapped?
• Explicit or implicit or no marshalling?
• What happens to the languages?

– All within the existing framework?
– Extended?
– Pragmas or comments or conventions?

• External tools required?
• Work required on both sides of an interface?
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Calling C bilaterally

• All compilers for high-level languages have some way of calling C
– Often just hard-wired primitives for implementing libraries

• Extensibility by recompiling the runtime system 
– Sometimes a more structured FFI
– Typically implementation-specific

• Issues:
– Data representation (31/32 bit ints, strings, record layout,...)
– Calling conventions (registers, stack,..)
– Storage management (especially copying collectors)

• It’s a dirty job, but somebody’s got to do it
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Is there a better way?

• Well we saw the JVM earlier … 
– Most JVM support JNI
– But this only works for calling from Java to C
– Note HVM supports calling Java from C!

• And there are problems with languages which are not 
”Java”-like

• What then? …
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Common Programming Model - .NET

Common Language Runtime
Base Framework Classes

Data and XML Classes

XML Web
Services

Web 
Forms Windows

FormsASP.NET

Common Language Runtime
Base Framework Classes

Data and XML Classes

XML Web
Services

Web 
Forms Windows

FormsASP.NET
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Overview of the CLI

• A common type system…
…and a specification for language integration (CLS)
– Execution engine with garbage collector and exception 

handling
– Integral security system with verification

• A factored class library
– A “modern” equivalent to the C runtime

• An intermediate language
– CIL: Common Intermediate Language

• A file format
– PE/COFF format, with extensions
– An extensible metadata system

• Access to the underlying platform!
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Terms to swallow

• CLI (Common Language Infrastructure)

• CLS (Common Language Specification)

• CTS (Common Type System)

• MSIL (Microsoft Intermediate Language)
– CIL (Common Intermediate Language)

• CLR (Common Language Runtime)

• GAC (Global Assembly Cache)
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Execution model

COBOL VB.NET MC++ C#

MSIL code
(plus 

metadata)

Loader/verifier

Managed code
Uncompiled
method call

Execution

Language compilers

.NET languages

JIT compiler
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Managed Code Execution

PEVerify

NGEN

DEPLOYMENT

GAC, 
app. directory, 

download cache

public static void Main(String[] args )
{ String usr; FileStream f; StreamWriter w;
try {
usr=Environment.GetEnvironmentVariable("USERNAME");
f=new FileStream(“C:\\test.txt",FileMode.Create);
w=new StreamWriter(f);
w.WriteLine(usr);
w.Close();

} catch (Exception e){
Console.WriteLine("Exception:"+e.ToString());

}
} Compiler

DEVELOPMENT
public static void Main(String[] args )
{ String usr; FileStream f; StreamWriter w;
try {
usr=Environment.GetEnvironmentVariable("USERNAME");
f=new FileStream(“C:\\test.txt",FileMode.Create);
w=new StreamWriter(f);
w.WriteLine(usr);
w.Close();

} catch (Exception e){
Console.WriteLine("Exception:"+e.ToString());

}
}

Source code Assembly
PE header + MSIL + 
Metadata + EH Table

EXECUTION
Assembly info

Module 
+ Class list

Policy 
Manager

Host

Policy
<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<mscorlib>
<security>

<policy>
<PolicyLevel version="1">

<CodeGroup class="UnionCodeGroup"
version="1"
PermissionSetName="Nothing"
Name="All_Code"
Description="Code group

grants no permissio
ns and forms the root of the code group tree.">

<IMembershipCondition clas
s="AllMembershipCondition"

version="1"/>
<CodeGroup class="UnionCodeGroup"

version="1"
PermissionSetName="FullTrust"

Class
Loader

Granted 
permissions

Vtable +
Class info

JIT +
verification

Native code
+ GC table

CLR Services
GC
Exception
Class init
Security

(class)

(method)

Assembly
Loader

Evidence

Permission request
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What is the Common Language Runtime (CLR)?

• The CLR is the execution engine for .NET
• Responsible for key services:  

– Just-in-time compilation 
– heap management
– garbage collection 
– exception handling

• Rich support for component software
• Language-neutral
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The CLR Virtual Machine
• Stack-based, no registers

– All operations produce/consume 
stack elements

– Locals, incoming parameters live 
on stack

– Stack is of arbitrary size; stack 
elements are “slots”

– May or may not use real stack once 
JITted

• Core components
– Instruction pointer (IP)
– Evaluation stack
– Array of local variables
– Array of arguments
– Method handle information
– Local memory pool
– Return state handle
– Security descriptor

• Execution example

Offset Instruction Parameters

IL_0000 ldarg 0

IL_0001 ldarg 1

IL_0002 add

IL_0003 stloc 0

IL_0004 ldloc 0

IL_0005 ret

int add(int a, int b)
{

int c = a + b;
return c;

}
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CIL Basics

• Data types
– void

– bool

– char, string
– float32, float64
– [unsigned] int8, int16, int32, int64
– native [unsigned] int: native-sized integer value
– object: System.Object reference
– Managed pointers, unmanaged pointers, method pointers(!)

• Names
– All names must be assembly-qualified fully-resolved names

• [assembly]namespace.class::Method
• [mscorlib]System.Object::WriteLine
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CIL Instructions

• Stack manipulation
– dup: Duplicate top element of stack (pop, push, push)
– pop: Remove top element of stack
– ldloc, ldloc.n, ldloc.s n: Push local variable
– ldarg, ldarg.n, ldarg.s n: Push method arg

• “this” pointer arg 0 for instance methods
– ldfld type class::fieldname: Push instance field

• requires “this” pointer on top stack slot
– ldsfld type class::fieldname: Push static field
– ldstr string: Push constant string
– ldc.<type> n, ldc.<type>.n: Push constant numeric

• <type> is i4, i8, r4, r8
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CIL Instructions

• Branching, control flow
– beq, bge, bgt, ble, blt, bne, br, brtrue, brfalse

• Branch target is label within code
– jmp <method>: Immediate jump to method (goto, sort of)
– switch (t1, t2, … tn): Table switch on value
– call retval Class::method(Type, …): Call method

• Assumes arguments on stack match method expectations
• Instance methods require “this” on top
• Arguments pushed in right-to-left order

– calli callsite-description: Call method through pointer
– ret: Return from method call

• Return value top element on stack
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CIL Instructions

• Object model instructions
– newobj ctor: Create instance using ctor method
– initobj type: Create value type instance
– newarr type: Create vector (zero-based, 1-dim array)
– ldelem, stelem: Access vector elements
– isinst class: Test cast (C# “is”)
– castclass class: Cast to type
– callvirt signature: Call virtual method

• Assumes “this” in slot 0--cannot be null
• vtable lookup on object on signature

– box, unbox: Convert value type to/from object instance
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CIL Instructions

• Exception handling
– .try: Defines guarded block
– Dealing with exception

• catch: Catch exception of specified type
• fault: Handle exceptions but not normal exit
• filter: Handle exception if filter succeeds
• finally: Handle exception and normal exit

– throw, rethrow: Put exception object into exception flow
– leave: Exit guarded block



CIL assembler

• ILAsm (IL Assembly) closest to raw CIL
– Assembly language

• CIL opcodes and operands
• Assembler directives
• Intimately aware of the CLI (objects, interfaces, etc)

– ilasm.exe (like JASMIN for Java/JVM)
– Ships with FrameworkSDK, Rotor, along with a few samples
– Creates a PE (portable executable) file (.exe or .dll)

70
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Example 1

• Hello, CIL!

.assembly extern mscorlib { }

.assembly Hello { }

.class private auto ansi beforefieldinit App

extends [mscorlib]System.Object

{

.method private hidebysig static void Main() cil managed

{

.entrypoint

.maxstack 1

ldstr "Hello, CIL!"

call       void [mscorlib]System.Console::WriteLine(string)

ret

} // end of method App::Main

} // end of class App
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CLR vs JVM

C# Managed
C/C++

Lots of  other
Languages

VB
.Net

CLR
CTS GC Security 
Runtime Services

MSIL

Windows OS

Java

JRE (JVM)
GC Security 

Runtime Services

Byte Codes

Mac Unix LinuxWin

Both are ‘middle layers’ between an intermediate 
language & the underlying OS
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Java Byte Code and MSIL

• Java byte code (or JVML) is the low-level language of the JVM.
• MSIL (or CIL or IL) is the low-level language of the .NET Common 

Language Runtime (CLR).
• Superficially, the two languages look very similar.

• One difference is that MSIL is designed only for JIT compilation.
• The generic add instruction would require an interpreter to track the data 

type of the top of stack element, which would be prohibitively expensive.

JVML:
iload 1
iload 2
iadd
istore 3

MSIL:
ldloc.1
ldloc.2
add
stloc.3
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JVM vs. CLR

• JVM’s storage locations are all 32-bit therefore e.g. a 
64-bit int takes up two storage locations

• The CLR VM allows storage locations of different sizes

• In the JVM all pointers are put into one reference type
• CLR has several reference types e.g. valuetype reference 

and reference type
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JVM vs. CLR

• CLR provides ”typeless” arithmetic instructions
• JVM has separate arithmetic instruction for each type 

(iadd, fadd, imul, fmul...)

• JVM requires manual overflow detection
• CLR allows user to be notified when overflows occur

• Java has a maximum of 64K branches (if...else)
• No limit of branches in CLR
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JVM vs. CLR

• JVM distinguishes between invoking methods and 
interface (invokevirtual and invokeinterface)

• CLR makes no distinction

• CLR supports tail calls (iteration in Scheme)
• Must resort to tricks in order to make JVM discard stack

frames



Alternatives to JVM and CLR

• C 
– (or C++ or Java or C# or ..)

• JavaScript

• WebAssembly

• GENERIC, GIMPLE and RTL for gcc

• Dalvik VM

• LLVM IR

77



Comparison of Various VMs
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http://en.wikipedia.org/wiki/Comparison_of_application_virtual_machines



Just-In-Time Compilation

• JIT compilers in JRE (JVM) and .NET runtimes

79



Just-In-Time Compilation (cont)

• At the time of code execution, the JIT compiler will 
compile some or all of it to native machine code for 
better performance.
– Can be done per-file, per-function or even on any arbitrary 

code fragment (e.g. tracing JIT)
• The compiled code is cached and reused later 

without needing to be recompiled (unlike 
interpretation).
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Java Virtual Machine - HotSpot

> Interpreter mode (-Xint)
> server mode (-server)

— aggressive and complex optimizations
— slow startup
— fast execution

> client mode (-client)
— less optimizations
— fast startup
— slower execution

81



What can you do with this in your project ?

• Consider generation code for a VM
– JVM via JASMIN
– CLR via ILASM
– Some other VM

• Python VM
• Smalltalk VM
• BEAM (Erlang)

82
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Languages and Compilers
(SProg og Oversættere)

Lecture 16
Code Generation for the JVM

Bent Thomsen
Department of Computer Science

Aalborg University



Learning Goals

• Understand intermediate code generation
– In particular IM generation for the JVM

• Understand the distinction between compile time and 
run time

2
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The “Phases” of a Compiler

Syntax Analysis

Contextual Analysis

Code Generation

Source Program

Abstract Syntax Tree

Decorated Abstract Syntax Tree

Object Code

Error Reports

Error Reports

This lecture
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Programming Language specification

– A Language specification has (at least) three parts:
• Syntax of the language: usually formal: EBNF
• Contextual constraints: 

– scope rules (often written in English, but can be formal)
– type rules (formal or informal)

• Semantics: 
– defined by the implementation
– informal descriptions in English 
– formal using operational or denotational semantics
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Code Generation

A compiler translates a program from a high-level language into an 
equivalent program in a low-level language. 

JVM Program

Java Program

Compile

Run

Result
This lecture
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Issues in Code Generation

• Code Selection:
Deciding which sequence of target machine instructions will be 
used to implement each phrase in the source language.

• Storage Allocation
Deciding the storage address for each variable in the source 
program. (static allocation, stack allocation etc.)

• Register Allocation (for register-based machines)
How to use registers efficiently to store intermediate results.

This is not an issue for us because we look at
generating code for the JVM
We will look at these issues in later lectures
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What are (some of) the issues

High Level 
Program

Low-level Language 
Processor

How to model high-level computational structures and data 
structures in terms of low-level memory and machine instructions.

Procedures
Expressions

Variables
Arrays

Records

Objects
Methods

Registers

Machine Instructions

Bits and Bytes
Machine Stack

How to model ?



Easy for Java (or Java like) on the JVM

For other Languages on the JVM some thoughts
Are needed on a suitable mapping



Code Gen: from AST to JVM

• Code Generation refers to translating the 
processed/decorated AST to an executable form
– For Java, the target is the Java Virtual Machine

• Translated to Bytecode 
– We talk about emitting Bytecode

• Bytecode is "executed" by the JVM interpreter/JIT 

• Terminology:
– Compile time vs. Run time

• Compile time AST traversal order
– i.e. the order the compiler goes through the program

• Run time code execution order
– i.e. the order the thread of control goes through the program

9
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Code Generation from AST
Code Generation in general follows a depth-first traversal of the AST.

Ident Ident Ident Ident Ident CharLit Ident Ident Op IntLit

n Integer c Char c ‘&’ n n + 1

SimpleT SimpleT SimpleV SimpleV SimpleV

VarDec VarDec VnameExpr IntExpr

BinaryExpression

AssignCommand

CharExpr

AssignCommand

SequentialCommandSequentialDeclaration

LetCommand

Program



CodeGenVisitor

• We process the AST with a visitor
– Could also use classic OO composit or a functional approach.

• Code Generation Visitors are usually divided into narrow-
focus visitors for specific tasks
– Class and method declarations
– Statements
– Expressions
– Left-Hand Side processing
– Method Signatures

• Others possible/needed in other languages

• Note Fischer et. Al. uses the reflexive visitor pattern

11



Code Emmision

• Generating the actual instructions is usually called 
emission
– a CodeGenVisitor emits instructions

• Example:
– MethodBodyVisitor.visit(Plus n)

• visit(n.E1)
• visit(n.E2)
• emit("iadd\n")

12

+

E1 E2



Code Emmision

• Code generator needs type decorations in AST from 
Semantic analysis
– MethodBodyVisitor.visit(Plus n)

if n.type == int
• visit(n.E1)
• visit(n.E2)
• emit("iadd\n")
else if n.type == float
• visit(n.E1)
• visit(n.E2)
• emit(“fadd\n")
else if …

13

+

E1 E2



Code Emmision
• Code generator needs type decorations in AST from 

Semantic analysis
– MethodBodyVisitor.visit(Plus n)

… else if n.type == string
• emit (new           #4)      // class StringBuilder
• emit(dup)
• emit(invokespecial #5)     // Method StringBuilder."<init>"
• Visit(n.E1) // String from E1 
• emit(invokevirtual #6)     // Method StringBuilder.append:(LString;)LStringBuilder;             
• Visit(n.E2) // String from E2
• emit(invokevirtual #6)      // Method StringBuilder.append:(LString;)LStringBuilder;
• emit(invokevirtual #7)     // Method StringBuilder.toString:()LString;

14

+

E1 E2
Note that String is not a primitive type in Java



CodeGenVisitor

• TopVisitor
– Top-level visitor – starts at root of AST
– handles class/method declarations
– calls others for specific needs (E.g., method bodies)

• MethodBodyVisitor
– Generates most of the actual code
– Calls others for specific needs (E.g., assignment LHS)

15





CodeGenVisitor

• SignatureVisitor
– Handles AST subtrees for method definition or invocation

• method name, parameter types, return type
– Used by MethodBodyVisitor for invocations

• LHSVisitor
– Generates code for LHS of assignments
– May call other visitors if LHS contains subexpressions

• Java example: a[x+y] = ...
• Remember that LHS of assignment use the address of a 

variable, whereas the RHS uses the value.

17



Postludes

• Sometimes a single emission isn't enough
• Assignments:

– Must visit LHS to find the storage location and type
– Must visit RHS to compute the value
– Must re-visit LHS to emit storage operations

• Inefficient!
• Better:

– LHS visitor builds storage operation
– Saves in a Postlude
– Parent requests postlude emission

18



TopVisitor

• Handles class and method declarations
• visit(ClassDeclaring)

– For jasmin, emits our class skeleton.
– Name, modifiers, superclass, interfaces, fields

• .class public foo
• .super java/lang/Object
• .field public myField I

• Note: no postlude needed

19
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TopVisitor

• visit(MethodDeclaring)
– For jasmin, emits our method skeleton.
– Name, modifiers, parameters, return types, limits

• .method public static bar(S)I
• .limit locals 2
• .limit stack 4

• However, we need a postlude:
– .end method

• How can we get the limits?
– locals: from the method's Symbol Table
– stack: from data flow analysis

22
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MethodBodyVisitor

• Generates code for the majority of nodes
– LocalReferencing
– ConstReferencing
– StaticReferencing
– FieldReferencing
– ArrayReferencing
– Computing – most binary and unary operators
– Assigning – but remember the LHSVisitor!
– Invoking – but remember the SignatureVisitor!
– Control Structures

28
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Note: loc <- allocLocal() is unnecessary for JVM/stack machines as loc is always top of stack, 
but for register machines it is needed. Ficher et. Al. are trying to be general here!

Choice of instructions: bipush (for 8 bit values), sipush, ldc or iconst
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Code Templates

40

visit [if E then C1 else C2] =
visit [E]
JUMPIFFALSE fl
visit [C1]
JUMP el

fl: visit [C2]
el:

C1

C2

E

fl:

el:

If

E C1 C2



Pause
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Code Templates

visit [while E do C] =
JUMP h

l: visit [C]
h: visit[E]

JUMPIFTRUE l

C
E

While Command:
visit [while E do C] =

l: visit [E]
JUMPIFFALSE d

visit[C]
JUMP l

d:

E

C

Alternative While Command code template:

E C



LHSVisitor

• Generates the correct address and postlude for a LHS
• May need to call other visitors for expressions (e.g., a[5])

– Locals
• No emission
• Postlude: [type]store N

– N from Localreferencing.getRegister()
– Statics:

• No emission
• postlude: putstatic <Type> <name>

– Fields
• Emits object reference
• Postlude: putfield <Type> <name>

– Arrays:
• Emits array reference and index
• postlude: <type>astore

44





46



47



48



49



How to design the CodeVisitor?

• Idea from Brown & Watt
• Start with Code templates

– Each statement and expression generates a sequence of 
bytecodes

– A code template shows how to generate bytecodes for a given 
language construct and its constituents

• The template ignores the surrounding context
• And it ignores uniqueness of label names

– The given label names are symbolic; you have to make sure 
they are unique via some genLabel method

• This yields a simple, recursive strategy for the code 
generation

50
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Code Templates

visit [while E do C] =
JUMP h

l: visit [C]
h: visit [E]

JUMPIFTRUE l

C
E

While Command:
visit [while E do C] =

l: visit [E]
JUMPIFFALSE d

visit [C]
JUMP l

d:

E

C

Alternative While Command code template:



Code Template

• do-while

• For loop

52

visit [do C while E] =

visit [for ( C-init ; E ; C-update) C-body] =



Code Template

• do-while

• For loop

53

visit [do C while E] =
l: visit [C]

visit [E]
JUMPIFTRUE l

visit [for ( C-init ; E ; C-update) C-body] =
visit [C-init]

l: visit [E]
JUMPIFFALSE e

u: visit [C-body]
visit [C-update]
JUMP l

e:



Examples
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Code Template Invariants

• A statement and a void expression leaves the stack 
height unchanged

• A non-void expression increases the stack height by one
• This is a local property of each template
• The generated code must be verifiable
• This is not a local property, since the verifier performs a 

global static analysis

55



Representing Java types
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An Example
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Code generation summary

• Create code templates inductively
– There may be special case templates generating equivalent, but 

more efficient code
– Keep in mind what goes on at compile time

• AST traversal order
– Keep in mind what goes on at run time

• Control flow order
• Use visitors pattern to walk the AST recursively 

emitting code as you go along



What can you do in your project now?

• Use the idea of code templates for defining the code 
generation phase of your compiler

• Generate code for the JVM
– At least for a (small) part of your language

72
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Languages and Compilers
(SProg og Oversættere)

Lecture 17
Storage Allocations and Run Time Management

Bent Thomsen
Department of Computer Science

Aalborg University



Learning goals

• Understand
– Data representation (direct vs. indirect)
– Storage allocation strategies: 

• static vs. dynamic (stack and heap)
– Activation records (sometimes called frames) 
– Why may we need heap allocation 

• Gain an overview of
– Garbage collection strategies (Types of GCs) 

2
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Issues in Code Generation

• Code Selection:
Deciding which sequence of target machine instructions will be 
used to implement each phrase in the source language.

• Storage Allocation
Deciding the storage address for each variable in the source 
program. (static allocation, stack allocation etc.)

• Register Allocation (for register-based machines)
How to use registers efficiently to store intermediate results.

We will look at register allocation in later lectures
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What are (some of) the issues

High Level 
Program

Low-level Language 
Processor

How to model high-level computational structures and data 
structures in terms of low-level memory and machine instructions.

Procedures
Expressions

Variables
Arrays

Records

Objects
Methods

Registers

Machine Instructions

Bits and Bytes
Machine Stack

How to model ?



Easy for Java (or Java like) on the JVM

For other Languages on the JVM some thoughts
Are needed on a suitable mapping



Back in the olden days.... 

• No memory organization 
• Programs had access to all of memory 
• Memory was one big array of bytes 
• No distinction between code and data

• Not just so in the old days also so for:
• Low level VMs
• Assember/Machine code
• Connection with the CART and PSS courses: 

6
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Data Representation

• Data Representation: how to represent values of the source 
language on the target machine.

Records

Arrays
Strings

Integer

Char

?

00..10
01..00

...

High level  data-structures

0:
1:
2:
3:

Low level memory model

word
word

Note: addressing schema and 
size of “memory units” may vary

…
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Data Representation

Important properties of a representation schema:
• non-confusion: different values of a given type should have 

different representations
• uniqueness: Each value should always have the same 

representation. 

These properties are very desirable, but in practice they are not 
always satisfied:
Example: 
• confusion: approximated floating point numbers.
• non-uniqueness:  one’s complement representation of integers

+0 and -0
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Data Representation

Important issues in data representation:
• constant-size representation: The representation of all values 

of a given type should occupy the same amount of space.
• direct versus indirect representation

x bit pattern x bit pattern•
handle

Direct representation
of a value x

Indirect representation
of a value x
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Indirect Representation

small x 
bit pattern

•

Q: What reasons could there be for choosing indirect representations?

To make the representation “constant size” even if representation 
requires different amounts of memory for different values.

big x 
bit pattern

•

Both are represented 
by pointers

=>Same size
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Indirect versus Direct

The choice between indirect and direct representation is a key 
decision for a language designer/implementer.

• Direct representations are often preferable for efficiency:
• More efficient access (no need to follow pointers)
• More efficient “storage class” (e.g stack rather than heap 

allocation)
• For types with widely varying size of representation it is almost 

a must to use indirect representation (see previous slide)

Languages like Pascal, C, C++ try to use direct representation wherever possible.
Languages like Scheme, ML, Python use mostly indirect representation 
everywhere (because of polymorphic higher order functions)
Java: primitive types direct, “reference types” indirect, e.g. objects and arrays.
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Data Representation

We now survey representation of the data types found in C-like 
languages (Triangle), assuming direct representations wherever 
possible.

We will discuss representation of values of:
• Primitive Types
• Record Types
• Static Array Types
• Dynamic Array Types

We will use the following notations (if T is a type):
#[T] The cardinality of the type (i.e. the number of possible values)

size[T] The size of the representation (in number of bits/bytes)
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Data Representation: Primitive Types

What is a primitive type?
The primitive types of a programming language are those types 
that cannot be decomposed into simpler types. For example 
integer, boolean, char, etc.

Type: boolean
Has two values true and false
=> #[boolean] = 2
=> size[boolean] ≥ 1 bit

Note: In general  if #[T] = n  then size[T] ≥ log2n bits

Value
false
true

Possible Representation
1bit byte(option 1) byte(option2)
0 00000000 00000000
1 00000001 11111111
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Data Representation: Primitive Types
Type: integer
Fixed size representation, usually dependent (i.e. chosen based 
on) what is efficiently supported by target machine. Typically 
uses one word (16 bits, 32 bits, or 64 bits) of storage.

size[integer] = word (= 16 bits)
=> # [integer] ≤ 216 = 65536

Modern processors use two’s complement representation of integers

1 0 0 0 0 1 0 0 1 0 0 1 0 1 1 1

Multiply with -(215) Multiply with 2n

Value = -1.215 +0.214 +…+0.23+1.22 +1.21 +1.20

n = position from left
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Data Representation: Composite Types

Composite types are types which are not “atomic”, but which are 
constructed from more primitive types.

• Records (called structs in C)
Aggregates of several values of several different types

• Arrays
Aggregates of several values of the same type

• Variant Records or Disjoint Unions
• Pointers or References
• (Objects)
• Functions
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Data Representation: Records

Example: Triangle Records

type Date = record
y : Integer,
m : Integer,
d : Integer

end;
type Details = record

female : Boolean,
dob :    Date,
status : Char

end;
var today: Date;
var my:   Details
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Data Representation: Records

Example: Triangle Record Representation

today.m

2002
2

today.y

today.d 5
my.dob.m

1970
5

my.dob.y

my.dob.d 17

false

‘u’

my.female

my.dob

my.status

…1 word:
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Data Representation: Records

Records occur in some form or other in most programming languages:
Ada, Pascal, Triangle (here they are actually called records)
C, C++, C# (here they are called structs).
The usual representation of a record type is just the concatenation of 
individual representations of each of its component types.

r.I1

r.I2

r.In

value of type T1

value of type T2

value of type Tn
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Data Representation: Records

Example:
size[Date] = 3*size[integer] = 3 words
address[today.y] = address[today]+0
address[today.m] = address[today]+1
address[today.d] = address[today]+2

address[my.dob.m] = address[my.dob]+1 = address[my]+2

Q: How much space does a record  take up? 
And how to access record elements?

Note: these formulas assume that addresses are 
indexes of words (not bytes) in memory 
(otherwise multiply offsets by 2)
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Data Representation: Disjoint Unions

What are disjoint unions?
Like a record, has elements which are of different types. But the 
elements never exist at the same time.  A “type tag” determines which 
of the elements is currently valid.

Example: Pascal variant records

type Number = record
case discrete: Boolean of

true: (i: Integer);
false: (r: Real)

end;
var num: Number

Mathematically we write disjoint union types as:  T = T1 | … | Tn
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Data Representation: Disjoint Unions
Example: Pascal variant records representation
type Number = record

case discrete: Boolean of
true: (i: Integer);
false: (r: Real)

end;
var num: Number

Assuming size[Integer]=size[Boolean]=1 and size[Real]=2, then
size[Number] = size[Boolean] + MAX(size[Integer], size[Real])

= 1 + MAX(1, 2) = 3

num.i

true
15

num.discrete

unused
num.r

falsenum.discrete

3.14
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Data Representation: Disjoint Unions

type T = record
case Itag: Ttag of

v1: (I1: T1);
v2: (I2: T2);
...
vn: (In: Tn);

end;
var u: T

v1

type T1

v2

type T2

vn

type Tn
or     …u.I1 u.I2

u.Itag

u.In

u.Itag u.Itag

or or

size[T] = size[Ttag]
+ MAX(size[T1], ..., size[Tn])

address[u.Itag ] = address[u]

address[u.I1] = address[u]+size[Ttag]
...
address[u.In] = address[u]+size[Ttag]
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Arrays
An array is a composite data type, an array value consists of multiple 
values of the same type. Arrays are in some sense like records, 
except that their elements all have the same type.

The elements of arrays are typically indexed using an integer value 
(In some languages such as for example Pascal, also other “ordinal” 
types can be used for indexing arrays). 

Two kinds of arrays (with different runtime representation schemas):
• static arrays: their size (number of elements) is known at 

compile time.
• dynamic arrays: their size can not be known at compile time 

because the number of elements is computed at run-time and 
sometimes may vary at run-time (Flex-arrays).

Q: Which are the “cheapest” arrays? Why?
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Static Arrays
Example:

type Name = array 6 of Char; 
var me: Name;
var names: array 2 of Name

‘K’
‘r’
‘i’
‘s’
‘ ’
‘ ’

me[0]
me[1]
me[2]
me[3]
me[4]
me[5]

‘J’
‘o’
‘h’
‘n’
‘ ’
‘ ’

names[0][0]
names[0][1]
names[0][2]
names[0][3]
names[0][4]
names[0][5]

Name

‘S’
‘o’
‘p’
‘h’
‘i’
‘a’

names[1][0]
names[1][1]
names[1][2]
names[1][3]
names[1][4]
names[1][5]

Name
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Static Arrays
Example:

type Coding = record
Char c, Integer n

end

var code: array 3 of Coding

‘K’
5

code[0].c
code[0].n Coding

‘i’
22

code[1].c
code[1].n Coding

‘d’
4

code[2].c
code[2].n Coding
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Static Arrays

type T = array n of TE; 
var a : T;

a[0]

a[1]

a[2]

a[n-1]

size[T] = n * size[TE]

address[a[0]] = address[a]
address[a[1]] = address[a]+size[TE]
address[a[2]] = address[a]+2*size[TE]
…
address[a[i] ] = address[a]+i*size[TE]
…



27

Dynamic Arrays

char[ ] buffer;

buffer = new char[buffersize];

...
for (int i=0; i<buffer.length; i++)

buffer[i] = ‘ ’;

Example: Java Arrays (all arrays in Java are dynamic)
Dynamic arrays are arrays whose size is not known until run time.

Dynamic array: no size given in declaration 

Array creation at runtime determines size

Can ask for size of an array at run time

Q: How could we represent Java arrays?
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Dynamic Arrays

char[ ] buffer;

buffer = new char[7];   

Java Arrays

‘C’
‘o’

buffer[0]
buffer[1]

‘m’ buffer[2]
buffer[3]‘p’

A possible representation for Java arrays

7
•

buffer[4]‘i’
buffer[5]‘l’
buffer[6]‘e’

buffer.length
buffer.origin
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Dynamic Arrays

char[ ] buffer;

buffer = new char[7];   

Java Arrays

‘C’
‘o’

buffer[0]
buffer[1]

‘m’ buffer[2]
buffer[3]‘p’

Another possible representation for Java arrays

7•

buffer[4]‘i’
buffer[5]‘l’
buffer[6]‘e’

buffer.length
buffer

Note: In reality Java also stores a 
type in its representation for arrays, 
because Java arrays are objects 
(instances of classes).



Where to put data?
Now we have looked at how program structures are 

implemented in a computer memory

Next we look at where to put them

We will cover 3 methods:
1) static allocation,
2) stack allocation, and
3) heap allocation.



Static Allocation

Originally, all data were global. 
Correspondingly, all memory allocation was static. 
During compilation, data was simply placed at a fixed 

memory address for the entire execution of a program. 
This is called static allocation.

Examples are all assembly languages, Cobol, and Fortran. 

Note: code is (still) usually allocated statically



Static Allocation (Cont.)

Static allocation can be quite wasteful of memory space. To
reduce storage needs, in Fortran, the equivalent statement
overlays variables by forcing two variables to share the same
memory locations. In C,C++, union does this too.

Overlaying hurts program readability, as assignment to one
variable changes the value of another.

In more modern languages, static allocation is used for global
variables and literals (constant) that are fixed in size and
accessible throughout program execution.

It is also used for static and extern variables in C/C++ and for
static fields in C# and Java classes.



Stack Allocation 

Recursive languages require dynamic memory allocation. Each
time a recursive method is called, a new copy of local variables
(frame) is pushed on a runtime stack. The number of allocations is
unknown at compile-time.

A frame (or activation record) contains space for all of the local
variables in the method. When the method returns, its frame is
popped and the space reclaimed.
Thus, only the methods that are actually executing are allocated
memory space in the runtime stack. This is called stack allocation.
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Stack Storage Allocation

void Y() {
int d;
... e;
... ; }

void Z() {
int f;
...; Y(); ... }

int main(){
int[3] a;
bool b;
char c;
...; Y(); ...; Z(); }

Example: When do the variables in this program “exist”

as long as the 
program is 

running

when procedure 
Y is active

when procedure 
Z is active

Now we will look at allocation of local variables
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Stack Storage Allocation

Start of program End of program time

call depth

global

Y Z1

2 Y

Z

1) Procedure activation behaves like a stack (LIFO). 
2) The local variables “live” as long as the procedure they are 
declared in.
1+2 => Allocation of locals on the “call stack” is a good model.

A “picture” of our program running:



Recursion

int fact (int n) {
if (n>1) return n* fact (n-1); 
else return 1;

}
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Recursion: General Idea
Why the stack allocation model works for recursion:
Like other function/procedure calls, lifetimes of local variables and 
parameters for recursive calls behave like a stack.

fac(3)

fac(2)

fac(1)

fac(4) fac(4)

fac(3)

fac(2)

fac(4)
fac(4)

fac(3) fac(3)

fac(2)

fac(2)

fac(1)

fac(3)

fac(2)

fac(4)

fac(3)?

?
fac(4)



Dynamic link

Because stackframes may vary in size and because the 
stack may contain more than just frames (e.g., registers 
saved across calls), dynamic link is used to point to the 
preceding frame  (Fig. 12.4). 



Nested functions/procedures

int p (int a) {
int q (int b) { if (b <0) q (-b)  else return a+b; }
return q (-10);

}

Methods cannot nest in C, Java, but in languages like Pascal, ML 
and Python they can. How to keep track of static block structure 
as above?

A static link points to the frame of the method that statically 
encloses the current method. (Fig. 12.6)

An alternative to using static links to access frames of enclosing 
methods is the use of a display. Here, we maintain a set of 
registers which comprise the display. (see Fig. 12,7)
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Blocks

void p (int a) {
int b;
if (a>0) {float c,d;  //body of block 1//}
else      {int e[10]; //body of block 2//}

}

We could view such blocks as parameter-less procedures 
and thus use procedure-level-frames to implement 
blocks, but because the then and else parts of the if 
statement above are mutually exclusive, variables in 
block 1 and block 2 can overlay each other. This is 
called block-level frame, as contrasted with 
procedure-level frame allocation. (Fig. 12.8)



Higher-order functions

• Functions as values (first-class)
– Pass as arguments
– Return as values
– Stored into data structures

• Implementation:
– A code pointer, (i.e., a code address + an environment pointer)
– Such a data structure is called a closure 



Higher-order Nested Functions

void->int f(){
int x;
int y;

return g;
}

h = f(); // h==g
h();     // g()

int g (){   
int z;  
return z+x;

}           

frame 0

x
y

f

frame 0

zg

frame 0

Function frames don’t obey LIFO 
discipline any more. What one need to do 

is to  keep frames live long enough! 
Heap-allocation!



Heap-allocated Frames

void->int f(){
int x;
int y;

return g;
}

h = f();   
// h == cg
h();

int g (){   
int z;  
return z+x;

}           

frame 0

ret
ebp

frame

next
x
y

env code

f

gcg



Heap-allocated Frames

void->int f(){
int x;
int y;

return g;
}

h = f();   
// h == cg
h();

int g (){   
int z;  
return z+x;

}           

frame 0

env
ebp

frame

next
x
y

env code

g

gcg

h->code(h->env);



Pause
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Memory Management
When a program is started, most operating systems 
allocate 3 memory segments for it:
1) code segment: read-only

Code (normally doesn’t change during execution)
Global variables (sometimes stored at the bottom of the stack)

2) stack segment (data): 
manipulated by machine instructions.
local variables and arguments for procedures and functions
lifetime follows procedure activation

3) heap segment  (data): 
manipulated by the programmer.
some programs may ask for and get memory allocated on       
arbitrary points during execution
When this memory is no longer used it should be freed
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Heap Storage

• Memory allocation under explicit programmatic control
– C malloc, C++ / Pascal / Java / C# new operation.

• Memory allocation implicit in language constructs
– Lisp, Scheme, Haskell, SML, … most functional languages
– Autoboxing/unboxing in Java 1.5 and C#

• Deallocation under explicit programmatic control
– C, C++, Pascal    (free, delete, dispose operations)

• Deallocation implicit
– Java, C#, Lisp, Scheme, Haskell, SML, …
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Data representation
Sometimes it goes the other way round

High Level 
Program

Low-level Language 
Processor

How to reflect low-level memory and machine data structures in 
terms of high-level computational structures.

Objects

Registers
Bits and Bytes

How to model ?

Pointers

Indirect addressing

References
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How does things become garbage?

int *p, *q;
…
p = malloc(sizeof(int));
p = q;

for(int i=0;i<10000;i++){
SomeClass obj= new SomeClass(i);
System.out.println(obj);

}

Newly created space becomes garbage

Creates 10000 objects, which becomes 
garbage just after the print
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Problem with explicit heap management

int *p, *q;
…
p = malloc(sizeof(int));
q = p;
free(p); Dangling pointer in q now

float myArray[100];

p = myArray;
*(p+i) = …   //equivalent to myArray[i]

They can be hard to recognize
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Stacks and dynamic allocations are incompatible

Why can’t we just do dynamic allocation within the stack?

Programming Language design and Implementation -4th Edition
Copyright©Prentice Hall,  2000
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Where to put the heap?

• The heap is an area of memory which is dynamically 
allocated. 

• Like a stack, it may grow and shrink during runtime.
• Unlike a stack it is not a LIFO => more complicated to 

manage
• In a typical programming language implementation we 

will have both heap-allocated and stack allocated 
memory coexisting.

Q: How do we allocate memory for both
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Where to put the heap?

• A simple approach is to divide the available memory at 
the start of the program into two areas: stack and heap. 

• Another question then arises
– How do we decide what portion to allocate for stack vs. heap ? 
– Issue: if one of the areas is full, then even though we still have 

more memory (in the other area) we will get out-of-memory 
errors

Q: Isn’t there a better way?
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Where to put the heap?

Q: Isn’t there a better way?
A: Yes, there is an often used “trick”: let both stack and heap share the 
same memory area, but grow towards each other from opposite ends!

ST

SB

HB

HT

Stack memory area

Heap memory area

Stack grows downward

Heap can expand upward
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Implicit memory management

• Current trend of modern programming language development: 
to give only implicit means of memory management to a 
programmer:
– The constant increase of hardware memory justifies the policy of automatic 

memory management
– The explicit memory management distracts programmer from his primary tasks: 

let everyone do what is required of them and nothing else! 
– The philosophy of high-level languages conforms to the implicit memory 

management

• Other arguments for implicit memory management:
– Anyway, a programmer cannot control memory management for temporary 

variables!
– The difficulties of combination of two memory management mechanisms: system 

and the programmer’s

• The history repeats: in 70’s people thought that the implicit 
memory management had finally replaced all other mechanisms
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Automatic Storage Deallocation 
(Garbage Collection)

Everybody probably knows what a garbage collector is. 

But here are two “one liners” to make you think again about what a 
garbage collector really is!

1) Garbage collection provides the “illusion of infinite memory”!

2) A garbage collector predicts the future!

It’s a kind of magic! :-)

Let us look at how this magic is done!
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Types of garbage collectors

• The “Classic” algorithms
– Reference counting
– Mark and sweep

• Copying garbage collection
• Generational garbage collection
• Incremental Tracing garbage collection

• Direct Garbage Collectors: a record is associated with each node in 
the heap.  The record for node N indicates how many other nodes or 
roots point to N.

• Indirect/Tracing Garbage Collectors: usually invoked when a user’s 
request for memory fails.  The garbage collector visits all live nodes, 
and returns all other memory to the free list.  If sufficient memory has 
been recovered from this process, the user’s request for memory is 
satisfied.
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Terminology

• Roots: values that a program can manipulate directly (i.e. values 
held in registers, on the program stack, and global variables.)

• Node/Cell/Object: an individually allocated piece of data in the 
heap.

• Children Nodes: the list of pointers that a given node contains.
• Live Node: a node whose address is held in a root or is the child 

of a live node.
• Garbage: nodes that are not live, but are not free either.
• Garbage collection: the task of recovering (freeing) garbage 

nodes.
• Mutator: The program running alongside the garbage collection 

system.
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Reference Counting

• Every cell has an additional field: the reference count.
This field represents the number of pointers to that cell 
from roots or heap cells.

• Initially, all cells in the heap are placed in a pool of free 
cells, the free list.

• When a cell is allocated from the free list, its reference 
count is set to one.

• When a pointer is set to reference a cell, the cell’s 
reference count is incremented by 1; if a pointer is to the 
cell is deleted, its reference count is decremented by 1.

• When a cell’s reference count reaches 0, its pointers to 
its children are deleted and it is returned to the free list. 



Reference Counting
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Reference Counting: Advantages and Disadvantages

• Advantages:
– Garbage collection overhead is distributed.
– Locality of reference is no worse than mutator.
– Free memory is returned to free list quickly.

• Disadvantages:
– High time cost (every time a pointer is changed, reference counts must be updated).

• In place of a single assignment x.f = p:

– Storage overhead for reference counter can be high.
– If the reference counter overflows, the object becomes permanent.
– Unable to reclaim cyclic data structures.

z = x.f
c = z.count
c = c – 1
z.count = c
If c = 0 call putOnFreeList(z)
x.f = p
c = p.count
c = c + 1
p.count = c
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How to keep track of free memory?

Stack is LIFO allocation => ST moves up/down everything above ST 
is in use/allocated. Below is free memory. This is easy! But …
Heap is not LIFO, how to manage free space in the “middle” of the 
heap?

HB

HT
Allocated

ST

SB

Free

Free

Mixed:
Allocated
and
Free

reuse?
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How to keep track of free memory?

How to manage free space in the “middle” of the heap?

HB

HT

=> keep track of free blocks in a data structure: the “free list”. For 
example we could use a linked list pointing to free blocks.

Free  Next

freelist

Free  Next

Free  Next

A freelist! 
Good idea!

But where do we 
find the memory to 
store this data 
structure?
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How to keep track of free memory?

HB

HT

Q: Where do we find the memory to store a freelist data structure?
A: Since the free blocks are not used for anything by the program => 
memory manager can use them for storing the freelist itself. 

HF

HF free block size
next free
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Mark-Sweep

• The first tracing garbage collection algorithm
• Garbage cells are allowed to build up until heap space is 

exhausted (i.e. a user program requests a memory allocation, but 
there is insufficient free space on the heap to satisfy the request.)  

• At this point, the mark-sweep algorithm is invoked, and garbage 
cells are returned to the free list.

• Performed in two phases:
– Mark: identifies all live cells by setting a mark bit.  Live cells are cells 

reachable from a root.
– Sweep: returns garbage cells to the free list.



68

Mark and Sweep Garbage Collection

HT
e

c

a
HB

SB

ST

b

d

before gc

HT
e

c

a

SB

ST

b

d

HB

mark as free phase

X

X

X
X
X
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Mark and Sweep Garbage Collection

HT
e

c

a

SB

ST

b

d

HB

mark as free phase

X

X

X
X
X

HT
e

c

a

SB

ST

b

d

HB

X

X

X
X
X

X

X

X

mark reachable
SB

ST

HB

HT
e

b

d

X

X

X

X

X

X

collect  free
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Mark and Sweep Garbage Collection
Algorithm pseudo code:
void garbageCollect() {

mark all heap variables as free
for each frame in the stack

scan(frame)
for each heapvar (still) marked as free

add heapvar to freelist
}
void scan(region) {

for each pointer p in region
if p points to region marked as free then

mark region at p as reachable
scan(region at p )

}
Q: This algorithm is recursive. What do you think about that?
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Mark-Sweep: 
Advantages and Disadvantages

• Advantages:
– Cyclic data structures can be recovered.
– Tends to be faster than reference counting.

• Disadvantages:
– Computation must be halted while garbage collection is being 

performed
– Every live cell must be visited in the mark phase, and every 

cell in the heap must be visited in the sweep phase.
– Garbage collection becomes more frequent as residency of a 

program increases.
– May fragment memory.
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Mark-Sweep-Compact: 
Advantages and Disadvantages

• Advantages:
– The contiguous free area eliminates fragmentation problem. 

Allocating objects of various sizes is simple.
– The garbage space is "squeezed out", without disturbing the original 

ordering of objects. This improves locality.

• Disadvantages:
– Requires several passes over the data are required. "Sliding 

compactors" takes two, three or more passes over the live objects.
• One pass computes the new location
• Subsequent passes update the pointers to refer to new locations, 

and actually move the objects
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Copying Garbage Collection
(Cheney's algorithm)

• Like mark-compact, copying garbage collection, but does not 
really "collect" garbage.

• The heap is subdivided into two contiguous subspaces 
– (FromSpace and ToSpace).

• During normal program execution, only one of these semispaces
is in use.

• When the garbage collector is called, all the live data are copied 
from the current semispace (FromSpace) to the other semispace
(ToSpace), so that objects need only be traversed once.

• The work needed is proportional to the amount of live data (all 
of which must be copied).
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Semispace Collector Using the Cheney Algorithm

• The heap is subdivided into two contiguous subspaces 
(FromSpace and ToSpace).

• During normal program execution, only one of these 
semispaces is in use.

• When the garbage collector is called, all the live data are 
copied from the current semispace (FromSpace) to the 
other semispace (ToSpace).
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Copying Garbage Collection: 
Advantages and Disadvantages

• Advantages:
– Allocation is extremely cheap.
– Excellent asymptotic complexity.
– Fragmentation is eliminated.
– Only one pass through the data is required.

• Disadvantages:
– The use of two semi-spaces doubles memory 

requirement
– Poor locality. Using virtual memory will cause 

excessive paging.
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Problems with Simple Tracing Collectors

• Difficult to achieve high efficiency in a simple 
garbage collector, because large amounts of 
memory are expensive.

• If virtual memory is used, the poor locality of the 
allocation/reclamation cycle will cause excessive 
paging.

• Even as main memory becomes steadily cheaper, 
locality within cache memory becomes increasingly 
important.
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Generational Garbage Collection
• Attempts to address weaknesses of simple tracing 

collectors such as mark-sweep and copying collectors:
– All active data must be marked or copied.
– For copying collectors, each page of the heap is touched every 

two collection cycles, even though the user program is only 
using half the heap, leading to poor cache behavior and page 
faults.

– Long-lived objects are handled inefficiently.
• Generational garbage collection is based on the 

generational hypothesis:
Most objects die young.

• As such, concentrate garbage collection efforts on 
objects likely to be garbage: young objects.
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Generational Garbage Collection: Multiple Generations

• Advantages:
– Keeps youngest generation’s size small.
– Helps address mistakes made by the promotion policy by creating 

more intermediate generations that still get garbage collected fairly 
frequently.

• Disadvantages:
– Collections for intermediate generations may be disruptive.
– Tends to increase number of inter-generational pointers, increasing 

the size of the root set for younger generations.
• Performs poorly if any of the main assumptions are false:

– That objects tend to die young.
– That there are relatively few pointers from old objects to young 

ones.
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Incremental Tracing Collectors

• Program (Mutator) and Garbage Collector run 
concurrently.
– Can think of system as similar to two threads.  One performs 

collection, and the other represents the regular program in 
execution.

• Can be used in systems with real-time requirements.  
For example, process control systems.
– allow mutator to do its job without destroying collector’s 

possibilities for keeping track of modifications of the object 
graph, and at the same time

– allowing collector to do its job without interfering with 
mutator
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Garbage Collection: Summary

Method Conservatism Space Time Fragmentation Locality

Mark Sweep Major Basic 1 traversal + heap 
scan

Yes Fair

Mark Compact Major Basic Many passes of 
heap

No Good

Copying Major Two Semispaces 1 traversal No Poor

Reference 
Counting

No Reference count 
field

Constant per 
Assignment

Yes Very Good

Deferred 
Reference 
Counting

Only for stack 
variables

Reference Count 
Field

Constant per 
Assignment

Yes Very Good

Incremental Varies depending 
on algorithm

Varies Can be Guaranteed 
Real-Time

Varies Varies

Generational Variable Segregated Areas Varies with number 
of live objects in 
new generation

Yes (Non-Copying)
No (Copying)

Good

Tracing
Increm

ental
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Different choices for different reasons

• JVM
– Sun Classic: Mark, Sweep and Compact
– SUN HotSpot: Generational (two generation + Eden)

• -Xincgc an incremental collector that breaks that old-object region into 
smaller chunks and GCs them individually

• -Xconcgc Concurrent GC allows other threads to keep running in 
parallel with the GC

– BEA jRockit JVM: concurrent, even on another processor
– IBM: Improved Concurrent Mark, Sweep and Compact with a notion of 

weak references
– Real-Time Java

• Scoped LTMemory, VTMemory, RawMemory
• .Net CLR

– Managed and unmanaged memory (memory blob)
– PC version: Self-tuning Generation Garbage Collector
– .Net CF: Mark, Sweep and Compact
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RTSJ Scoped Memory
• Scopes have fixed lifetimes
• Lifetime starts here:

– scopedMemArea.enter() { … }

• Lifetime ends:
• All calls to new inside a scope, create an object 

inside of that scope
• When the scope’s lifetime ends, all objects within 

are destroyed
• Scopes may be nested
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Region Based memory management

• Compiler (especially Type inference) 
automatically detects scopes or regions

• May require programmer to annotate types
• May sometimes have worse behaviour than GC 

and heap



Summary of Storage Allocation

• Data Representation
– Non-confusion and uniqueness
– Direct vs. indirect

• Data Allocation
– Static
– Stack

• Frames, dynamic and static links/display regs, closures
– Heap

• Manual vs. automatic
• Garbage Collection

– Different algorithms have pros and cons

86
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Learning goals

• Understand issues such as 
– code selection
– storage allocation
– register allocation
– code scheduling
for low level code generation.

• Understand different approaches to low level code
generation:
– Code generation from AST via visitor
– Code generation by tree-rewrite and pattern matching
– Code generation from IR

2
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The “Phases” of a Compiler

Syntax Analysis

Contextual Analysis

Code Generation

Source Program

Abstract Syntax Tree

Decorated Abstract Syntax Tree

Object Code

Error Reports

Error Reports
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The “Phases” of a Compiler

Analyze/Optimize

Analyze/optimize

Code Generation

Intermediate Code

Intermediate Code

Intermediate Code

Object Code

Error Reports

Error Reports



Intermediate Representations

• Abstract Syntax Tree
– Convenient for semantic analysis phases
– We can generate code directly from the AST, but...
– What about multiple target architectures?

• Remember n * m vs. n + m
• Intermediate Representation

– "Neutral" architecture
– Easy to translate to native code
– Can abstracts away complicated runtime issues

• Stack Frame Management
• Memory Management
• Register Allocation

5
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Issues in Code Generation

• Code Selection:
Deciding which sequence of target machine instructions will be 
used to implement each phrase in the source language.

• Storage Allocation
Deciding the storage address for each variable in the source 
program. (static allocation, stack allocation etc.)

• Register Allocation (for register-based machines)
How to use registers efficiently to store intermediate results.

• Code Scheduling
The order in which the generated instructions are executed
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Code generation from AST 
summary

• Idea from Brown & Watt
• Create code templates inductively

– There may be special case templates generating 
equivalent, but more efficient code

– Keep in mind what goes on at compile time
• AST traversal order

– Keep in mind what goes on at run time
• Control flow order

• Use visitors (or composit or functional) pattern to walk 
the AST recursively emitting code as you go along

• Low level VM, called Triangle VM, with direct 
addressing and storage allocation
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Developing a Code Generator “Visitor”

generate code as specified by 
execute[C]
generate code as specified by 
evaluate[E]
Return “entity description” for the 
visited variable or constant name.
generate code as specified by 
elaborate[D]
return the size of the type

Program visitProgram generate code as specified by run[P]
Command visit…Command

Expression visit…Expression

V-name visit…Vname

Declaration visit…Declaration

Type-Den visit…TypeDen

Phrase
Class

visitor method Behavior of the visitor method

Example from Brown&Watt chapter 7, p. 260- 280, translating miniTriangle to TAM, 
a stack based VM with explicit addressing and storage allocation



9

Developing a Code Generator “Visitor”

/* Expressions */
public Object visitIntegerExpression (

IntegerExpression expr,Object arg) { 
short v = valuation(expr.IL.spelling);
emit(Instruction.LOADLop, 0, 0, v);
return null;

}  

public short valuation(String s) {
... convert string to integer value ...

}

evaluate [IL] = 
LOADL v where v is the integer value of IL
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Developing a Code Generator “Visitor”

public Object visitBinaryExpression (
BinaryExpression expr,Object arg) { 

expr.E1.visit(this,arg);
expr.E2.visit(this,arg);
short p = address for expr.O operation
emit(Instruction.CALLop, 

Instruction.SBr, 
Instruction.PBr, p);

return null;
}  

evaluate [E1 O E2] = 
evaluate [E1]
evaluate [E2] 
CALL p where p is the address of routine for O

Remaining expression visitors are developed in a similar way.
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Developing a Code Generator “Visitor”

/* Generating code for commands */

public Object visitAssignCommand(
AssignCommand com,Object arg) { 

com.E.visit(this,arg);
RuntimeEntity entity =

(RuntimeEntity) com.V.visit(this,null);
short d = entity.address;
emit(Instruction.STOREop,Com.V.size,d);
return null;

}  

execute [V := E] =
evaluate [E]
assign [V]
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Developing a Code Generator “Visitor”

public Object visitSequentialCommand(
SequentialCommand com,Object arg) { 

com.C1.visit(this,arg);
com.C2.visit(this,arg);
return null;

}  

execute [C1 ; C2] =
execute[C1]
execute[C2]

- IfCommand and WhileCommand: complications with jumps
- LetCommand is more complex: memory allocation and addresses
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Control Structures

We have yet to discuss generation for IfCommand and WhileCommand

execute [while E do C] =
JUMP h

g: execute [C]
h: evaluate[E]

JUMPIF(1) g

A complication is the generation of the correct addresses for the jump 
instructions.

We can determine the address of the instructions by incrementing a 
counter while emitting instructions.

Backwards jumps are easy but forward jumps are harder.
Q: why?

C
E
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Control Structures

Backwards jumps are easy:
The “address” of the target has already been generated and is 
known

Forward jumps are harder:
When the jump is generated the target is not yet generated so its 
address is not (yet) known.

There is a solution which is known as backpatching
1) Emit jump with “dummy” address (e.g. simply 0).
2) Remember the address where the jump instruction 

occurred.
3) When the target label is reached, go back and patch the 

jump instruction.
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Backpatching Example
public Object WhileCommand (

WhileCommand com,Object arg) { 
short j = nextInstrAddr;
emit(Instruction.JUMPop, 0, 

Instruction.CBr,0);
short g = nextInstrAddr;
com.C.visit(this,arg);
short h = nextInstrAddr;
code[j].d = h; 
com.E.visit(this,arg);
emit(Instruction.JUMPIFop, 1, 

Instruction.CBr,g);
return null;

}  

execute [while E do C] =
JUMP h

g: execute [C]
h: evaluate[E]

JUMPIF(1) g

dummy address

backpatch
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Static Storage Allocation: In the Code Generator
public Object visit...Command(

...Command com, Object arg) {
short gs = shortValueOf(arg);
generate code as specified by execute[com]
return null;

}
public Object visit...Expression(

...Expression expr, Object arg) {
short gs = shortValueOf(arg);
generate code as specified by evaluate[expr]
return new Short(size of expr result);

}
public Object visit...Declaration(

...Declaration dec, Object arg) {
short gs = shortValueOf(arg);
generate code as specified by elaborate[dec]
return new Short(amount of extra allocated by dec);

}
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Routines

We call the assembly language equivalent of procedures “routines”.

What are routines? Unlike procedures/functions in higher level 
languages. They are not directly supported by language constructs. 
Instead they are modeled in terms of how to use the low-level 
machine to “emulate” procedures.

What behavior needs to be “emulated”?
• Calling a routine and returning to the caller after completion.
• Passing arguments to a called routine
• Returning a result from a routine
• Local and non-local variables.
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Code Generation for Procedures and Functions

We extend Mini Triangle with procedures:

Declaration 
::= ...

| proc Identifier ( ) ~ Command
Command

::= ...
| Identifier ( )

First , we will only consider global procedures (with no arguments).
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Code Template: Global Procedure

elaborate [proc I () ~ C] =
JUMP g

e: execute [C]
RETURN(0) 0

g:

C

execute [I ()] =
CALL(SB) e



20

Routines

• Transferring control to and from routine:
Most low-level processors have CALL and  RETURN for 
transferring control from caller to callee and back.

• Transmitting arguments and return values:
Caller and callee must agree on a method to transfer argument 
and return values. 
=> This is called the “routine protocol”

There are many possible ways to pass argument and return 
values. 
=> A routine protocol is like a “contract” between the caller 
and the callee.

!
The routine protocol is often dictated by the operating system.
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Routine Protocol Examples

The routine protocol depends on the machine architecture (e.g. stack 
machine versus register machine).

Example 1: A possible routine protocol for a RM
- Passing of arguments: 

first argument in R1, second argument in R2, etc.
- Passing of return value:

return the result (if any) in R0 
Note: this example is simplistic:

- What if more arguments than registers?
- What if the representation of an argument is larger than can be 
stored in a register.

For RM protocols, the protocol usually also specifies who (caller or 
callee) is responsible for saving contents of registers.
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Routine Protocol Examples

Example 2: A possible routine protocol for a stack machine
- Passing of arguments: 

pass arguments on the top of the stack.
- Passing of return value:

leave the return value on the stack top, in place of the 
arguments. 

Note: this protocol puts no boundary on the number of arguments 
and the size of the arguments.

Most micro-processors, have registers as well as a stack. Such 
“mixed” machines also often use a protocol like this one.



23

Routine Protocol

SB

LB

ST

globals

just before the call just after the call

args

SB

LB

ST

globals

result

What happens in between?
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Routine Protocol

LB

ST

(1) just before the call

args

(2) just after entry

LB

ST

args

link data

note: Going from (1) -> (2) in JVM is the execution of a single 
CALL instruction.
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Routine Protocol

(2) just after entry

LB

ST

args

link data

(3.1) during execution of routine

LB

ST

args

link data
local
data

shrinks 
and grows 
during 
execution
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Routine Protocol

(3.2) just before return

LB

ST

args

link data
local
data

result

(4) just after return

LB

ST result

note: Going from (3.2) -> (4) in JVM is the execution of a single 
RETURN instruction.
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Procedures and Functions: Parameters

We extend Mini Triangle with ...

Declaration 
::= ...

| proc Identifier (Formal) : TypeDenoter ~
Expression

Expression
::= ...

| Identifier (Actual)
Formal

::= Identifier : TypeDenoter
| var Identifier : TypeDenoter

Actual
::= Expression

| var VName
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Code Templates Parameters

elaborate [proc I(FP) ~ C] =
JUMP g 

e: execute [C]
RETURN(0) d

g:

execute [I (AP)] =
passArgument [AP] 
CALL(r) e

passArgument [E] =
evaluate [E] 

passArgument [var V] =
fetchAddress [V] 

where d is the size of FP

Where (l,e) = address of routine bound to I,
Cl = current routine level

r = display-register(cl,l)
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Arguments: by value or by reference

Value parameters:
At the call site the argument is an expression, the evaluation of that 
expression leaves some value on the stack. The value is passed to the 
procedure/function.
A typical instruction for putting a value parameter on the stack:
LOADL 6

Var parameters:
Instead of passing a value on the stack, the address of a memory 
location is pushed. This implies a restriction that only “variable-like” 
things can be passed to a var parameter. In Triangle there is an explicit 
keyword var at the call-site, to signal passing a var parameter. In 
Pascal and C++ the reference is created implicitly (but the same 
restrictions apply). 
Typical instructions: LOADA 5[LB]    LOADA 10[SB]
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Summary

• The activation record must be designed together with 
the code generator 

• Code generation can be done by recursive traversal of 
the AST

• Production compilers do different things
– Emphasis is on keeping values (esp. current stack frame) in 

registers
– Intermediate results are laid out in the AR, not pushed and 

popped from the stack



Pause
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Code generation for the MIPS Architecture

MIPS is implementation of a RISC architecture
• MIPS32 ISA

– Designed for use with high-level programming languages
• small set of instructions and addressing modes, easy for compilers

– fixed instruction width (32-bits), 
– minimize control complexity, allow for more registers
– 32 general purpose registers (32 bits each)

– Arithmetic operations use registers for operands and results
• Must use load and store instructions to use operands and results in 

memory
– Load-store machine

• large register set (32 word sized regs)
• minimize main memory access

• MIPS has a nice simulator called SPIM
• MIPS (sometimes called RISC-I) is inspiration for the RISC-V processor

32



MIPS organization
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Source: Introduction to Compiler Construction in a Java World: B. Campbell et. Al.
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MIPS Instructions

• MIPS instructions fall into 5 classes:
– Arithmetic/logical/shift/comparison (R-type)
– Load/store (I-type)
– Control instructions (branch and jump) (J-type)
– Other (exception, register movement to/from GP registers, etc.)

• Three instruction encoding formats:
– R-type (6-bit opcode, 5-bit rs, 5-bit rt, 5-bit rd, 5-bit shamt, 6-bit function code)

– I-type (6-bit opcode, 5-bit rs, 5-bit rt, 16-bit immediate)

– J-type (6-bit opcode, 26-bit pseudo-direct address)

35
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A Sample of MIPS Instructions

– lw reg1 offset(reg2)
• Load 32-bit word from address reg2 + offset into reg1

– add reg1 reg2 reg3

• reg1 ← reg2 + reg3

– sw reg1 offset(reg2)
• Store 32-bit word in reg1 at address reg2 + offset

– addiu reg1 reg2 imm
• reg1 ← reg2 + imm
• “u” means overflow is not checked

– li reg imm
• reg ← imm



MIPS Addressing Modes

• MIPS addresses register operands using 5-bit field
– Example:  ADD $2, $3, $4

• Immediate addressing
– Operand is help as constant (literal) in instruction word
– Example:  ADDI $2, $3, 64

• MIPS addresses load/store locations
– base register + 16-bit signed offset (byte addressed)

• Example:  LW $2, 128($3)

– 16-bit direct address (base register is 0)
• Example:  LW $2, 4092($0)

– indirect (offset is 0)
• Example:  LW $2, 0($4)
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MIPS Addressing Modes

• MIPS addresses jump targets as register content or 26-
bit “pseudo-direct” address

• Example:  JR $31, J 128

• MIPS addresses branch targets as signed instruction 
offset
– relative to next instruction (“PC relative”)
– in units of instructions (words)
– held in 16-bit offset in I-type
– Example:  BEQ $2, $3, 12

38



A small language example

• A language with integers and integer operations

P → D; P | D
D → def id(ARGS) = E;

ARGS → id, ARGS | id
E → int | id | if E1 = E2 then E3 else E4

| E1 + E2 | E1 – E2 | id(E1,…,En)
• The first function definition f is the “main” routine
• Running the program on input i means computing f(i)

39



Code Generation Strategy

• For each expression e we generate MIPS code that:
– Computes the value of e in $a0
– Preserves $sp and the contents of the stack

• We define a code generation function cgen[e] whose 
result is the code generated for e

40



Code Generation for Sub and Constants

• The code to evaluate a constant simply copies it into the 
accumulator:

• cgen[i] = li $a0 i

• Note that this also preserves the stack, as required
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Code Generation for Add and SUB

cgen[e1 + e2] = 
cgen[e1]
sw $a0 0($sp)
addiu $sp $sp -4
cgen[e2]
lw $t1 4($sp)
add $a0 $t1 $a0
addiu $sp $sp 4

Cgen[e1 - e2] = 
cgen[e1] 
sw $a0 0($sp)
addiu $sp $sp -4
cgen[e2]
lw $t1 4($sp)
sub $a0 $t1 $a0
addiu $sp $sp 4

42



Code Generation for Conditional

• We need flow control instructions

• Instruction: beq reg1 reg2 label
– Branch to label if reg1 = reg2

• Instruction: b label
– Unconditional jump to label
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Code Generation for Conditional

Cgen[if e1 = e2 then e3 else e4] = 
cgen[e1] 
sw $a0 0($sp)
addiu $sp $sp -4
cgen[e2]
lw $t1 4($sp)
addiu $sp $sp 4
beq $a0 $t1 true_branch
false_branch:
cgen[e4]
b end_if

true_branch:
cgen[e3]

end_if:
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The Activation Record

• Code for function calls and function definitions depends 
on the layout of the activation record

• A very simple AR suffices for this language:
– The result is always in the accumulator

• No need to store the result in the AR
– The activation record holds actual parameters

• For f(x1,…,xn) push xn,…,x1 on the stack
• These are the only variables in this language
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The Activation Record (Cont.)

• The stack discipline guarantees that on function exit $sp
is the same as it was on function entry
– No need for a control link/static link

• We need the return address
• It’s handy to have a pointer to the current activation

– This pointer lives in register $fp (frame pointer)
– Reason for frame pointer will be clear shortly
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The Activation Record

• For this language, an AR with the caller’s frame 
pointer (dynamic link), the actual parameters, and the 
return address suffices

• Picture: Consider a call to f(x,y), The AR will be:

y
x

old fp

SP

FP

AR of f



48

Code Generation for Function Call

• The calling sequence is the instructions (of both caller 
and callee) to set up a function invocation

• New instruction: jal label
– Jump to label, save address of next instruction in $ra
– On other architectures the return address is stored on the stack 

by the “call” instruction
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Code Generation for Function Call (Cont.)

Cgen[f(e1,…,en)] = 
sw $fp 0($sp)
addiu $sp $sp -4
cgen[en]
sw $a0 0($sp)
addiu $sp $sp -4
…
cgen[e1]
sw $a0 0($sp)
addiu $sp $sp -4
jal f_entry

• The caller saves its value of 
the frame pointer

• Then it saves the actual 
parameters in reverse order

• The caller saves the return 
address in register $ra

• The AR so far is 4*n+4 bytes 
long
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Code Generation for Function Definition

• Instruction: jr reg
– Jump to address in register reg

Cgen[def f(x1,…,xn) = e] = 
move $fp $sp
sw $ra 0($sp)
addiu $sp $sp -4
cgen[e]
lw $ra 4($sp)
addiu $sp $sp z
lw $fp 0($sp)
jr $ra

• Note: The frame pointer points 
to the top, not bottom of the 
frame

• The callee pops the return 
address, the actual arguments 
and the saved value of the 
frame pointer

• z = 4*n + 8
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Calling Sequence. Example for f(x,y).

Before call           On entry         Before exit   After call

SP

FP

y
x

old fp

SP

FP

SP

FP

SP
return

y
x

old fp

FP
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Code Generation for Variables

• Variable references are the last construct
• The “variables” of a function are just its parameters

– They are all in the AR
– Pushed by the caller

• Problem: Because the stack grows when intermediate 
results are saved, the variables are not at a fixed offset 
from $sp



53

Code Generation for Variables (Cont.)

• Solution: use a frame pointer
– Always points to the return address on the stack
– Since it does not move it can be used to find the variables

• Let xi be the ith (i = 1,…,n) formal parameter of the 
function for which code is being generated

cgen[xi] = lw $a0 z($fp)          ( z = 4*i )
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Code Generation for Variables (Cont.)

• Example: For a function def f(x,y) = e the activation 
and frame pointer are set up as follows:

y
x

return

old fp
• X is at fp + 4
• Y is at fp + 8

FP

SP



fac(n) = if (n = 1) then 1 else (n*fac(n-1))
move $fp $sp #copy fp to top of stack
sw $ra 0($sp) #save ra on top of stack
addiu $sp $sp -4 #adjust tos

lw $a0 4($fp) #/load n
sw $a0 0($sp) # save n on tos
addiu $sp $sp -4
li $a0 1 #load 1
lw $t1 4($sp) #load n into t1
addiu $sp $sp 4
beq $a0 $t1 true_branch #branch if 1 = n

false_branch:
lw $a0 4($fp) #load n
sw $a0 0($sp)
addiu $sp $sp -4
lw $a0 4($fp) #load n

sw $a0 0($sp)
addiu $sp $sp -4
li $a0 1 #load 1
lw $t1 4($sp)
sub $a0 $t1 $a0 #n-1
addiu $sp $sp 4
sw $a0 0($sp)
addiu $sp $sp -4
jal f_entry #call fac

lw $t1 4($sp)
mul $a0 $t1 $a0 #n*fac(n-1)
addiu $sp $sp 4

b end_if
true_branch:
li $a0 1 #load 1

end_if:
lw $ra 4($sp)
addiu $sp $sp 4 #remove n from toc
lw $fp 0($sp)
jr $ra #return from fac
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Pause
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Instruction selection by patternmatching

57

Translate AST to tree rep.
with leaves corresponding
to registers, memeory locations or litterals
and internal nodes to fetch 
and basic operations

Instruction selection
is now a question of 
pattern matching
similar to bottom up 
parsing
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Code generation from IR

• JBC to Machine code is used by AOT (Ahead-of-Time) 
Java compilers like gcj and FijiVM

• JBC to Machine code is used by all JIT VMs
– Some JIT VM compile JBC on class loading
– Others start interpretation and then compile HOT methods and 

store the compiled code in a method cashe
– Others record sequences of JBC and discover ”often used 

sequences” and then compiles these – so called trace based JIT 
(e.g. Mozilla’s TraceMonkey)

• We look at JBC to MIPS
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Stringsum example

public static String stringSum(int limit){
int sum = 0;
for (int i = 1; i <= limit; i++)

sum += i;
return Integer.toSting(sum);

}
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Register Allocation

• A compiler generating code for a register 
machine needs to pay attentention to register 
allocation as this is a limited ressource

• In routine protocol
– Allocate arg1 in R1, arg2 in R2 .. Result in R0
– But what if there are more args than regs?

• In evaluation of expressions
– On MIPS all calculations take place in regs
– Reduce traffic between memory and regs
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Optimizing register allocations

• TreeCG generates code such that result(s) 
end up in targeted registers

• However TreeCG does not exploit
communicative operators
– exp1 op exp2 = exp2 op exp1
– Also difficult due to overflow or exceptions

• Exploiting associativity can reduce reg needs
– (a+b)+(c+d) needs 3 regs
– a+b+c+d needs only 2 regs
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Register Allocation

• Expression level register allocation
• Procedure level register allocation

– Interference graphs
– Graph coloring

• Intra-procedural register allocation
– 10%-28% speed-up
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Code scheduling

• Modern computers are pipelined
– Instructions are processed in stages
– Instructions take different time to execute
– If result from previous instruction is needed 

but not yet ready then we have a stalled 
pipeline

– Delayed load
• Load from memory takes 2, 10 or 100 cycles

– Also FP instructions takes time
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Reg allocation and Code Scheluling

• Reg allocations algorithms try to minimize 
the number of regs used

• May conflict with pipeline architecture
– Using more regs than strictly necessary may 

avoid pipeline stalls
• Solution

– Integrated register allocator and code 
scheduler
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Modern Hardware and code 
generation

• Speculative execution
• Prefetch instructions

– Load data into cache
• Dynamic scheduling
• Out of order architectures

• Should the HW, Compiler or the 
programmer do the job?
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Register variable in C

• Ex: register float a = 0 ;

• register provides a hint to the compiler that you think a 
variable will be frequently used 

• compiler is free to ignore register hint 
• if ignored, the variable is equivalent to an auto variable 

with the exception that you may not take the address of 
a register (since, if put in a register, the variable will not 
have an address) 

• rarely used, since any modern compiler will do a better 
job of optimization than most programmers 
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Java Memory Model

• Abstract memory model
– Local stack for each thread

• But stacks may need to be implemented via registers and memory
– Shared variables can be problematic on some implementations

• Serial to concurrent
– Code for serial execution may not work in concurrent system

• Concurrent to serial
– Code with synchronization may be inefficient in serial programs 

(10-20% unnecessary overhead)

– Java 1.5 has expanded the definition of the memory model
• Volatile keyword

– The value of a volatile variable will never be cached thread-
locally: all reads and writes will go straight to "main memory"
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A programmer’s view of memory

This model was pretty accurate in 1985. 
Processors (386, ARM, MIPS, SPARC) all ran at 1–10MHz clock 
speed and could access external memory in 1 cycle; and most 
instructions took 1 cycle.
Indeed the C language was as expressively time-accurate as a
language could be: almost all C operators took one or two cycles.
But this model is no longer accurate!
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A modern view of memory timings

So what happened? 
On-chip computation (clock-speed) sped up
faster (1985–2005) than off-chip communication (with memory) as feature 
sizes shrank.
The gap was filled by spending transistor budget on caches which
(statistically) filled the mismatch until 2005 or so.
Techniques like caches, deep pipelining with bypasses, and
superscalar instruction issue burned power to preserve our illusions.
2005 or so was crunch point as faster, hotter, single-CPU Pentiums
were scrapped. These techniques had delayed the inevitable.
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The Current Mainstream Processor

Will scale to 2, 4 maybe 8 processors. 
But ultimately shared memory becomes the bottleneck (1024 processors?!?).



Conclusions
• Low level code genrations requires attentions

to lots of details:
– Instruction sequence selection
– Register allocation
– Instruction scheduling
– Storage allocation

• Memory hierachies
– (multi-core placement)

• Sometimes Implications for language design
– E.g. high level memory models
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What can you do in your 
projects now?

• You should by now have lexer, parser and AST in 
place
– Write pretty printer to test front end

• Use all the programs you wrote when designing your syntax
• You should have static semantic analyzer in place.

– Write recursive interpreter to test programs
– And generate ideas for formal semantics

• Code generation:
– Write C, Java, python … code generator
– Write JBC or CIL code generator
– Write MIPS, AVR or x86
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Languages and Compilers
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Abstract Data Types 
and 

Object Oriented Features

Bent Thomsen
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Learning goals

• To understand the concept of abstract data types
• Understand implementations of abstract data types 
• Understand concepts of Object Oriented programming:

– Classes and objects
– Inheritance
– Dynamic dispatch

• Understand how classes and objects can be implemented
• Understand issues in modularity of large programs

2
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Tennent’s Language Design principles
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The Concept of Abstraction
• The concept of abstraction is fundamental in programming (and 

computer science)
• Tennents principle of abstraction 

– is based on identifying all of the semantically-meaningful syntactic 
categories of the language and then designing a coherent set of abstraction 
facilities for each of these.

• Nearly all programming languages support process (or command) 
abstraction with subprograms (procedures)

• Many programming languages support expression abstraction
with functions

• Nearly all programming languages designed since 1980 have 
supported data abstraction:
– Abstract data types
– Objects
– Modules
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What have we seen so far?

• Structured data
– Arrays
– Records or structs
– Lists

• Visibility of variables and subprograms
– Scope rules

• Why is this not enough?
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Information Hiding

• Consider the C code:

typedef struct RationalType {
int numerator;
int denominator;

} Rational

Rational mk_rat (int n,int d) { …}
Rational add_rat (Rational x, Rational y) { 
… }

• Can use mk_rat, add_rat without knowing the 
details of RationalType
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Need for Abstract Types

• Problem: abstraction not enforced
– User can create Rationals without using mk_rat
– User can access and alter numerator and denominator 

directly without using provided functions

• With abstraction we also need information hiding
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Abstract Types - Example

• Suppose we need sets of integers
• Decision: 

– implement as lists of int
• Problem: 

– lists have order and repetition, sets don’t
• Solution: 

– use only lists of int ordered from smallest to largest 
with no repetition (data invariant)
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Abstract Type – SML code Example
type intset = int list
val empty_set = []:intset
fun insert {elt, set = [] } = [elt]

|  insert {elt, set = x :: xs} =
if elt < x then elt :: x :: xs
else if elt = x then x :: xs
else x :: (insert {elt = elt, set = xs})

fun union ([],ys) = ys
| union (x::xs,ys) =

union(xs,insert{elt=x,set = ys})

fun intersect ([],ys) = []
| intersect (xs,[]) = []
| intersect (x::xs,y::ys) =

if x <y then intersect(xs, y::ys)
else if y < x then intersect(x::xs,ys)
else x :: (intersect(xs,ys))

fun elt_of {elt, set = []} = false
| elt_of {elt, set = x::xs} =

(elt = x) orelse
(elt > x andalso
elt_of{elt = elt, set = xs})
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Abstract Type – Example
• Notice that all these definitions maintain the data 

invariant for the representation of sets, and depend on it

• Are we happy now?
• NO!
• As is, user can create any pair of lists of int and apply 

union to them; the result is meaningless
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Solution: abstract datatypes
abstype intset = Set of int list with
val empty_set = Set []
local
fun ins {elt, set = [] } = [elt]

|  ins {elt, set = x :: xs} =
if elt < x then elt :: x :: xs
else if elt = x then x :: xs
else x :: (ins {elt = elt, set = 
xs})

fun un ([],ys) = ys
| un (x::xs,ys) =

un (xs,ins{elt=x,set = ys})
in

fun insert {elt, set = Set s}=
Set(ins{elt = elt, set  = s})

fun union (Set xs, Set ys) =                               
Set(un (xs, ys))

end

local
fun inter ([],ys) = []

| inter (xs,[]) = []
| inter (x::xs,y::ys) =

if x <y then inter(xs, y::ys)
else if y < x then inter(x::xs,ys)
else x :: (inter(xs,ys))

in
fun intersect(Set xs, Set ys) = 

Set(inter(xs,ys))
end
fun elt_of {elt, set = Set []} = false

| elt_of {elt, set = Set (x::xs)} =
(elt = x) orelse
(elt > x andalso 
elt_of{elt = elt, set = Set xs})

fun set_to_list (Set xs) = xs
end (* abstype *)
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Abstract Type – Example

• Creates a new type (not equal to int list)
– Remember type equivalence – structure vs. name

• Exports
– type intset,  
– Constant empty_set
– Operations: insert, union, elt_of, and set_to_list; act as 

primitive

– Note: Unfortunately in SML we cannot use pattern matching 
or list functions on intset; won’t type check 

– Lack of orthogonality in the design of abstype for SML – does
not fulfill Tennent’s principle of data type completion
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Abstract Type – Example

• Implementation: just use int list, except for type 
checking

• Data constructor Set only visible inside the asbtype 
declaration; type intset visible outside

• Function set_to_list used only at compile time

• Data abstraction allows us to prove data  invariant 
holds for all objects of type intset
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Abstract Types
• A type is abstract if the user can only see:

– the type 
– constants of that type (by name)
– operations for interacting with objects of that type that have 

been explicitly exported
• Primitive types are built-in abstract types 

e.g. int type in Java
– The representation is hidden
– Operations are all built-in
– User programs can define objects of int type

• User-defined abstract data types must have the same 
characteristics as built-in abstract data types
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User Defined Abstract Types
• Syntactic construct to provide encapsulation of abstract 

type implementation
• Inside, implementation visible to constants and 

subprograms
• Outside, only type name, constants and operations visible, 

not implementation
• No runtime overhead as all the above can be checked 

statically
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Advantages of Data Abstraction

• Advantage of Inside condition: 
– Program organization, modifiability (everything 

associated with a data structure is together)
– Separate compilation may be possible

• Advantage of Outside condition:  
– Reliability--by hiding the data representations, user 

code cannot directly access objects of the type.  User 
code cannot depend on the representation, allowing the 
representation to be changed without affecting user 
code.
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Limitation of Abstract data types
Queue

abstype q
with 
mk_Queue : unit -> q
is_empty : q -> bool
insert   : q * elem -> q
remove   : q -> elem

is  …
in
program

end

Priority Queue

abstype pq
with 
mk_Queue : unit -> pq
is_empty : pq -> bool
insert   : pq * elem -> pq
remove   : pq -> elem

is … 
in
program   

end

But cannot intermix pq’s and q’s
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Abstract Data Types

• Guarantee invariants of data structure
– only functions of the data type have access to the internal 

representation of data
• Limited “reuse”

– Cannot apply queue code to pqueue, except by explicit 
parameterization, even though signatures identical

– Cannot form list of points and colored points

• Data abstraction is important – how can we make it 
extensible?

• Remember subtyping from Lecture 13 ?
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Subtyping for Product Types
The rule is:

if  A <: T  and  B <: U  then  A × B <: T × U

This rule, and corresponding rules for other structured types, can be
worked out by following the principle:

T <: U  means that whenever a value of type U is expected, it is
safe to use a value of type T instead.

What can we do with a value v of type T × U ?
• use fst(v) , which is a value of type T
• use snd(v) , which is a value of type U
If w is a value of type A × B then fst(w) has type A and can be used
instead of fst(v). Similarly snd(w) can be used instead of snd(v).
Therefore w can be used where v is expected.



Objects and subtyping

• Objects can be thought of as (extendible) records of 
fields and methods.

• That is why Square <: Shape and Circle <: Shape in

20

abstract class Shape {
abstract float area( ); }

class Square extends Shape {
float side;
float area( ) {return (side * side); } }

class Circle extends Shape {
float radius;
float area( ) {return ( PI * radius * radius); } }
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Objects

• An object consists of 
– hidden data

• instance variables, also 
called member data

• hidden functions also 
possible

– public operations
• methods or member 

functions
• can also have public 

variables in some languages
• Object-oriented program:

– Send messages to objects: 
• o  m (a)   or  o.m(a)

hidden data
method1msg1

. . .. . .
methodnmsgn

Objects can be extended by
cloning or subclassing
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Encapsulation

• Builder of a concept has detailed view
• User of a concept has “abstract” view
• Encapsulation is the mechanism for separating these two 

views 
• The message concept facilitate loose coupling

message

Object
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Object-oriented programming

• Metaphor usefully ambiguous
– Database, window, file, integer – all are objects
– sequential or concurrent computation
– distributed, sync. or async. Communication

• Programming methodology
– organize concepts into objects and classes 
– build extensible systems

• Language concepts
– encapsulate data and functions into objects
– subtyping allows extensions of data types
– inheritance allows reuse of implementation
– dynamic lookup facilitate loose coupling
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Dynamic Lookup – dynamic dispatch

• In object-oriented programming,
object  message (arguments)
object.method(arguments)

code depends on object and message 
– Add two numbers              x  add (y)   or  x.add(y)

different add if x is integer or complex

• In conventional programming,
operation (operands)

meaning of operation is always the same
– Conventional programming  add (x, y)

function add has fixed meaning
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Dynamic Dispatch Example
class point {

int c;
int getColor() { return(c); } 
int distance() { return(0); }

}
class cartesianPoint extends point{ 

int x, y; 
int distance() { return(x*x + y*y); } 

}
class polarPoint extends point { 

int r, t; 
int distance() { return(r*r); }
int angle() { return(t); } 

}
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Dynamic Dispatch Example

if (x == 0) { 
p = new point();

} else if (x < 0) { 
p = new cartesianPoint();

} else if (x > 0) { 
p = new polarPoint();

}
y = p.distance();

Which distance method is invoked?
• Invoked Method Depends on Type 

of Receiver!
– if p is a point

• return(0)
– if p is a cartesianPoint 

• return(x*x + y*y)
– if p is a polarPoint 

• return(r*r)
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Dynamic dispatch

• If methods are overridden, and if the PL allows a 
variable of a particular class to refer to an object of a 
subclass, then method calls entail dynamic dispatch.

• Consider the Java method call O.M(E1, …, En):
– The compiler infers the type of O, say class C.
– The compiler checks that class C is equipped with a method 

named M, of the appropriate type.
– Nevertheless, it might turn out (at run-time) that the target 

object is actually of class S, a subclass of C.
– If method M is overridden by any subclass of C, a run-time tag 

test is needed to determine the actual class of the target object, 
and hence which of the methods named M is to be called.

© 2004, D.A. Watt, University of Glasgow



28

Overloading vs. Dynamic Dispatch

• Dynamic Dispatch
– Add two numbers              x.add (y)

different add if x is integer, complex, ie. depends on the run-
time type of x

• Overloading 
– add (x, y) function add has fixed meaning
– int-add if x and y are ints, i.e. add (int x, int y) 
– real-add if x and y are reals i.e. add (float x, float y) 

Important distinction:
Overloading is resolved at compile time, 
Dynamic lookup at run time.
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Comparison

• Traditional approach to encapsulation is through 
abstract data types

• Advantage
– Separate interface from implementation

• Disadvantage
– All ADTs are independent and at the same level
– Not extensible in the way that OOP is
– Not reusable in the way OOP is
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Subtyping and Inheritance    

• Interface
– The external view of an object

• Subtyping
– Relation between interfaces    

• Implementation
– The internal representation of an object    

• Inheritance
– Relation between implementations  
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Object Interfaces

• Interface
– The messages understood by an object

• Example: point
– x-coord :  returns x-coordinate of a point
– y-coord :  returns y-coordinate of a point
– move :  method for changing location 

• The interface of an object is its type.
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Subtyping

• If interface A contains all of interface B, then A
objects can also be used as B objects.

• Colored_point interface contains Point
• Colored_point is a subtype of Point

Point
x-coord
y-coord
move

Colored_point
x-coord
y-coord
color
move
change_color
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Inheritance

• Implementation mechanism 
• New objects may be defined by reusing  

implementations of other objects
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Example

class Point 
private  

float x, y
public

point move (float dx, float dy);

class Colored_point
private  

float x, y; color c
public

point move(float dx, float dy);
point change_color(color newc);

Subtyping
• Colored points can be 

used in place of points
• Property used by client 

program

Inheritance
• Colored points can be 

implemented by reusing 
point implementation

• Property used by 
implementor of classes
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Subtyping differs from inheritance

Collection

Set

Sorted Set

Indexed

Array Dictionary

String
Subtyping
Inheritance
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Inheritance

• Implementation mechanism 
• New objects may be defined by reusing  

implementations of other objects

• Note in Java and C# inheritance also implies a subtype 
relation !

• In C++ you can have inheritance without subtyping by 
extending a class private:
– class Derived: private Base { … };
–
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Tennent’s Language Design principles and OOP

• We have seen abstractions over expressions, i.e. functions
• We have seen abstractions over commands, i.e. procedures
• What about abstractions over declarations?

• Well Tennent, in 1981 saw that
• Declabs Name(params) begin D end
• Is exactly the notion of a class in the simula language !
• “but this is not a widespread language construct”
• Well not in 1981 
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Varieties of OO languages

• class-based languages
– behaviour of object determined by its class

• object-based
– objects defined directly 

• multi-methods 
– operation depends on all operands
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History

• Simula                                           1960’s
– Object concept used in simulation

• Smalltalk                                        1970’s
– Object-oriented design, systems

• C++                                                1980’s 
– Adapted Simula ideas to C

• Java                                                1990’s
– Distributed programming, internet

• C# 2000’s  
– Combine the efficiency of C/C++ with the safety of Java

• Scala,F#, Swift, RUST - combine FP and OOP  2010’s 



40

Runtime Organization for OO Languages

How to represent/implement object oriented constructs such as
objects, classes, methods, instance variables and method invocation

Some definitions for these concepts:
• An object is a group of instance variables to which a group of 

instance methods is attached.
• An instance variable is a named component of a particular object.
• An instance method is a named operation attached to a particular 

object and able to access that objects instance variables
• An object class (or just class) is a family of objects with similar 

instance variables and identical methods.
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Runtime Organization for OO Languages

Objects are a lot like records, and instance variables are a lot like fields.
=> The representation of objects is similar to that of a record.

Methods are a lot like procedures.
=> Implementation of methods is similar to routines.

But… there are differences:

Objects have methods as well as instance variables, records only 
have fields (except in C#).

The methods have to somehow know what object they are associated 
with (so that methods can access the object’s instance variables)
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Example

A simple Java object (no inheritance)

class Point {
int x,y;
public Point(int x, int y) {

this.x=x; this.y=y;
}

public void move(int dx, int dy) {
x=x+dx; y=y+dy;

} 

public float area() { ...}
public float dist(Point other) { ... }

}

(1)

(2)

(3)
(4)
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Example

Representation of a simple Java object (no inheritance)

Point class
Point
move
area
dist

constructor(1)
method(2)
method(3)
method(4)

Point p = new Point(2,3);
Point q = new Point(0,0);

p

q

class
x
y

2
3

class
x
y

0
0

new allocates an object in 
the heap
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Example

Points and other “shapes” (Inheritance)

abstract class Shape {
int x,y; // “origin” of the shape
public Shape(int x, int y) {

this.x=x; this.y=y;
}

public void move(int dx, int dy) {
x=x+dx; y=y+dy;

} 

public abstract float area();
public float dist(Shape other) { ... }

}

(S1)

(S2)

(S3)
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class Point extends Shape {

public Point(int x, int y) {
super(x,y);

}

public float area() { return 0.0; }
}

Example

Points and other “shapes” (Inheritance)

(P1)

(P2)
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Example

Points and other “shapes” (Inheritance)

class Circle extends Shape { 
int r;
public Circle(int x,int y,int r) {

super(x,y); this.r = r;
}

public int radius() { return r; }

public float area() {
return 3.14 * r * r;

}
}

(C1)

(C3)

(C2)
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Representation of Points and other “shapes” (Inheritance)

Shape[] s = new Shape[2];
s[0] = new Point(2,3);
s[1] = new Circle(4,5,6);

s

class
x
y
r

4
5
6

class
x
y

2
3

point class circle class

Note the similar layout between point and circle objects!

s[0]
s[1]

s[0].x = ...;
s[1].y = ...;
float areas = 

s[0].area() 
+s[1].area();
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Representation of Points and other “shapes” (Inheritance)

Shape class
Shape
move
area
dist

constru(S1)
method(S2)

method(S3)

Circle class
Circle
move
area
dist

constru(C1)
method(S2)
method(C3)
method(S3)

radius method(C2)

Inherited from shapePoint class
Point
move
area
dist

constru(P1)
method(S2)

method(S3)
method(P2) Note the similar layout of 

each class object. 
Q: why is that important?

Q: why don’t we need a pointer to the super class in a class object?
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Alternative Run-time representation of point

class
x 3
y 2

x
y

newX:Y:
...

move

Point object

Point class
Template

Method dictionary

to superclass Object

code

...

code

Detail: class method shown in 
dictionary, but lookup procedure 
distinguishes class and instance 
methods
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Alternative Run-time representation

2
3

x
y newX:Y:

draw
move

Point object Point class Template
Method dictionary

...

4
5

x
y newX:Y:C:

color
draw

ColorPoint object ColorPoint class Template
Method dictionary

red

color

This is a schematic diagram meant to illustrate the main idea. Actual implementations may differ.
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Multiple Inheritance

• In the case of single inheritance, each class may have one 
direct predecessor; multiple inheritance allows a class to 
have several direct predecessors.

• In this case the simple ways of accessing attributes and 
binding method-calls (shown previously) don’t work.

• The problem: if class C inherits class A and class B the 
objects of class C cannot begin with attributes inherited 
from A and at the same time begin with attributes inherited 
from B.

• In addition to these implementation problems multiple 
inheritance also introduces problems at the language 
(conceptual) level.
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Object Layout

• The memory layout of the object’s fields
• How to access a field if the dynamic type is unknown?

– Layout of a type must be “compatible” with that of its supertypes
– Easy for Single Inheritance hierarchies

• The new fields are added
at the end of the layout

 Hard for MI hierarchies

B C

A
CB

A
B

A
A

A

C

D
A
B
C

C
A

C

B
A
B

A
A

D

Leave holes

Rectangle

Shape Polygon Rectangle

PolygonPolygon
ShapeShapeShape

Layout in SI

D

A
B

C
D

C

A

C

B

A
B

A

A

BiDirectional layout

D

A

B
C
D

C

A

C
B

A
BA

A

C++ layout
D

D

?

A
B C

D

The difficulty in MI
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Dynamic (late) Binding
• Consider the method call:

– x.f(a,b) where is  f defined?
in the class (type)of x? Or in a predecessor?

• If multiple inheritance is supported then the entire 
predecessor graph must be searched:
– This costs a large overhead in dynamic typed languages like 

Smalltalk (normally these languages don’t support multiple 
inheritance)

– In static typed languages like Java, Eiffel, C++ the compiler is 
able to analyse the class-hierarchy (or more precise: the graph) for 
x and create a display-array containing addresses for all methods 
of an object (including inherited methods)

– According to Meyer the overhead of this compared to static 
binding is at most 30%, and overhead decreases with complexity 
of the method

• If multi-methods are supported a forest like data structure 
has to be searched



Traits

• Some feel that single inheritance is too limiting
• Interface specification helps by forcing class to 

implement specified methods, but can lead to code 
duplication

• A trait is a collection of pure methods
• Can be thought of as an interface with implementation
• Classes “use” traits
• Traits can be used to supply the same methods to 

multiple classes in the inheritance hierarchy
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Simple Example Using Traits

trait Similarity {
def isSimilar(x: Any): Boolean
def isNotSimilar(x: Any): Boolean = !isSimilar(x)

}

• This trait consists of two methods isSimilar and isNotSimilar
– isSimilar is abstract
– isNotSimilar is concrete but written in terms of isSimilar

• Classes that integrate this trait only have to provide a concrete 
implementation for isSimilar, isNotSimilar gets inherited directly 
from the trait
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Simple Example Using Traits

class Point(xc: Int, yc: Int) extends 
Similarity {
var x: Int = xc
var y: Int = yc
def isSimilar(obj: Any) =

obj.isInstanceOf[Point] &&
obj.asInstanceOf[Point].x == x

}
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Using Traits

• Class = Superclass + State + Traits + Glue
• A class provides it’s own state
• It also provides “glue”, which is the code that hooks the traits in
• Traits can satisfy each other’s requirements for accessors
• A class is complete if all of the trait’s requirements are met

• Languages with traits:
– SmallTalk/Squeak/Pharo
– Fortress
– Scala
– Swift
– Kotlin
– (Java8 – default methods on interfaces)
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Implementation of Object Oriented Languages

• Implementation of Object Oriented Languages differs 
only slightly from implementations of block structured 
imperative languages

• Some additional work to do for the contextual analysis
– Access control, e.g. private, public, protected directives
– Subtyping can be tricky to implement correctly

• The main difference is that methods usually have to be 
looked up dynamically, thus adding a bit of run-time 
overhead
– For efficiency some languages introduce modifiers like:

• final (Java) or virtual/override (C#)
– Multiple inheritance poses a bigger problem
– Multi methods pose an even bigger problem
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Larger Encapsulation Constructs

• Original motivation:
– Large programs have two special needs:
1. Some means of organization, other than simply division into 

subprograms
2. Some means of partial compilation (compilation units that are 

smaller than the whole program)
• Obvious solution: a grouping of subprograms that are 

logically related into a unit that can be separately 
compiled (compilation units)
– These are called encapsulations (or packages or modules)
– Classes are too small (unless they allow true inner classes) 



Encapsulation Constructs
• Why are Classes are too small and what is true inner classes? 
• Originally mainstream OOP languages like C++ and Java had a 

flat namespace for classes
• But what if classes can be declared within classes?
• Java 1.1 introduced the notion of inner/nested classes:

class OuterClass {
...
class NestedClass {

...
}

}
• Distinction between inner and nested classes

– An inner class refer to an instance of the outer class in Java
– A nested class is declared as static in Java 
– C# and C++ have static nested classes 

• remember in C# members are static unless declared to be overridable
and inner classes cannot be declared overridable
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class OuterClass {
...
static class StaticNestedClass {

...
}

}



Encapsulation Constructs
• Static nested classes introduce a form of namespace

hierachy:
OuterClass.StaticNestedClass nestedObject =

new OuterClass.StaticNestedClass();
Static nested classes only have access to static members and 
methods!

• Inner classes needs an instance of the outer class:
OuterClass outerObject = new OuterClass();
OuterClass.InnerClass innerObject = 

outerObject.new InnerClass();
Inner classes have access to members and methods of the 
instance of the outer class

Note Java also allow class definitions in methods, but
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Encapsulation Constructs

• However, many restrictions on inner classes in Java
– A method can declare a local class, 

• but only access to variables declared as final – a restriction 
put to ensure a closure is not needed.

– Classes cannot be treated as objects in Java.
• Other languages treat classes as first class objects

– E.g. SmallTalk:
Every object has
a class and every
Class is an object
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Naming Encapsulations

• Large programs define many global names
• So we need a way to divide names into logical groupings
• A naming encapsulation is used to create a new scope for 

names
• C++ Namespaces

– Can place each library in its own namespace and qualify names 
used outside with the namespace

• C# also includes namespaces
• In Java namespaces are called packages
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Naming Encapsulations
• Java Packages

– Packages can contain more than one class definition; classes in a package 
are partial friends

– Clients of a package can use fully qualified name or use the import
declaration

• Ada Packages
– Packages are defined in hierarchies which correspond to file hierarchies
– Visibility from a program unit is gained with the with clause

• SML Modules 
– Called structure; interface called signature
– Interface specifies what is exported
– Interface and structure may have different names
– If structure has no signature, everything exported
– Modules may be parameterized (functors)
– Module system quite expressive
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Modules

• Language construct for grouping related types, data 
structures, and operations

• Typically allows at least some encapsulation
– Can be used to provide abstract types

• Provides scope for variable and subprogram names
• Typically includes interface stating which modules it 

depends upon and what types and operations it exports
• Compilation unit for separate compilation
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Encapsulation Constructs

• Encapsulation in C
– Files containing one or more subprograms can be 

independently compiled
– The interface is placed in a header file (.h)
– Problem: the linker does not check types between a header 

and associated implementation
• Encapsulation in C++ 

– Similar to C
– Addition of friend functions that have access to private 

members of the friend class
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Encapsulation Constructs

• Ada Package
– Can include any number of data and subprogram declarations
– Two parts: specification and body
– Can be compiled separately

• C# Assembly
– Collection of files that appears to be a single dynamic link 

library or executable
– Larger construct than class; used by all .NET programming 

languages
• Java Module System (JSR 277/JSR376)

– New deployment and distribution format
– New language constructs: 

• module, import/export, provides/requires



Java 9 module system
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Issues for modules
• The target language usually has one name space

– Generate unique names for modules
– Some assemblers support local names per file
– Use special characters which are invalid in the programming 

language to guarantee uniqueness
• This is what Java does since the JVM has no nested classes

• Generate code for initialization
– Modules may use items from other modules
– Init before used
– Init only once
– Circular dependencies

• How to initialize C once if module A uses module B and C, and B uses C
– Compute a total order and init before use
– Use special compile-time flag
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Summary

• Abstract Data Types
– Encapsulation
– Invariants may be preserved 

• Objects
– Reuse
– Subtyping
– Inheritance
– Dynamic dispatch

• Modules
– Grouping (related) entities
– Namespace management
– Separate compilation
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“I invented the term Object-Oriented
and I can tell you I did not have C++ 
in mind.”

Alan Kay
Inventor of Smalltalk
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Languages and Compilers
(SProg og Oversættere)

Lecture 20

Compiler Optimizations

Bent Thomsen
Department of Computer Science

Aalborg University

With acknowledgement to Norm Hutchinson and Mooly Sagiv whose slides this lecture is based on.
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The “Phases” of a Compiler

Syntax Analysis

Contextual Analysis

Code Generation

Source Program

Abstract Syntax Tree

Decorated Abstract Syntax Tree

Object Code

Error Reports

Error Reports
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The “Phases” of a Compiler

Analyze/Optimize

Analyze/optimize

Code Generation

Intermediate Code

Intermediate Code

Intermediate Code

Object Code

Error Reports

Error Reports
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Compiler Optimizations

The code generated by the code generators discussed so far are not very efficient:
– They compute some values at runtime that could be known at compile time
– They compute values more times than necessary
– They produce code that will never be executed

We can do better! We can do code transformations
• Code transformations are performed for a variety of reasons among which are: 

– To reduce the size of the code 
– To reduce the running time of the program 
– To take advantage of machine idioms 

• Code optimizations include:
– Peephole optimizatioons
– Constant folding
– Common sub-expression elimination
– Code motion
– Dead code elimination

• Mathematically, the generation of optimal code is undecidable. 
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Criteria for code-improving transformations

• Preserve meaning of programs (safety) 
– Potentially unsafe transformations 

• Associative reorder of operands 
• Movement of expressions and code sequences 
• Loop unrolling 

• Must be worth the effort (profitability) and 
– on average, speed up programs 

• 90/10 Rule: Programs spend 90% of their execution time in 10% 
of the code. Identify and improve "hot spots" rather than trying to 
improve everything. 



Peephole optimizations

• Recognition of program patterns that could be rewritten 
to produce faster code

• Can be done at several levels in the compiler:
– AST rewrite
– IR level rewrite
– Bytecode 
– Target Code

• The general idea:
– Pattern => replacement

6
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Constant folding

• Consider:

• The compiler could compute 4 / 3 * pi as 4.1888 before 
the program runs.  This saves how many instructions?

• What is wrong with the programmer writing 
4.1888 * r * r * r?

static double pi = 3.1416;
double volume = 4/3 * pi * r * r * r;
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Constant folding II

• Consider:

• If the address of holidays is x, what is the address of 
holidays[2].m?

• Could the programmer evaluate this at compile time?  
Safely?

struct { int y, m, d; } holidays[6];
holidays[2].m = 12;
holidays[2].d = 25;
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Common sub-expression elimination

• Consider:

• Computing x – y takes three instructions, could we save 
some of them?

int t = (x – y) * (x – y + z);
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Common sub-expression elimination II

int t = (x – y) * (x – y + z);

Naïve code:

iload x
iload y
isub
iload x
iload y
isub
iload z
iadd
Imult
istore t
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Common sub-expression elimination II
Programmer tries to be clever

Naïve code:

iload x
iload y
isub
iload x
iload y
isub
iload z
iadd
Imult
istore t

New code:

iload x
iload y
isub
istore tmp
iload tmp
iload tmp
iload z
iadd
Imult
istore t

int tmp = (x - y)
int t = tmp * (tmp + z);

Is this code better or worse?
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Common sub-expression elimination II

int t = (x – y) * (x – y + z);

Naïve code:

iload x
iload y
isub
iload x
iload y
isub
iload z
iadd
Imult
istore t

Better code:

iload x
iload y
isub
dup
iload z
iadd
Imult
istore t
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Common sub-expression elimination III

• Consider:

• The address of holidays[i] is a common 
subexpression.

struct { int y, m, d; } holidays[6];
holidays[i].m = 12;
holidays[i].d = 25;
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• But, be careful!

• Is x – y++ still a common sub-expression?

Common sub-expression elimination IV

int t = (x – y++) * (x – y++ + z);
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Code motion

• Consider:

• Computing the address of name[i][j] is                   
address[name] + (i * 10) + j

• Most of that computation is constant throughout the 
inner loop

char name[3][10];
for (int i = 0; i < 3; i++) {

for (int j = 0; j < 10; j++) {
name[i][j] = ‘a’;

address[name] + (i * 10)



19

Code motion II

• You can think of this as rewriting the original code:

as

char name[3][10];
for (int i = 0; i < 3; i++) {

for (int j = 0; j < 10; j++) {
name[i][j] = ‘a’;

char name[3][10];
for (int i = 0; i < 3; i++) {

char *x = &(name[i][0]);
for (int j = 0; j < 10; j++) {

x[j] = ‘a’;
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Dead code elimination

• Consider:

• Computing t takes many instructions, but the value of t
is never used.

• We call the value of t “dead” (or the variable t dead) 
because it can never affect the final value of the 
computation.  Computing dead values and assigning to 
dead variables is wasteful.

int f(int x, int y, int z)
{

int t = (x – y) * (x – y + z);
return 6;

}
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Dead code elimination II

• But consider:

• Now t is only dead for part of its existence.  Hmm…

int f(int x, int y, int z)
{

int t = x * y;
int r = t * z;
t = (x – y) * (x – y + z);
return r;

}
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Optimization implementation

• What do we need to know in order to apply an 
optimization?

–Constant folding
–Common sub-expression elimination
–Code motion
–Dead code elimination

• Is the optimization correct or safe?
• Is the optimization an improvement?
• What sort of analyses do we need to perform to get the 

required information?
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Control-Flow Analysis

• The purpose of Control-Flow Analysis is to determine 
the control structure of a program
– determine possible control flow paths
– find basic blocks and loops

• A Basic Block (BB) is a sequence of instructions 
entered only at the beginning and left only at the end.

• The Control-Flow Graph (CFG) of a program is a 
directed graph G=(N, E) whose nodes N represent the 
basic blocks in the program and whose edges E 
represent transfers of control between basic blocks.
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Basic blocks

• A basic block is a sequence of instructions entered only 
at the beginning and left only at the end.

• A flow graph is a collection of basic blocks connected 
by edges indicating the flow of control.
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Finding basic blocks
iconst_1
istore 2
iconst_2
istore 3

Label_1:
iload 3
iload 1
if_icmplt Label_4
iconst_0
goto Label_5

Label_4:
iconst_1

Label_5:
ifeq Label_2

iload 2
iload 3
imul
dup
istore 2
pop

Label_3:
iload 3
dup
iconst_1
iadd
istore 3
pop
goto Label_1

Label_2:
iload 2
ireturn
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Finding basic blocks II

Label_2:
iload 2
ireturn

Label_3:
iload 3
dup
iconst_1
iadd
istore 3
pop
goto Label_1

iload 2
iload 3
imul
dup
istore 2
pop

Label_5:
ifeq Label_2

Label_4:
iconst_1

iconst_0
goto Label_5

Label_1:
iload 3
iload 1
if_icmplt Label_4

iconst_1
istore 2
iconst_2
istore 3
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Flow graphs

7: iload 2
ireturn

6: iload 3
dup
iconst_1
iadd
istore 3
pop
goto 1

5: iload 2
iload 3
imul
dup
istore 2
pop

4: ifeq 7

3: iconst_1

2: iconst_0
goto 4

1: iload 3
iload 1
if_icmplt 3

0: iconst_1
istore 2
iconst_2
istore 3
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Data-Flow Analysis

• The purpose of Data-Flow Analysis is to provide global 
information about how a procedure manipulates its data.

• Examples:
– Live variable analysis

• Which variable are still alive?
• Needed for: register allocation, dead-code elimination

– Reaching definitions
• What points in program does each variable definition 

reach?
• Needed for: copy- and constant propagation

• Available expressions
– Which expressions computed earlier still have same value?
– Needed for: common sub-expression elimination.
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Optimizations within a BB

• Everything you need to know is easy to determine
• For example:  live variable analysis

–Start at the end of the block and work backwards
–Assume everything is live at the end of the BB
–Copy live/dead info for the instruction
–If you see an assignment to x, then mark x “dead”
–If you see a reference to y, then mark y “live”

5: iload 2
iload 3
imul
dup
istore 2
pop

live: 1, 2, 3

live: 1, 3

live: 1, 2, 3

live: 1, 3
live: 1, 3
live: 1, 2, 3

live: 1, 3
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Global optimizations

• Global means “between basic blocks”
• We must know what happens across block boundaries
• For example:  live variable analysis

– The liveness of a value depends on its later uses perhaps in 
other blocks

– What values does this block define and use?

5: iload 2
iload 3
imul
dup
istore 2
pop

Define:    2
Use:         2, 3
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Global live variable analysis

• We define four sets for each BB
– def == variables with defined values 
– use == variables used before they are defined
– in == variables live at the beginning of a BB
– out == variables live at the end of a BB

• These sets are related  by the following equations:
– in[B] = use[B] ∪ (out[B] – def[B])

– out[B] = ∪S in[S] where S is a successor of B
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Solving data flow equations

• Iterative solution:
– Start with empty set
– Iteratively apply constraints
– Stop when we reach a fixed point

For all instructions in[I] = out[I] = ∅
Repeat

For each instruction I
in[I] = ( out[I] – def[I] ) ∪ use[I]

For each basic block B
out[B] =     ∪ in[B’]

Until no new changes in sets
B’ ∈ succ(B)
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Dead code elimination

• Armed with global live variable information we redo the 
local live variable analysis with correct liveness 
information at the end of the block out[B]

• Whenever we see an assignment to a variable that is 
marked dead, we eliminate it.
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Static Analysis

• Automatic derivation of static properties which hold on every 
execution leading to a program location

• Example Static Analysis Problems
– Live variables
– Reaching definitions
– Expressions that are “available”
– Dead code
– Pointer variables that never point into the same location
– Points in the program in which it is safe to free an object
– An invocation of a virtual method whose address is unique
– Statements that can be executed in parallel
– An access to a variable which must be in cache
– Integer intervals
– Security properties
– WCET and Schedulability
– …
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A somewhat more complex compiler
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Learning More about Optimizations

• Read chapter 9-12 in the new Dragon Book
– Compilers: Principles, Techniques, and Tools (2nd Edition) by Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. 

Ullman, Addison-Wesley, ISBN   0-321-21091-3

• Read the ultimate reference on program analysis
– Principles of Program Analysis Flemming Nielson, Hanne Riis Nielson, Chris Hankin: Principles of Program Analysis. 

Springer (Corrected 2nd printing, 452 pages, ISBN 3-540-65410-0), 2005. 

• Use one of the frameworks:
– Soot: a Java Optimization Framework

• http://www.sable.mcgill.ca/soot
– WALA: The T. J. Watson Libraries for Analysis 

• http://wala.sourceforge.net/wiki/index.php/Main_Page

http://www.sable.mcgill.ca/soot
http://wala.sourceforge.net/wiki/index.php/Main_Page


Pause
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Remember the exercises before 
this course?

• 2.Write a Java program that 
implements a data structure for 
the following tree

• 3.Extend your Java program to 
traverse the tree depth-first and 
print out information in nodes 
and leaves as it goes along. 

• 4.Write a Java program that can 
read the string "a + n * 1" and 
produce a collection of objects 
containing the individual 
symbols when blank spaces are 
ignored (or used as separator).
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Remember the exercises before 
this course?

• 2.Make a drawing or description of 
the phases (internals) of a compiler 
(without reading the books or 
searching the Internet) – save this 
for comparison with your 
knowledge after the course.

• 4.Create a list of language features 
group members would like in a 
new language. Are any of these 
features in conflict with each other? 
How would you prioritize the 
features?

• 5.Discuss what is needed to define 
a new programming language. 
Write down your conclusions for 
comparison with your knowledge 
after the course.
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What was this course about?

• Programming Language Design
– Concepts and Paradigms
– Ideas and philosophy
– Syntax and Semantics

• Compiler Construction
– Tools and Techniques
– Implementations
– The nuts and bolts
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Curricula 
Studie ordningen i de gode gamle dage 

The purpose of the course is contribute to the student 
gaining knowledge of important principles in 
programming languages and understanding of 
techniques for describing and compiling programming 
languages.
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Sprog og oversættelse / Language and Compiler Construction (SPO)
Omfang: 5 ECTS-point.
Forudsætninger: Programmeringserfaring svarende til projektenheden på 3. semester samt kendskab til 

imperativ og objektorienteret programmering svarende til 1. - og 2. semesters kurser i 
programmering.

Mål: 

Viden:
Den studerende skal opnå viden om væsentlige principper i programmeringssprog, samt forståelse af 

teknikker til beskrivelse og oversættelse af sprog generelt, herunder:
• Abstraktionsprincippet, kontrol- og datastrukturer, blokstruktur og scopebegrebet, 

parametermekanismer og typeækvivalens
• Oversættelse, herunder leksikalsk, syntaktisk, og statisk semantisk analyse, samt kodegenering
• Køretids-omgivelser, herunder lagerallokering samt strukturer til understøttelse af procedurer og 

funktioner

Færdigheder:
Den studerende skal opnå følgende færdigheder:
• Kunne redegøre for de berørte teknikker og begreber inden for sprogdesign og 

oversætterkonstruktion ved brug af fagets terminologi og notation for beskrivelse og implementation 
af programmeringssprog

• Kunne redegøre for hvordan implementations teknikker influerer sprog design
• Kunne ræsonnere datalogisk om og med de berørte begreber og teknikker

Kompetencer: Den studerende skal kunne beskrive, analysere og implementere programmeringssprog og 
skal kunne redegøre for de enkelte faser og sammenhængen mellem faserne i en oversætter

Undervisningsform: Kursus
Prøveform: Mundtlig eller skriftlig prøve
Bedømmelse: Ekstern bedømmelse efter 7-trins-skala
Vurderingskriterier: Se Rammestudieordningen.
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What is expected of you at the end?

• One goal for this course is for you to be able to 
explain concepts, techniques, tools and theories to 
others 
– Your future colleagues, customers and boss 
– (especially me and the examiner at the exam ;-)

• That implies you have to
– Understand the concepts and theories
– Know how to use the tools and techniques
– Be able to put it all together

• I.e. You have to know and know that you know 



Exam

• 15 minute video presentation exam 
– To be recorded in 1 hours
– Your subject and questions will be released in DE

• Subjects are already published
– So you know roughly what we will ask you !!
– For each published question there will be some questions you do not 

know before hand.
– For each question there will be a set of slides available that you can 

choose to use for your presentation 
• note you do not need to use all the available slides.

– you may draw on slides, add slides, or choose to only use the slides 
provided

• If you modify the provided slides, it is a good idea to state this at 
the beginning of the presentation.
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The 8 Questions

1. Language Design and Control Structures
2. Structure of the compiler
3. Lexical analysis
4. Parsing
5. Semantic Analysis
6. Run-time organization
7. Heap allocation and Garbage Collection
8. Code Generation
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And how did it go last year?
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Important

• At the end of the course you should …
• Know

– Which theories and techniques exist
– Which tools exist

• Be able to choose “the right ones”
– Objective criteria
– Subjective criteria

• Be able to argue and justify your choices!
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The Most Important Open Problem in Computing

Increasing Programmer Productivity
– Write programs correctly
– Write programs quickly
– Write programs easily

• Why?
– Decreases support cost
– Decreases development cost
– Decreases time to market
– Increases satisfaction
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Why Programming Languages?

3 ways of increasing programmer productivity:
1. Process (software engineering)

– Controlling programmers
2. Tools (verification, static analysis, program generation)

– Important, but generally of narrow applicability
3. Language design --- the center of the universe!

– Core abstractions, mechanisms, services, guarantees
– Affect how programmers approach a task (C vs. SML)
– Multi-paradigm integration
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New Programming Language!  Why Should I Care?

• The problem is not designing a new language
– It’s easy!  Thousands of languages have been developed

• The problem is how to get wide adoption of the new language
– It’s hard!  Challenges include

• Competition
• Usefulness
• Interoperability
• Fear

“It’s a good idea, but it’s a new idea; therefore, I fear it and must reject it.”
--- Homer Simpson

• The financial rewards are low, but …
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Famous Danish Computer Scientists
• Peter Nauer

– BNF and Algol
• Per Brinck Hansen

– Monitors and Concurrent Pascal
• Dines Bjørner

– VDM and ADA
• Bjarne Straustrup

– C++
• Mads Tofte

– SML
• Rasmus Lerdorf

– PhP
• Anders Hejlsberg

– Turbo Pascal and C#
• Lars Bak

– Java HotSpot VM, V8 and DART

• Jacob Nielsen
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Fancy joining this crowd?
• Look forward to the PP (Programming Paradigms) course 

– on SW7/DAT7/IT7
• Look forward to the Advanced Programming course

– On SW8/IT8
• Specialize in Programming Technology 

– on DAT9/DAT10 or SW9/SW10 or IT9/IT10

• Research Programme in Programming Technology
• Programmatic Program Construction

• Real-time programming in Java (and C)

• Big Data and Functional Programming
– Popular Parallel Programming (P3)
– Prescriptive Analytics

• Energy Aware Programming

• ”The P-gang”:
• Kurt Nørmark 
• Lone Leth 
• Bent Thomsen
• Thomas Bøgholm
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What I promised you at the start of the course

Ideas, principles and techniques to help you
– Design your own programming language or design your own 

extensions to an existing language
– Tools and techniques to implement a compiler or an interpreter
– Lots of knowledge about programming

I hope you feel you got what I promised
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The “Phases” of a Compiler

Syntax Analysis

Contextual Analysis

Code Generation

Source Program

Abstract Syntax Tree

Decorated Abstract Syntax Tree

Object Code

Error Reports

Error Reports

Is this picture still valid or is it how compilers were taught 30 years ago?



.NET Compiler Platform ("Roslyn") Overview
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Corresponding to each of those phases, an object model is surfaced that allows access 
to the information at that phase:
The parsing phase is exposed as a syntax tree, 
the declaration phase as a hierarchical symbol table, 
the binding phase as a model that exposes the result of the compiler’s semantic analysis 
the emit phase as an API that produces IL byte codes.



Programming Language design

• Designing a new programming language or extending an 
existing programming language usually follows an 
iterative approach:

1. Create ideas for the programming language or 
extensions

2. Describe/define the programming language or 
extensions

3. Implement the programming language or extensions
4. Evaluate the programming language or extensions
5. If not satisfied, goto 1
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Discount Method for Evaluating 
Programming Languages

1. Create tasks specific to the language being tested - tasks 
that the participants of the experiment should solve. 
Estimate the time needed for each task (max 1 hour)

2. Create a short sample sheet of code examples in the 
language being tested, which the participants can use as a 
guideline for solving the tasks.

3. Prepare setup (e.g. use of NotePad++ and recorder) and do 
a sample test with 1 person. 
– Adjust tasks if needed

4. Perform the test on each participant, i.e. make them solve 
the tasks defined in step 1. (Use approx. 5 test persons)

5. Each participant should be interviewed briefly after the test, 
where the language and the tasks can be discussed.

6. Analyze the resulting data to produce a list of problems
– Cosmetic problems, Serious problems, Critical problems
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Discount Method for Evaluating 
Programming Languages

• Method inspired by the Discount Usability Evaluation 
(DUE) method and Instant Data Analysis (IDA) method

• Reference:
– Svetomir Kurtev, Tommy Aagaard Christensen, and Bent 

Thomsen. 
– Discount method for programming language evaluation. 
– In Proceedings of the 7th International Workshop on 

Evaluation and Usability of Programming Languages and 
Tools (PLATEAU 2016). ACM, New York, NY, USA, 1-8. 
DOI: https://doi.org/10.1145/3001878.3001879 
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Finally

Keep in mind, the compiler is the program from which all other 
programs arise. If your compiler is under par, all programs created 
by the compiler will also be under par. No matter the purpose or use 
-- your own enlightenment about compilers or commercial 
applications -- you want to be patient and do a good job with this 
program; in other words, don't try to throw this together on a 
weekend.

Asking a computer programmer to tell you how to write a compiler 
is like saying to Picasso, "Teach me to paint like you." 

*Sigh* Well, Picasso tried.


